Contribution of cystatin C- and creatinine-based definitions of chronic kidney disease to cardiovascular risk assessment in 20 population-based and 3 ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-11-09

AUTHORS

Dietrich Rothenbacher, Martin Rehm, Licia Iacoviello, Simona Costanzo, Hugh Tunstall-Pedoe, Jill J. F. Belch, Stefan Söderberg, Johan Hultdin, Veikko Salomaa, Pekka Jousilahti, Allan Linneberg, Susana Sans, Teresa Padró, Barbara Thorand, Christa Meisinger, Frank Kee, Amy Jayne McKnight, Tarja Palosaari, Kari Kuulasmaa, Christoph Waldeyer, Tanja Zeller, Stefan Blankenberg, Wolfgang Koenig

ABSTRACT

BackgroundChronic kidney disease has emerged as a strong cardiovascular risk factor, and in many current guidelines, it is already considered as a coronary heart disease (CHD) equivalent. Routinely, creatinine has been used as the main marker of renal function, but recently, cystatin C emerged as a more promising marker. The aim of this study was to assess the comparative cardiovascular and mortality risk of chronic kidney disease (CKD) using cystatin C-based and creatinine-based equations of the estimated glomerular filtration rate (eGFR) in participants of population-based and disease cohorts.MethodsThe present study has been conducted within the BiomarCaRE project, with harmonized data from 20 population-based cohorts (n = 76,954) from 6 European countries and 3 cardiovascular disease (CVD) cohorts (n = 4982) from Germany. Cox proportional hazards models were used to assess hazard ratios (HRs) for the various CKD definitions with adverse outcomes and mortality after adjustment for the Systematic COronary Risk Evaluation (SCORE) variables and study center. Main outcome measures were cardiovascular diseases, cardiovascular death, and all-cause mortality.ResultsThe overall prevalence of CKD stage 3–5 by creatinine- and cystatin C-based eGFR, respectively, was 3.3% and 7.4% in the population-based cohorts and 13.9% and 14.4% in the disease cohorts. CKD was an important independent risk factor for subsequent CVD events and mortality. For example, in the population-based cohorts, the HR for CVD mortality was 1.72 (95% CI 1.53 to 1.92) with creatinine-based CKD and it was 2.14 (95% CI 1.90 to 2.40) based on cystatin-based CKD compared to participants without CKD. In general, the HRs were higher for cystatin C-based CKD compared to creatinine-based CKD, for all three outcomes and risk increased clearly below the conventional threshold for CKD, also in older adults. Net reclassification indices were larger for a cystatin-C based CKD definition. Differences in HRs (between the two CKD measures) in the disease cohorts were less pronounced than in the population-based cohorts.ConclusionCKD is an important risk factor for subsequent CVD events and total mortality. However, point estimates of creatinine- and cystatin C-based CKD differed considerably between low- and high-risk populations. Especially in low-risk settings, the use of cystatin C-based CKD may result in more accurate risk estimates and have better prognostic value. More... »

PAGES

300

Journal

TITLE

BMC Medicine

ISSUE

1

VOLUME

18

Author Affiliations

  • Division of Clinical Epidemiology and Aging Research C070, German Cancer Research Center (DKFZ), Heidelberg, Germany
  • Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081, Ulm, Germany
  • Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy
  • Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
  • Cardiovascular Epidemiology Unit, Institute of Cardiovascular Research, University of Dundee, Dundee, UK
  • Vascular Medicine Unit, Institute of Cardiovascular Disease, University of Dundee, Dundee, UK
  • Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
  • Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
  • Finnish Institute for Health and Welfare, Helsinki, Finland
  • Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
  • Catalan Department of Health, 08005, Barcelona, Spain
  • Cardiovascular ICCC-Program, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
  • Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
  • Ludwig-Maximilians-Universität München, Chair of Epidemiology at UNIKA-T Augsburg, Augsburg, Germany
  • Queen’s University of Belfast, UK Clinical Research Collaboration Centre of Excellence for Public Health, Belfast, UK
  • Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University of Belfast, Belfast, UK
  • Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
  • German Center for Cardiovascular Research (DZHK e.V.), partner site Hamburg, Lübeck, Kiel, Hamburg, Germany
  • DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12916-020-01776-7

