Validation and selection of ODE based systems biology models: how to arrive at more reliable decisions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Dicle Hasdemir, Huub C.J Hoefsloot, Age K. Smilde

ABSTRACT

BACKGROUND: Most ordinary differential equation (ODE) based modeling studies in systems biology involve a hold-out validation step for model validation. In this framework a pre-determined part of the data is used as validation data and, therefore it is not used for estimating the parameters of the model. The model is assumed to be validated if the model predictions on the validation dataset show good agreement with the data. Model selection between alternative model structures can also be performed in the same setting, based on the predictive power of the model structures on the validation dataset. However, drawbacks associated with this approach are usually under-estimated. RESULTS: We have carried out simulations by using a recently published High Osmolarity Glycerol (HOG) pathway from S.cerevisiae to demonstrate these drawbacks. We have shown that it is very important how the data is partitioned and which part of the data is used for validation purposes. The hold-out validation strategy leads to biased conclusions, since it can lead to different validation and selection decisions when different partitioning schemes are used. Furthermore, finding sensible partitioning schemes that would lead to reliable decisions are heavily dependent on the biology and unknown model parameters which turns the problem into a paradox. This brings the need for alternative validation approaches that offer flexible partitioning of the data. For this purpose, we have introduced a stratified random cross-validation (SRCV) approach that successfully overcomes these limitations. CONCLUSIONS: SRCV leads to more stable decisions for both validation and selection which are not biased by underlying biological phenomena. Furthermore, it is less dependent on the specific noise realization in the data. Therefore, it proves to be a promising alternative to the standard hold-out validation strategy. More... »

PAGES

32

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12918-015-0180-0

DOI

http://dx.doi.org/10.1186/s12918-015-0180-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049139688

