Towards understanding brain-gut-microbiome connections in Alzheimer’s disease View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-08

AUTHORS

Rong Xu, QuanQiu Wang

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is complex, with genetic, epigenetic, and environmental factors contributing to disease susceptibility and progression. While significant progress has been made in understanding genetic, molecular, behavioral, and neurological aspects of AD, relatively little is known about which environmental factors are important in AD etiology and how they interact with genetic factors in the development of AD. Here, we propose a data-driven, hypotheses-free computational approach to characterize which and how human gut microbial metabolites, an important modifiable environmental factor, may contribute to various aspects of AD. MATERIALS AND METHODS: We integrated vast amounts of complex and heterogeneous biomedical data, including disease genetics, chemical genetics, human microbial metabolites, protein-protein interactions, and genetic pathways. We developed a novel network-based approach to model the genetic interactions between all human microbial metabolites and genetic diseases. We identified metabolites that share significant genetic commonality with AD in humans. We developed signal prioritization algorithms to identify the co-regulated genetic pathways underlying the identified AD-metabolite (brain-gut) connections. RESULTS: We validated our algorithms using known microbial metabolite-AD associations, namely AD-3,4-dihydroxybenzeneacetic acid, AD-mannitol, and AD-succinic acid. Our study provides supporting evidence that human gut microbial metabolites may be an important mechanistic link between environmental exposure and various aspects of AD. We identified metabolites that are significantly associated with various aspects in AD, including AD susceptibility, cognitive decline, biomarkers, age of onset, and the onset of AD. We identified common genetic pathways underlying AD biomarkers and its top one ranked metabolite trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. These coregulated pathways between TMAO-AD may provide insights into the mechanisms of how dietary meat and fat contribute to AD. CONCLUSIONS: Employing an integrated computational approach, we provide intriguing and supporting evidence for a role of microbial metabolites, an important modifiable environmental factor, in AD etiology. Our study provides the foundations for subsequent hypothesis-driven biological and clinical studies of brain-gut-environment interactions in AD. More... »

PAGES

63

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12918-016-0307-y

DOI

http://dx.doi.org/10.1186/s12918-016-0307-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053079700