    DOI

    http://dx.doi.org/10.1186/s12916-020-01776-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1132440695

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33161898


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cardiovascular Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Coronary Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Creatinine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cystatin C", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart Disease Risk Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Assessment", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Division of Clinical Epidemiology and Aging Research C070, German Cancer Research Center (DKFZ), Heidelberg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7497.d", 
              "name": [
                "Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081, Ulm, Germany", 
                "Division of Clinical Epidemiology and Aging Research C070, German Cancer Research Center (DKFZ), Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rothenbacher", 
            "givenName": "Dietrich", 
            "id": "sg:person.01153404427.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153404427.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081, Ulm, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6582.9", 
              "name": [
                "Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rehm", 
            "givenName": "Martin", 
            "id": "sg:person.015507477503.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015507477503.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy", 
              "id": "http://www.grid.ac/institutes/grid.18147.3b", 
              "name": [
                "Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy", 
                "Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iacoviello", 
            "givenName": "Licia", 
            "id": "sg:person.01054443021.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054443021.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419543.e", 
              "name": [
                "Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Costanzo", 
            "givenName": "Simona", 
            "id": "sg:person.01255556215.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255556215.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cardiovascular Epidemiology Unit, Institute of Cardiovascular Research, University of Dundee, Dundee, UK", 
              "id": "http://www.grid.ac/institutes/grid.8241.f", 
              "name": [
                "Cardiovascular Epidemiology Unit, Institute of Cardiovascular Research, University of Dundee, Dundee, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tunstall-Pedoe", 
            "givenName": "Hugh", 
            "id": "sg:person.01017535604.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017535604.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Vascular Medicine Unit, Institute of Cardiovascular Disease, University of Dundee, Dundee, UK", 
              "id": "http://www.grid.ac/institutes/grid.8241.f", 
              "name": [
                "Vascular Medicine Unit, Institute of Cardiovascular Disease, University of Dundee, Dundee, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Belch", 
            "givenName": "Jill J. F.", 
            "id": "sg:person.01066412116.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066412116.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Public Health and Clinical Medicine, Ume\u00e5 University, Ume\u00e5, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.12650.30", 
              "name": [
                "Department of Public Health and Clinical Medicine, Ume\u00e5 University, Ume\u00e5, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "S\u00f6derberg", 
            "givenName": "Stefan", 
            "id": "sg:person.016465323374.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016465323374.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Biosciences, Clinical Chemistry, Ume\u00e5 University, Ume\u00e5, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.12650.30", 
              "name": [
                "Department of Medical Biosciences, Clinical Chemistry, Ume\u00e5 University, Ume\u00e5, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hultdin", 
            "givenName": "Johan", 
            "id": "sg:person.0776375711.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776375711.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Finnish Institute for Health and Welfare, Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.14758.3f", 