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26152206


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Making", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycerol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Osmolar Concentration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Netherlands Metabolomics Centre", 
          "id": "https://www.grid.ac/institutes/grid.450196.f", 
          "name": [
            "Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands", 
            "Netherlands Metabolomics Centre, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasdemir", 
        "givenName": "Dicle", 
        "id": "sg:person.01050472475.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050472475.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands Metabolomics Centre", 
          "id": "https://www.grid.ac/institutes/grid.450196.f", 
          "name": [
            "Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands", 
            "Netherlands Metabolomics Centre, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoefsloot", 
        "givenName": "Huub C.J", 
        "id": "sg:person.012737547773.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737547773.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands Metabolomics Centre", 
          "id": "https://www.grid.ac/institutes/grid.450196.f", 
          "name": [
            "Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands", 
            "Netherlands Metabolomics Centre, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smilde", 
        "givenName": "Age K.", 
        "id": "sg:person.01341630104.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341630104.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt.2489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000607020", 
          "https://doi.org/10.1038/nbt.2489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001585688", 
          "https://doi.org/10.1038/nbt1330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002611903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2008.06845.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013957030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-8-46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015623358", 
          "https://doi.org/10.1186/1752-0509-8-46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016653613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016653613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017566449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9876.2004.05148.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019319061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2010.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020222035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2006.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020977550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035663508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2012.08665.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035745266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp034316x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038772590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01582221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039143516", 
          "https://doi.org/10.1007/bf01582221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-010-0350-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044611720", 
          "https://doi.org/10.1007/s00285-010-0350-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044872629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044963471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-8-61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048086558", 
          "https://doi.org/10.1186/1752-0509-8-61"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2012.08658.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051382896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.75516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1974.1100705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0806023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062854349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069473952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069974753"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: Most ordinary differential equation (ODE) based modeling studies in systems biology involve a hold-out validation step for model validation. In this framework a pre-determined part of the data is used as validation data and, therefore it is not used for estimating the parameters of the model. The model is assumed to be validated if the model predictions on the validation dataset show good agreement with the data. Model selection between alternative model structures can also be performed in the same setting, based on the predictive power of the model structures on the validation dataset. However, drawbacks associated with this approach are usually under-estimated.\nRESULTS: We have carried out simulations by using a recently published High Osmolarity Glycerol (HOG) pathway from S.cerevisiae to demonstrate these drawbacks. We have shown that it is very important how the data is partitioned and which part of the data is used for validation purposes. The hold-out validation strategy leads to biased conclusions, since it can lead to different validation and selection decisions when different partitioning schemes are used. Furthermore, finding sensible partitioning schemes that would lead to reliable decisions are heavily dependent on the biology and unknown model parameters which turns the problem into a paradox. This brings the need for alternative validation approaches that offer flexible partitioning of the data. For this purpose, we have introduced a stratified random cross-validation (SRCV) approach that successfully overcomes these limitations.\nCONCLUSIONS: SRCV leads to more stable decisions for both validation and selection which are not biased by underlying biological phenomena. Furthermore, it is less dependent on the specific noise realization in the data. Therefore, it proves to be a promising alternative to the standard hold-out validation strategy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12918-015-0180-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Validation and selection of ODE based systems biology models: how to arrive at more reliable decisions", 
    "pagination": "32", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ea17ed374234e2bd787c0f81a7a55bdfa8e952aa9df1901d6f98df654446deca"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26152206"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301827"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12918-015-0180-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049139688"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12918-015-0180-0", 
      "https://app.dimensions.ai/details/publication/pub.1049139688"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89786_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12918-015-0180-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12918-015-0180-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12918-015-0180-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12918-015-0180-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12918-015-0180-0'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      59 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12918-015-0180-0 schema:about N32a0576965e440ecb0a8381369e7baa3
2 N36d981340cdd408db523a9c2685cdb3b
3 N658eca48bf5143afa9ea16d863d4e07c
4 N8f9bfda709bb47b2a61afe9e32bee230
5 Nd2dfe5a5dbe04638a01f3ba7618a997f
6 Nd850635abd084262bde1127e274adff0
7 anzsrc-for:01
8 anzsrc-for:0104
9 schema:author N536d32241fda43a59e61adaf84ad7a1a
10 schema:citation sg:pub.10.1007/bf01582221
11 sg:pub.10.1007/s00285-010-0350-z
12 sg:pub.10.1038/nbt.2489
13 sg:pub.10.1038/nbt1330
14 sg:pub.10.1186/1752-0509-8-46
15 sg:pub.10.1186/1752-0509-8-61
16 https://doi.org/10.1016/j.copbio.2010.09.014
17 https://doi.org/10.1016/j.ymben.2006.04.003
18 https://doi.org/10.1021/bp034316x
19 https://doi.org/10.1038/msb.2012.53
20 https://doi.org/10.1093/bioinformatics/btg419
21 https://doi.org/10.1093/bioinformatics/btn350
22 https://doi.org/10.1093/bioinformatics/btp139
23 https://doi.org/10.1093/nar/gkj092
24 https://doi.org/10.1109/34.75516
25 https://doi.org/10.1109/tac.1974.1100705
26 https://doi.org/10.1111/j.1467-9876.2004.05148.x
27 https://doi.org/10.1111/j.1742-4658.2008.06845.x
28 https://doi.org/10.1111/j.1742-4658.2012.08658.x
29 https://doi.org/10.1111/j.1742-4658.2012.08665.x
30 https://doi.org/10.1137/0806023
31 https://doi.org/10.1214/aos/1176344136
32 https://doi.org/10.2307/1403680
33 https://doi.org/10.2307/2529041
34 schema:datePublished 2015-12
35 schema:datePublishedReg 2015-12-01