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27585440


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alzheimer Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gastrointestinal Microbiome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methylamines", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Case Western Reserve University", 
          "id": "https://www.grid.ac/institutes/grid.67105.35", 
          "name": [
            "Department of Epidemiology and Biostatistics, Institute of Computational Biology, School of Medicine, Case Western Reserve University, 2103 Cornell Road, 44106, Cleveland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Rong", 
        "id": "sg:person.01302622512.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302622512.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ThinTek LLC, 94306, Palo Alto, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "QuanQiu", 
        "id": "sg:person.01254476733.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254476733.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.molmed.2007.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001542324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2006.01.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002737251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004485531", 
          "https://doi.org/10.1038/nm.3145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004952443", 
          "https://doi.org/10.1038/nature11552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1223813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005356592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005975531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783083", 
          "https://doi.org/10.1038/nrg3253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1124234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006869298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009471885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-16-s7-s4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010638051", 
          "https://doi.org/10.1186/1471-2164-16-s7-s4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjmed.2014.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011470905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-014-1209-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012444392", 
          "https://doi.org/10.1186/s12864-014-1209-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-014-1209-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012444392", 
          "https://doi.org/10.1186/s12864-014-1209-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012688427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m510926200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013014341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000022031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015367030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2012.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015745715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.23593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019553453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1200303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020330063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0891-5849(92)90184-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023875101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0891-5849(92)90184-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023875101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/bbrc.1998.9681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024385341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2015.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031310759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032298109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.0059-07.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034798319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3001318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035930595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3001318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035930595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn3346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037406998", 
          "https://doi.org/10.1038/nrn3346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nbdi.2000.0304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039141869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039284123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-16-s7-s9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043147990", 
          "https://doi.org/10.1186/1471-2164-16-s7-s9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043309820", 
          "https://doi.org/10.1038/nature09922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3223(99)00008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043522509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1476-5381.2012.02057.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043784694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044604503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045624288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047459836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047459836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-014-1196-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048123979", 
          "https://doi.org/10.1186/s12864-014-1196-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-014-1196-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048123979", 
          "https://doi.org/10.1186/s12864-014-1196-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1109400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049213464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3002648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050185322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0902640106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050609228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0891-5849(02)00841-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051642650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000103860.75218.a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064345700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000103860.75218.a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064345700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000103860.75218.a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064345700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000123250.82849.b6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064345942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000123250.82849.b6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064345942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000123250.82849.b6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064345942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2741/2130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070914438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078155756", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079239391", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079239407", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082874228", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-08", 