              "name": [
                "Finnish Institute for Health and Welfare, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salomaa", 
            "givenName": "Veikko", 
            "id": "sg:person.01022740164.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022740164.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Finnish Institute for Health and Welfare, Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.14758.3f", 
              "name": [
                "Finnish Institute for Health and Welfare, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jousilahti", 
            "givenName": "Pekka", 
            "id": "sg:person.0660107161.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660107161.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.512917.9", 
              "name": [
                "Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Linneberg", 
            "givenName": "Allan", 
            "id": "sg:person.0637662640.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637662640.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Catalan Department of Health, 08005, Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/grid.425910.b", 
              "name": [
                "Catalan Department of Health, 08005, Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sans", 
            "givenName": "Susana", 
            "id": "sg:person.016241124507.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016241124507.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cardiovascular ICCC-Program, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/grid.413396.a", 
              "name": [
                "Cardiovascular ICCC-Program, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Padr\u00f3", 
            "givenName": "Teresa", 
            "id": "sg:person.0722421410.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722421410.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Epidemiology, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Neuherberg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.4567.0", 
              "name": [
                "Institute of Epidemiology, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Neuherberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thorand", 
            "givenName": "Barbara", 
            "id": "sg:person.01277357122.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277357122.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Chair of Epidemiology at UNIKA-T Augsburg, Augsburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Independent Research Group Clinical Epidemiology, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Neuherberg, Germany", 
                "Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Chair of Epidemiology at UNIKA-T Augsburg, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meisinger", 
            "givenName": "Christa", 
            "id": "sg:person.013706140257.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013706140257.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Queen\u2019s University of Belfast, UK Clinical Research Collaboration Centre of Excellence for Public Health, Belfast, UK", 
              "id": "http://www.grid.ac/institutes/grid.4777.3", 
              "name": [
                "Queen\u2019s University of Belfast, UK Clinical Research Collaboration Centre of Excellence for Public Health, Belfast, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kee", 
            "givenName": "Frank", 
            "id": "sg:person.01152603060.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152603060.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen\u2019s University of Belfast, Belfast, UK", 
              "id": "http://www.grid.ac/institutes/grid.4777.3", 
              "name": [
                "Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen\u2019s University of Belfast, Belfast, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McKnight", 
            "givenName": "Amy Jayne", 
            "id": "sg:person.01372515157.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372515157.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Finnish Institute for Health and Welfare, Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.14758.3f", 
              "name": [
                "Finnish Institute for Health and Welfare, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palosaari", 
            "givenName": "Tarja", 
            "id": "sg:person.01356271321.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356271321.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Finnish Institute for Health and Welfare, Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.14758.3f", 