36 schema:description BACKGROUND: Most ordinary differential equation (ODE) based modeling studies in systems biology involve a hold-out validation step for model validation. In this framework a pre-determined part of the data is used as validation data and, therefore it is not used for estimating the parameters of the model. The model is assumed to be validated if the model predictions on the validation dataset show good agreement with the data. Model selection between alternative model structures can also be performed in the same setting, based on the predictive power of the model structures on the validation dataset. However, drawbacks associated with this approach are usually under-estimated. RESULTS: We have carried out simulations by using a recently published High Osmolarity Glycerol (HOG) pathway from S.cerevisiae to demonstrate these drawbacks. We have shown that it is very important how the data is partitioned and which part of the data is used for validation purposes. The hold-out validation strategy leads to biased conclusions, since it can lead to different validation and selection decisions when different partitioning schemes are used. Furthermore, finding sensible partitioning schemes that would lead to reliable decisions are heavily dependent on the biology and unknown model parameters which turns the problem into a paradox. This brings the need for alternative validation approaches that offer flexible partitioning of the data. For this purpose, we have introduced a stratified random cross-validation (SRCV) approach that successfully overcomes these limitations. CONCLUSIONS: SRCV leads to more stable decisions for both validation and selection which are not biased by underlying biological phenomena. Furthermore, it is less dependent on the specific noise realization in the data. Therefore, it proves to be a promising alternative to the standard hold-out validation strategy.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N4c8d24d4a1dd4154a6c052426ddd23d1
41 Nb7b715c5487748d99e58dcdf88044d03
42 sg:journal.1327442
43 schema:name Validation and selection of ODE based systems biology models: how to arrive at more reliable decisions
44 schema:pagination 32
45 schema:productId N107c50dddc674b22832df5740c7e1156
46 N62912145f69d46c4838a9372c079d5d9
47 Nc4164166615d4afeadfe8e3741dc7cc9
48 Nc6bcd3da82054bf5b777fed198f35d75
49 Ncf94519d0e094ba9ab842c3d034ccb7e
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049139688
51 https://doi.org/10.1186/s12918-015-0180-0
52 schema:sdDatePublished 2019-04-11T09:50
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N32bf713005254727bfdda87401ed448a
55 schema:url http://link.springer.com/10.1186%2Fs12918-015-0180-0
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N107c50dddc674b22832df5740c7e1156 schema:name pubmed_id
60 schema:value 26152206
61 rdf:type schema:PropertyValue
62 N31c2d7499642495e9c404c8cdda4d101 rdf:first sg:person.01341630104.21
63 rdf:rest rdf:nil
64 N32a0576965e440ecb0a8381369e7baa3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Glycerol
66 rdf:type schema:DefinedTerm
67 N32bf713005254727bfdda87401ed448a schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N36d981340cdd408db523a9c2685cdb3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Systems Biology
71 rdf:type schema:DefinedTerm
72 N4c8d24d4a1dd4154a6c052426ddd23d1 schema:volumeNumber 9
73 rdf:type schema:PublicationVolume
74 N52aa77c7b9884c3e8c89ce00c9cffa40 rdf:first sg:person.012737547773.76
75 rdf:rest N31c2d7499642495e9c404c8cdda4d101
76 N536d32241fda43a59e61adaf84ad7a1a rdf:first sg:person.01050472475.76
77 rdf:rest N52aa77c7b9884c3e8c89ce00c9cffa40
78 N62912145f69d46c4838a9372c079d5d9 schema:name nlm_unique_id
79 schema:value 101301827
80 rdf:type schema:PropertyValue
81 N658eca48bf5143afa9ea16d863d4e07c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Osmolar Concentration
83 rdf:type schema:DefinedTerm
84 N8f9bfda709bb47b2a61afe9e32bee230 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Saccharomyces cerevisiae
86 rdf:type schema:DefinedTerm
87 Nb7b715c5487748d99e58dcdf88044d03 schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 Nc4164166615d4afeadfe8e3741dc7cc9 schema:name dimensions_id
90 schema:value pub.1049139688
91 rdf:type schema:PropertyValue
92 Nc6bcd3da82054bf5b777fed198f35d75 schema:name doi
93 schema:value 10.1186/s12918-015-0180-0
94 rdf:type schema:PropertyValue
95 Ncf94519d0e094ba9ab842c3d034ccb7e schema:name readcube_id
96 schema:value ea17ed374234e2bd787c0f81a7a55bdfa8e952aa9df1901d6f98df654446deca
97 rdf:type schema:PropertyValue
98 Nd2dfe5a5dbe04638a01f3ba7618a997f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Models, Biological
100 rdf:type schema:DefinedTerm
101 Nd850635abd084262bde1127e274adff0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Decision Making
103 rdf:type schema:DefinedTerm
104 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
105 schema:name Mathematical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
108 schema:name Statistics
109 rdf:type schema:DefinedTerm
110 sg:journal.1327442 schema:issn 1752-0509
111 schema:name BMC Systems Biology
112 rdf:type schema:Periodical
113 sg:person.01050472475.76 schema:affiliation https://www.grid.ac/institutes/grid.450196.f
114 schema:familyName Hasdemir
115 schema:givenName Dicle
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050472475.76
117 rdf:type schema:Person
118 sg:person.012737547773.76 schema:affiliation https://www.grid.ac/institutes/grid.450196.f
119 schema:familyName Hoefsloot
120 schema:givenName Huub C.J
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737547773.76
122 rdf:type schema:Person
123 sg:person.01341630104.21 schema:affiliation https://www.grid.ac/institutes/grid.450196.f
124 schema:familyName Smilde
125 schema:givenName Age K.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341630104.21
127 rdf:type schema:Person
128 sg:pub.10.1007/bf01582221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039143516
129 https://doi.org/10.1007/bf01582221
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00285-010-0350-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1044611720
132 https://doi.org/10.1007/s00285-010-0350-z
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nbt.2489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000607020
135 https://doi.org/10.1038/nbt.2489
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nbt1330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001585688
138 https://doi.org/10.1038/nbt1330
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/1752-0509-8-46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015623358
141 https://doi.org/10.1186/1752-0509-8-46
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/1752-0509-8-61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048086558
144 https://doi.org/10.1186/1752-0509-8-61
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.copbio.2010.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020222035
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ymben.2006.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020977550
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/bp034316x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038772590
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1038/msb.2012.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016653613
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/bioinformatics/btg419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035663508
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/bioinformatics/btn350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017566449
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/bioinformatics/btp139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044963471
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/nar/gkj092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002611903
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/34.75516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156937
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1111/j.1467-9876.2004.05148.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019319061
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1111/j.1742-4658.2008.06845.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013957030
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1111/j.1742-4658.2012.08658.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051382896
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1111/j.1742-4658.2012.08665.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035745266
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1137/0806023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854349
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1214/aos/1176344136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044872629
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2307/1403680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473952
179 rdf:type schema:CreativeWork
180 https://doi.org/10.2307/2529041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974753
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.450196.f schema:alternateName Netherlands Metabolomics Centre
183 schema:name Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
184 Netherlands Metabolomics Centre, Leiden, The Netherlands
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...