    "datePublishedReg": "2016-08-01", 
    "description": "BACKGROUND: Alzheimer's disease (AD) is complex, with genetic, epigenetic, and environmental factors contributing to disease susceptibility and progression. While significant progress has been made in understanding genetic, molecular, behavioral, and neurological aspects of AD, relatively little is known about which environmental factors are important in AD etiology and how they interact with genetic factors in the development of AD. Here, we propose a data-driven, hypotheses-free computational approach to characterize which and how human gut microbial metabolites, an important modifiable environmental factor, may contribute to various aspects of AD.\nMATERIALS AND METHODS: We integrated vast amounts of complex and heterogeneous biomedical data, including disease genetics, chemical genetics, human microbial metabolites, protein-protein interactions, and genetic pathways. We developed a novel network-based approach to model the genetic interactions between all human microbial metabolites and genetic diseases. We identified metabolites that share significant genetic commonality with AD in humans. We developed signal prioritization algorithms to identify the co-regulated genetic pathways underlying the identified AD-metabolite (brain-gut) connections.\nRESULTS: We validated our algorithms using known microbial metabolite-AD associations, namely AD-3,4-dihydroxybenzeneacetic acid, AD-mannitol, and AD-succinic acid. Our study provides supporting evidence that human gut microbial metabolites may be an important mechanistic link between environmental exposure and various aspects of AD. We identified metabolites that are significantly associated with various aspects in AD, including AD susceptibility, cognitive decline, biomarkers, age of onset, and the onset of AD. We identified common genetic pathways underlying AD biomarkers and its top one ranked metabolite trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. These coregulated pathways between TMAO-AD may provide insights into the mechanisms of how dietary meat and fat contribute to AD.\nCONCLUSIONS: Employing an integrated computational approach, we provide intriguing and supporting evidence for a role of microbial metabolites, an important modifiable environmental factor, in AD etiology. Our study provides the foundations for subsequent hypothesis-driven biological and clinical studies of brain-gut-environment interactions in AD.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12918-016-0307-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2496609", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2622626", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705139", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705236", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3806078", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Towards understanding brain-gut-microbiome connections in Alzheimer\u2019s disease", 
    "pagination": "63", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fcd4b609de3db37af87589806d95ec78dbb37e2e5d9ca4ef2b87294d999320bb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27585440"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301827"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12918-016-0307-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053079700"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12918-016-0307-y", 
      "https://app.dimensions.ai/details/publication/pub.1053079700"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12918-016-0307-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12918-016-0307-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12918-016-0307-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12918-016-0307-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12918-016-0307-y'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      82 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12918-016-0307-y schema:about N2629269d6d874828a1dadb5e0d3893f9
2 N528268bb3e0e44e9bfe82e24ac2bbc43
3 N5af3b6c6e9ee463b986d1321b417155c
4 N76faac09c235448b88fcbeaa9cb1b750
5 Nd3243f8f438240c6affe7ab91d64025d
6 Ne41c5c5924fd4fec8cd5fd697d7f8e2c
7 Ne452f4a75ab1421ab9dc7174d5e81ae7
8 anzsrc-for:11
9 anzsrc-for:1109
10 schema:author N340868a8cfc841adaa814ef99efb31ce
11 schema:citation sg:pub.10.1038/nature09922
12 sg:pub.10.1038/nature11552
13 sg:pub.10.1038/nm.3145
14 sg:pub.10.1038/nrg3253
15 sg:pub.10.1038/nrn3346
16 sg:pub.10.1186/1471-2164-16-s7-s4
17 sg:pub.10.1186/1471-2164-16-s7-s9
18 sg:pub.10.1186/s12864-014-1196-3
19 sg:pub.10.1186/s12864-014-1209-2
20 https://app.dimensions.ai/details/publication/pub.1078155756
21 https://app.dimensions.ai/details/publication/pub.1079239391
22 https://app.dimensions.ai/details/publication/pub.1079239407
23 https://app.dimensions.ai/details/publication/pub.1082874228
24 https://doi.org/10.1002/ana.23593
25 https://doi.org/10.1006/bbrc.1998.9681
26 https://doi.org/10.1006/nbdi.2000.0304
27 https://doi.org/10.1016/0891-5849(92)90184-i
28 https://doi.org/10.1016/j.aca.2006.01.070
29 https://doi.org/10.1016/j.amjmed.2014.10.014
30 https://doi.org/10.1016/j.cell.2013.11.024
31 https://doi.org/10.1016/j.cmet.2012.12.011
32 https://doi.org/10.1016/j.jbi.2015.06.027
33 https://doi.org/10.1016/j.molmed.2007.12.001
34 https://doi.org/10.1016/s0006-3223(99)00008-6
35 https://doi.org/10.1016/s0891-5849(02)00841-9
36 https://doi.org/10.1056/nejmoa1109400
37 https://doi.org/10.1056/nejmoa1200303
38 https://doi.org/10.1073/pnas.0902640106
39 https://doi.org/10.1074/jbc.m510926200
40 https://doi.org/10.1093/bioinformatics/btr260
41 https://doi.org/10.1093/bioinformatics/btv245
42 https://doi.org/10.1093/nar/gki033
43 https://doi.org/10.1093/nar/gks1065
44 https://doi.org/10.1093/nar/gks1094
45 https://doi.org/10.1093/nar/gkt1207
46 https://doi.org/10.1093/nar/gkt1229
47 https://doi.org/10.1111/j.1476-5381.2012.02057.x
48 https://doi.org/10.1126/science.1124234
49 https://doi.org/10.1126/science.1223813
50 https://doi.org/10.1126/scitranslmed.3001318
51 https://doi.org/10.1126/scitranslmed.3002648
52 https://doi.org/10.1159/000022031
53 https://doi.org/10.1212/01.wnl.0000103860.75218.a5