              "name": [
                "Finnish Institute for Health and Welfare, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kuulasmaa", 
            "givenName": "Kari", 
            "id": "sg:person.01255257303.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255257303.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.13648.38", 
              "name": [
                "Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Waldeyer", 
            "givenName": "Christoph", 
            "id": "sg:person.01076476665.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076476665.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "German Center for Cardiovascular Research (DZHK e.V.), partner site Hamburg, L\u00fcbeck, Kiel, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.452396.f", 
              "name": [
                "Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany", 
                "German Center for Cardiovascular Research (DZHK e.V.), partner site Hamburg, L\u00fcbeck, Kiel, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zeller", 
            "givenName": "Tanja", 
            "id": "sg:person.0765171035.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765171035.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "German Center for Cardiovascular Research (DZHK e.V.), partner site Hamburg, L\u00fcbeck, Kiel, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.452396.f", 
              "name": [
                "Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany", 
                "German Center for Cardiovascular Research (DZHK e.V.), partner site Hamburg, L\u00fcbeck, Kiel, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blankenberg", 
            "givenName": "Stefan", 
            "id": "sg:person.01365524177.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365524177.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.452396.f", 
              "name": [
                "Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081, Ulm, Germany", 
                "Deutsches Herzzentrum M\u00fcnchen, Technische Universit\u00e4t M\u00fcnchen, Munich, Germany", 
                "DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koenig", 
            "givenName": "Wolfgang", 
            "id": "sg:person.01231243722.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231243722.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41598-018-38286-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111913152", 
              "https://doi.org/10.1038/s41598-018-38286-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10654-014-9952-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026792434", 
              "https://doi.org/10.1007/s10654-014-9952-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-019-0627-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122360816", 
              "https://doi.org/10.1038/s41591-019-0627-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2458-8-117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040742438", 
              "https://doi.org/10.1186/1471-2458-8-117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2458-12-343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017576905", 
              "https://doi.org/10.1186/1471-2458-12-343"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-11-09", 
        "datePublishedReg": "2020-11-09", 
        "description": "BackgroundChronic kidney disease has emerged as a strong cardiovascular risk factor, and in many current guidelines, it is already considered as a coronary heart disease (CHD) equivalent. Routinely, creatinine has been used as the main marker of renal function, but recently, cystatin C emerged as a more promising marker. The aim of this study was to assess the comparative cardiovascular and mortality risk of chronic kidney disease (CKD) using cystatin C-based and creatinine-based equations of the estimated glomerular filtration rate (eGFR) in participants of population-based and disease cohorts.MethodsThe present study has been conducted within the BiomarCaRE project, with harmonized data from 20 population-based cohorts (n\u2009=\u200976,954) from 6 European countries and 3 cardiovascular disease (CVD) cohorts (n\u2009=\u20094982) from Germany. Cox proportional hazards models were used to assess hazard ratios (HRs) for the various CKD definitions with adverse outcomes and mortality after adjustment for the Systematic COronary Risk Evaluation (SCORE) variables and study center. Main outcome measures were cardiovascular diseases, cardiovascular death, and all-cause mortality.ResultsThe overall prevalence of CKD stage 3\u20135 by creatinine- and cystatin C-based eGFR, respectively, was 3.3% and 7.4% in the population-based cohorts and 13.9% and 14.4% in the disease cohorts. CKD was an important independent risk factor for subsequent CVD events and mortality. For example, in the population-based cohorts, the HR for CVD mortality was 1.72 (95% CI 1.53 to 1.92) with creatinine-based CKD and it was 2.14 (95% CI 1.90 to 2.40) based on cystatin-based CKD compared to participants without CKD. In general, the HRs were higher for cystatin C-based CKD compared to creatinine-based CKD, for all three outcomes and risk increased clearly below the conventional threshold for CKD, also in older adults. Net reclassification indices were larger for a cystatin-C based CKD definition. Differences in HRs (between the two CKD measures) in the disease cohorts were less pronounced than in the population-based cohorts.ConclusionCKD is an important risk factor for subsequent CVD events and total mortality. However, point estimates of creatinine- and cystatin C-based CKD differed considerably between low- and high-risk populations. Especially in low-risk settings, the use of cystatin C-based CKD may result in more accurate risk estimates and have better prognostic value.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12916-020-01776-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2757803", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1032885", 
            "issn": [
              "1741-7015"
            ], 
            "name": "BMC Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "chronic kidney disease", 
          "population-based cohort", 
          "subsequent CVD events", 
          "hazard ratio", 
          "coronary heart disease", 
          "disease cohort", 
          "cystatin C", 
          "kidney disease", 
          "risk factors", 
          "CKD definition", 
          "CVD events", 
          "important independent risk factor", 
          "strong cardiovascular risk factor", 
          "BackgroundChronic kidney disease", 
          "cardiovascular risk factors", 
          "CKD stage 3", 
          "independent risk factor", 
          "glomerular filtration rate", 
          "cardiovascular risk assessment", 
          "main outcome measures", 
          "high-risk population", 
          "good prognostic value", 
          "net reclassification index", 
          "important risk factor", 
          "cardiovascular disease cohorts", 
          "proportional hazards model", 
          "low-risk settings", 
          "MethodsThe present study", 
          "cardiovascular death", 
          "cause mortality", 
          "renal function", 
          "CVD mortality", 
          "prognostic value", 
          "adverse outcomes", 
          "reclassification index", 
          "heart disease", 
          "filtration rate", 
          "overall prevalence", 
          "current guidelines", 
          "cardiovascular disease", 
          "outcome measures", 
          "mortality risk", 
          "hazards model", 
          "creatinine", 
          "promising marker", 
          "total mortality", 
          "cohort", 
          "more accurate risk estimates", 
          "accurate risk estimates", 
          "mortality", 
          "disease", 
          "risk estimates", 
          "older adults", 
          "study centers", 
          "stage 3", 
          "conventional threshold", 
          "main markers", 
          "present study", 
          "outcomes", 
          "risk", 
          "markers", 
          "participants", 
          "risk assessment", 
          "cardiovascular", 
          "EGFR", 
          "point estimates", 
          "factors", 
          "prevalence", 
          "death", 
          "adults", 
          "study", 
          "evaluation variables", 
          "events", 
          "guidelines", 
          "European countries", 
          "cystatin", 
          "aim", 
          "population", 
          "setting", 
          "assessment", 
          "adjustment", 
          "index", 
          "differences", 
          "center", 
          "measures", 
          "rate", 
          "definition", 
          "use", 
          "threshold", 
          "function", 
          "data", 
          "variables", 
          "ratio", 
          "countries", 
          "estimates", 
          "values", 
          "Germany", 
          "model", 
          "project", 
          "contribution", 
          "example", 
          "equations"
        ], 