54 https://doi.org/10.1212/01.wnl.0000123250.82849.b6
55 https://doi.org/10.1523/jneurosci.0059-07.2007
56 https://doi.org/10.2741/2130
57 schema:datePublished 2016-08
58 schema:datePublishedReg 2016-08-01
59 schema:description BACKGROUND: Alzheimer's disease (AD) is complex, with genetic, epigenetic, and environmental factors contributing to disease susceptibility and progression. While significant progress has been made in understanding genetic, molecular, behavioral, and neurological aspects of AD, relatively little is known about which environmental factors are important in AD etiology and how they interact with genetic factors in the development of AD. Here, we propose a data-driven, hypotheses-free computational approach to characterize which and how human gut microbial metabolites, an important modifiable environmental factor, may contribute to various aspects of AD. MATERIALS AND METHODS: We integrated vast amounts of complex and heterogeneous biomedical data, including disease genetics, chemical genetics, human microbial metabolites, protein-protein interactions, and genetic pathways. We developed a novel network-based approach to model the genetic interactions between all human microbial metabolites and genetic diseases. We identified metabolites that share significant genetic commonality with AD in humans. We developed signal prioritization algorithms to identify the co-regulated genetic pathways underlying the identified AD-metabolite (brain-gut) connections. RESULTS: We validated our algorithms using known microbial metabolite-AD associations, namely AD-3,4-dihydroxybenzeneacetic acid, AD-mannitol, and AD-succinic acid. Our study provides supporting evidence that human gut microbial metabolites may be an important mechanistic link between environmental exposure and various aspects of AD. We identified metabolites that are significantly associated with various aspects in AD, including AD susceptibility, cognitive decline, biomarkers, age of onset, and the onset of AD. We identified common genetic pathways underlying AD biomarkers and its top one ranked metabolite trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. These coregulated pathways between TMAO-AD may provide insights into the mechanisms of how dietary meat and fat contribute to AD. CONCLUSIONS: Employing an integrated computational approach, we provide intriguing and supporting evidence for a role of microbial metabolites, an important modifiable environmental factor, in AD etiology. Our study provides the foundations for subsequent hypothesis-driven biological and clinical studies of brain-gut-environment interactions in AD.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree true
63 schema:isPartOf N5ac80b4ff1fb48bb9d018172b2ed0d44
64 N680e399906d740b299a05aceebcb65c8
65 sg:journal.1327442
66 schema:name Towards understanding brain-gut-microbiome connections in Alzheimer’s disease
67 schema:pagination 63
68 schema:productId N795f26c3c2d84831b537cde72b5cf67a
69 N85849a1c0ad74c19ad4b68e1ae050524
70 Na723fba70b3344c7937f6430e62faf68
71 Nc855fd8fdccc46438b93827b0f25a4ec
72 Ne1c3faa545484e42bba156672969e9b5
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053079700
74 https://doi.org/10.1186/s12918-016-0307-y
75 schema:sdDatePublished 2019-04-11T12:39
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Ndd4e053d5a154b2484c48557367aab40
78 schema:url https://link.springer.com/10.1186%2Fs12918-016-0307-y
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N2629269d6d874828a1dadb5e0d3893f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Methylamines
84 rdf:type schema:DefinedTerm
85 N340868a8cfc841adaa814ef99efb31ce rdf:first sg:person.01302622512.50
86 rdf:rest Nfe467307b9b141b089814412167f6def
87 N528268bb3e0e44e9bfe82e24ac2bbc43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Alzheimer Disease
89 rdf:type schema:DefinedTerm
90 N5ac80b4ff1fb48bb9d018172b2ed0d44 schema:issueNumber Suppl 3
91 rdf:type schema:PublicationIssue
92 N5af3b6c6e9ee463b986d1321b417155c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Humans
94 rdf:type schema:DefinedTerm
95 N680e399906d740b299a05aceebcb65c8 schema:volumeNumber 10
96 rdf:type schema:PublicationVolume
97 N7378370c94724cbbb861e2a27fdbcfaa schema:name ThinTek LLC, 94306, Palo Alto, USA
98 rdf:type schema:Organization
99 N76faac09c235448b88fcbeaa9cb1b750 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Gastrointestinal Microbiome
101 rdf:type schema:DefinedTerm
102 N795f26c3c2d84831b537cde72b5cf67a schema:name pubmed_id
103 schema:value 27585440
104 rdf:type schema:PropertyValue
105 N85849a1c0ad74c19ad4b68e1ae050524 schema:name dimensions_id
106 schema:value pub.1053079700
107 rdf:type schema:PropertyValue
108 Na723fba70b3344c7937f6430e62faf68 schema:name nlm_unique_id
109 schema:value 101301827
110 rdf:type schema:PropertyValue
111 Nc855fd8fdccc46438b93827b0f25a4ec schema:name readcube_id
112 schema:value fcd4b609de3db37af87589806d95ec78dbb37e2e5d9ca4ef2b87294d999320bb
113 rdf:type schema:PropertyValue
114 Nd3243f8f438240c6affe7ab91d64025d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Computational Biology
116 rdf:type schema:DefinedTerm
117 Ndd4e053d5a154b2484c48557367aab40 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 Ne1c3faa545484e42bba156672969e9b5 schema:name doi
120 schema:value 10.1186/s12918-016-0307-y
121 rdf:type schema:PropertyValue
122 Ne41c5c5924fd4fec8cd5fd697d7f8e2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Brain
124 rdf:type schema:DefinedTerm
125 Ne452f4a75ab1421ab9dc7174d5e81ae7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Genome-Wide Association Study
127 rdf:type schema:DefinedTerm
128 Nfe467307b9b141b089814412167f6def rdf:first sg:person.01254476733.31
129 rdf:rest rdf:nil
130 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
131 schema:name Medical and Health Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
134 schema:name Neurosciences
135 rdf:type schema:DefinedTerm
136 sg:grant.2496609 http://pending.schema.org/fundedItem sg:pub.10.1186/s12918-016-0307-y
137 rdf:type schema:MonetaryGrant
138 sg:grant.2622626 http://pending.schema.org/fundedItem sg:pub.10.1186/s12918-016-0307-y
139 rdf:type schema:MonetaryGrant
140 sg:grant.2705139 http://pending.schema.org/fundedItem sg:pub.10.1186/s12918-016-0307-y
141 rdf:type schema:MonetaryGrant
142 sg:grant.2705236 http://pending.schema.org/fundedItem sg:pub.10.1186/s12918-016-0307-y
143 rdf:type schema:MonetaryGrant
144 sg:grant.3806078 http://pending.schema.org/fundedItem sg:pub.10.1186/s12918-016-0307-y
145 rdf:type schema:MonetaryGrant
146 sg:journal.1327442 schema:issn 1752-0509
147 schema:name BMC Systems Biology
148 rdf:type schema:Periodical
149 sg:person.01254476733.31 schema:affiliation N7378370c94724cbbb861e2a27fdbcfaa
150 schema:familyName Wang
151 schema:givenName QuanQiu
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254476733.31