        "name": "Contribution of cystatin C- and creatinine-based definitions of chronic kidney disease to cardiovascular risk assessment in 20 population-based and 3 disease cohorts: the BiomarCaRE project", 
        "pagination": "300", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1132440695"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12916-020-01776-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33161898"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12916-020-01776-7", 
          "https://app.dimensions.ai/details/publication/pub.1132440695"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_854.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12916-020-01776-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01776-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01776-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01776-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01776-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    442 TRIPLES      21 PREDICATES      144 URIs      130 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12916-020-01776-7 schema:about N09d88417383740c78db56ff013e572e9
    2 N456c0297905b40d793bc24657a4ffd01
    3 N505a47f794d246a09a7867d5ba3785c1
    4 N549592fcafb04c7893a7caf205573d07
    5 N5f44fda4df9b499b8859587ab355eb2e
    6 N620b9e7be3b2489d9776b609075fc62c
    7 N67b724d8dacf4043ba17cfd3a8b22976
    8 N7eca5576a2ff4b33aac2937fd8a205ee
    9 N88b69f13b43d46bfaf460504ef731b98
    10 Nc5cc965cf2b8461b8b975cb35f224889
    11 Ndb7b62b71eab4ab1925896dba2454daa
    12 anzsrc-for:11
    13 anzsrc-for:1103
    14 anzsrc-for:1117
    15 schema:author N532883ed1d1e485aa0b6c9ef106dfafe
    16 schema:citation sg:pub.10.1007/s10654-014-9952-x
    17 sg:pub.10.1038/s41591-019-0627-8
    18 sg:pub.10.1038/s41598-018-38286-9
    19 sg:pub.10.1186/1471-2458-12-343
    20 sg:pub.10.1186/1471-2458-8-117
    21 schema:datePublished 2020-11-09
    22 schema:datePublishedReg 2020-11-09
    23 schema:description BackgroundChronic kidney disease has emerged as a strong cardiovascular risk factor, and in many current guidelines, it is already considered as a coronary heart disease (CHD) equivalent. Routinely, creatinine has been used as the main marker of renal function, but recently, cystatin C emerged as a more promising marker. The aim of this study was to assess the comparative cardiovascular and mortality risk of chronic kidney disease (CKD) using cystatin C-based and creatinine-based equations of the estimated glomerular filtration rate (eGFR) in participants of population-based and disease cohorts.MethodsThe present study has been conducted within the BiomarCaRE project, with harmonized data from 20 population-based cohorts (n = 76,954) from 6 European countries and 3 cardiovascular disease (CVD) cohorts (n = 4982) from Germany. Cox proportional hazards models were used to assess hazard ratios (HRs) for the various CKD definitions with adverse outcomes and mortality after adjustment for the Systematic COronary Risk Evaluation (SCORE) variables and study center. Main outcome measures were cardiovascular diseases, cardiovascular death, and all-cause mortality.ResultsThe overall prevalence of CKD stage 3–5 by creatinine- and cystatin C-based eGFR, respectively, was 3.3% and 7.4% in the population-based cohorts and 13.9% and 14.4% in the disease cohorts. CKD was an important independent risk factor for subsequent CVD events and mortality. For example, in the population-based cohorts, the HR for CVD mortality was 1.72 (95% CI 1.53 to 1.92) with creatinine-based CKD and it was 2.14 (95% CI 1.90 to 2.40) based on cystatin-based CKD compared to participants without CKD. In general, the HRs were higher for cystatin C-based CKD compared to creatinine-based CKD, for all three outcomes and risk increased clearly below the conventional threshold for CKD, also in older adults. Net reclassification indices were larger for a cystatin-C based CKD definition. Differences in HRs (between the two CKD measures) in the disease cohorts were less pronounced than in the population-based cohorts.ConclusionCKD is an important risk factor for subsequent CVD events and total mortality. However, point estimates of creatinine- and cystatin C-based CKD differed considerably between low- and high-risk populations. Especially in low-risk settings, the use of cystatin C-based CKD may result in more accurate risk estimates and have better prognostic value.
    24 schema:genre article
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N3a3576488668467b906bf4787a6cf65e
    27 Na470433ebe38496eafca6def794a9380
    28 sg:journal.1032885
    29 schema:keywords BackgroundChronic kidney disease
    30 CKD definition
    31 CKD stage 3
    32 CVD events
    33 CVD mortality
    34 EGFR
    35 European countries
    36 Germany
    37 MethodsThe present study
    38 accurate risk estimates
    39 adjustment
    40 adults
    41 adverse outcomes
    42 aim
    43 assessment
    44 cardiovascular
    45 cardiovascular death
    46 cardiovascular disease
    47 cardiovascular disease cohorts
    48 cardiovascular risk assessment
    49 cardiovascular risk factors
    50 cause mortality
    51 center
    52 chronic kidney disease
    53 cohort
    54 contribution
    55 conventional threshold
    56 coronary heart disease
    57 countries
    58 creatinine
    59 current guidelines
    60 cystatin
    61 cystatin C
    62 data
    63 death
    64 definition
    65 differences
    66 disease
    67 disease cohort
    68 equations
    69 estimates
    70 evaluation variables
    71 events
    72 example
    73 factors
    74 filtration rate
    75 function
    76 glomerular filtration rate
    77 good prognostic value
    78 guidelines
    79 hazard ratio
    80 hazards model
    81 heart disease
    82 high-risk population
    83 important independent risk factor
    84 important risk factor
    85 independent risk factor
    86 index
    87 kidney disease
    88 low-risk settings
    89 main markers
    90 main outcome measures
    91 markers
    92 measures
    93 model
    94 more accurate risk estimates
    95 mortality
    96 mortality risk
    97 net reclassification index
    98 older adults
    99 outcome measures
    100 outcomes
    101 overall prevalence
    102 participants
    103 point estimates
    104 population
    105 population-based cohort
    106 present study
    107 prevalence
    108 prognostic value
    109 project
    110 promising marker
    111 proportional hazards model
    112 rate
    113 ratio
    114 reclassification index
    115 renal function
    116 risk
    117 risk assessment
    118 risk estimates
    119 risk factors
    120 setting
    121 stage 3
    122 strong cardiovascular risk factor
    123 study
    124 study centers
    125 subsequent CVD events
    126 threshold
    127 total mortality
    128 use
    129 values
    130 variables
    131 schema:name Contribution of cystatin C- and creatinine-based definitions of chronic kidney disease to cardiovascular risk assessment in 20 population-based and 3 disease cohorts: the BiomarCaRE project
    132 schema:pagination 300
    133 schema:productId Nb1fae06f4f83400a81969f194c57629f
    134 Nc6dea989dee44c8a86690e2bd22c2129
    135 Nf85406c7b86f484e87bf96a29d1a79d4
    136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132440695
    137 https://doi.org/10.1186/s12916-020-01776-7
    138 schema:sdDatePublished 2022-12-01T06:40
    139 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    140 schema:sdPublisher N3ccb94f5358d4f33b1b8499d1594f58c
    141 schema:url https://doi.org/10.1186/s12916-020-01776-7
    142 sgo:license sg:explorer/license/
    143 sgo:sdDataset articles
    144 rdf:type schema:ScholarlyArticle
    145 N027539662ed34107bc8e3c07ea1f2664 rdf:first sg:person.01076476665.47
    146 rdf:rest N11e51ab88d2c4c4583d9bd3712060325
    147 N045b900d2f06460faebf6629017280db rdf:first sg:person.013706140257.01
    148 rdf:rest Nbcdea56fe22b4830b8e857118c70e68a
    149 N060a70a833724e0a8a2865e10b5961e3 rdf:first sg:person.01255257303.12
    150 rdf:rest N027539662ed34107bc8e3c07ea1f2664
    151 N0978b23de4104de7beea51acf21e37f6 rdf:first sg:person.016465323374.03
    152 rdf:rest Nca043b0f69d14a61996e8ded4c57ab1d
    153 N09d88417383740c78db56ff013e572e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Male
    155 rdf:type schema:DefinedTerm
    156 N11253181e37d48e0ac75114470b4ef9b rdf:first sg:person.01017535604.76
    157 rdf:rest Nd63c86a4d70d4a89bab6bb92a335190f
    158 N11e51ab88d2c4c4583d9bd3712060325 rdf:first sg:person.0765171035.15
    159 rdf:rest N3847475b6ea645cda8519ee4b4a9cc70
    160 N1a9f250701eb4eb09cf3f0f3a6699ccd rdf:first sg:person.015507477503.20
    161 rdf:rest N7837df7db2784dc5b1394f24ad589248
    162 N2a1ef5dfabcb42e29db556b4df190ae1 rdf:first sg:person.01372515157.76
    163 rdf:rest N4dca9bc6a27447fbbd3f673bd6d81471
    164 N2c39d613599947959b0ce4700e0f1d3d rdf:first sg:person.01255556215.22
    165 rdf:rest N11253181e37d48e0ac75114470b4ef9b
    166 N3847475b6ea645cda8519ee4b4a9cc70 rdf:first sg:person.01365524177.17
    167 rdf:rest N79f38c444ae140a5862477d97528fcfd
    168 N3a3576488668467b906bf4787a6cf65e schema:issueNumber 1
    169 rdf:type schema:PublicationIssue
    170 N3ccb94f5358d4f33b1b8499d1594f58c schema:name Springer Nature - SN SciGraph project
    171 rdf:type schema:Organization