153 rdf:type schema:Person
154 sg:person.01302622512.50 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
155 schema:familyName Xu
156 schema:givenName Rong
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302622512.50
158 rdf:type schema:Person
159 sg:pub.10.1038/nature09922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043309820
160 https://doi.org/10.1038/nature09922
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature11552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004952443
163 https://doi.org/10.1038/nature11552
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nm.3145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004485531
166 https://doi.org/10.1038/nm.3145
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nrg3253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006783083
169 https://doi.org/10.1038/nrg3253
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nrn3346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037406998
172 https://doi.org/10.1038/nrn3346
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/1471-2164-16-s7-s4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010638051
175 https://doi.org/10.1186/1471-2164-16-s7-s4
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/1471-2164-16-s7-s9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043147990
178 https://doi.org/10.1186/1471-2164-16-s7-s9
179 rdf:type schema:CreativeWork
180 sg:pub.10.1186/s12864-014-1196-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048123979
181 https://doi.org/10.1186/s12864-014-1196-3
182 rdf:type schema:CreativeWork
183 sg:pub.10.1186/s12864-014-1209-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012444392
184 https://doi.org/10.1186/s12864-014-1209-2
185 rdf:type schema:CreativeWork
186 https://app.dimensions.ai/details/publication/pub.1078155756 schema:CreativeWork
187 https://app.dimensions.ai/details/publication/pub.1079239391 schema:CreativeWork
188 https://app.dimensions.ai/details/publication/pub.1079239407 schema:CreativeWork
189 https://app.dimensions.ai/details/publication/pub.1082874228 schema:CreativeWork
190 https://doi.org/10.1002/ana.23593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019553453
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1006/bbrc.1998.9681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024385341
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1006/nbdi.2000.0304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039141869
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/0891-5849(92)90184-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1023875101
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.aca.2006.01.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002737251
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.amjmed.2014.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011470905
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.cell.2013.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009471885
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.cmet.2012.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015745715
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.jbi.2015.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031310759
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.molmed.2007.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001542324
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0006-3223(99)00008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043522509
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0891-5849(02)00841-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051642650
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1056/nejmoa1109400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049213464
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1056/nejmoa1200303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020330063
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1073/pnas.0902640106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050609228
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1074/jbc.m510926200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013014341
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/bioinformatics/btr260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039284123
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/bioinformatics/btv245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005975531
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/nar/gki033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032298109
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/nar/gks1065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044604503
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/nar/gks1094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045624288
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/nar/gkt1207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012688427
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/nar/gkt1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047459836
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1111/j.1476-5381.2012.02057.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043784694
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1126/science.1124234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006869298
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1126/science.1223813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005356592
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1126/scitranslmed.3001318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035930595
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/scitranslmed.3002648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050185322
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1159/000022031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015367030
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1212/01.wnl.0000103860.75218.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064345700
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1212/01.wnl.0000123250.82849.b6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064345942
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1523/jneurosci.0059-07.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034798319
253 rdf:type schema:CreativeWork
254 https://doi.org/10.2741/2130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070914438
255 rdf:type schema:CreativeWork
256 https://www.grid.ac/institutes/grid.67105.35 schema:alternateName Case Western Reserve University
257 schema:name Department of Epidemiology and Biostatistics, Institute of Computational Biology, School of Medicine, Case Western Reserve University, 2103 Cornell Road, 44106, Cleveland, USA
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...