    172 N456c0297905b40d793bc24657a4ffd01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Creatinine
    174 rdf:type schema:DefinedTerm
    175 N4dca9bc6a27447fbbd3f673bd6d81471 rdf:first sg:person.01356271321.99
    176 rdf:rest N060a70a833724e0a8a2865e10b5961e3
    177 N4f37fdd365f049e8ad1c3f17ed3283fb rdf:first sg:person.0722421410.95
    178 rdf:rest N9dbdee06b9594c1f9dcc3984fd6868e5
    179 N505a47f794d246a09a7867d5ba3785c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Risk Assessment
    181 rdf:type schema:DefinedTerm
    182 N532883ed1d1e485aa0b6c9ef106dfafe rdf:first sg:person.01153404427.25
    183 rdf:rest N1a9f250701eb4eb09cf3f0f3a6699ccd
    184 N549592fcafb04c7893a7caf205573d07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Middle Aged
    186 rdf:type schema:DefinedTerm
    187 N5f44fda4df9b499b8859587ab355eb2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Cardiovascular Diseases
    189 rdf:type schema:DefinedTerm
    190 N620b9e7be3b2489d9776b609075fc62c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Humans
    192 rdf:type schema:DefinedTerm
    193 N67b724d8dacf4043ba17cfd3a8b22976 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Heart Disease Risk Factors
    195 rdf:type schema:DefinedTerm
    196 N6ca4a5e6401844639a6166b26ee0b46a rdf:first sg:person.0660107161.47
    197 rdf:rest N766927f518354a0ba83216cfad63459d
    198 N719890eaf25f4d1588b251a5d4901a3e rdf:first sg:person.016241124507.72
    199 rdf:rest N4f37fdd365f049e8ad1c3f17ed3283fb
    200 N766927f518354a0ba83216cfad63459d rdf:first sg:person.0637662640.88
    201 rdf:rest N719890eaf25f4d1588b251a5d4901a3e
    202 N7837df7db2784dc5b1394f24ad589248 rdf:first sg:person.01054443021.99
    203 rdf:rest N2c39d613599947959b0ce4700e0f1d3d
    204 N79f38c444ae140a5862477d97528fcfd rdf:first sg:person.01231243722.24
    205 rdf:rest rdf:nil
    206 N7eca5576a2ff4b33aac2937fd8a205ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name Prognosis
    208 rdf:type schema:DefinedTerm
    209 N88b69f13b43d46bfaf460504ef731b98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Coronary Disease
    211 rdf:type schema:DefinedTerm
    212 N9dbdee06b9594c1f9dcc3984fd6868e5 rdf:first sg:person.01277357122.18
    213 rdf:rest N045b900d2f06460faebf6629017280db
    214 N9feebb7076364d0bb214366f703eca79 rdf:first sg:person.01022740164.96
    215 rdf:rest N6ca4a5e6401844639a6166b26ee0b46a
    216 Na470433ebe38496eafca6def794a9380 schema:volumeNumber 18
    217 rdf:type schema:PublicationVolume
    218 Nb1fae06f4f83400a81969f194c57629f schema:name dimensions_id
    219 schema:value pub.1132440695
    220 rdf:type schema:PropertyValue
    221 Nbcdea56fe22b4830b8e857118c70e68a rdf:first sg:person.01152603060.89
    222 rdf:rest N2a1ef5dfabcb42e29db556b4df190ae1
    223 Nc5cc965cf2b8461b8b975cb35f224889 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    224 schema:name Female
    225 rdf:type schema:DefinedTerm
    226 Nc6dea989dee44c8a86690e2bd22c2129 schema:name pubmed_id
    227 schema:value 33161898
    228 rdf:type schema:PropertyValue
    229 Nca043b0f69d14a61996e8ded4c57ab1d rdf:first sg:person.0776375711.50
    230 rdf:rest N9feebb7076364d0bb214366f703eca79
    231 Nd63c86a4d70d4a89bab6bb92a335190f rdf:first sg:person.01066412116.09
    232 rdf:rest N0978b23de4104de7beea51acf21e37f6
    233 Ndb7b62b71eab4ab1925896dba2454daa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    234 schema:name Cystatin C
    235 rdf:type schema:DefinedTerm
    236 Nf85406c7b86f484e87bf96a29d1a79d4 schema:name doi
    237 schema:value 10.1186/s12916-020-01776-7
    238 rdf:type schema:PropertyValue
    239 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    240 schema:name Medical and Health Sciences
    241 rdf:type schema:DefinedTerm
    242 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    243 schema:name Clinical Sciences
    244 rdf:type schema:DefinedTerm
    245 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    246 schema:name Public Health and Health Services
    247 rdf:type schema:DefinedTerm
    248 sg:grant.2757803 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01776-7
    249 rdf:type schema:MonetaryGrant
    250 sg:journal.1032885 schema:issn 1741-7015
    251 schema:name BMC Medicine
    252 schema:publisher Springer Nature
    253 rdf:type schema:Periodical
    254 sg:person.01017535604.76 schema:affiliation grid-institutes:grid.8241.f
    255 schema:familyName Tunstall-Pedoe
    256 schema:givenName Hugh
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017535604.76
    258 rdf:type schema:Person
    259 sg:person.01022740164.96 schema:affiliation grid-institutes:grid.14758.3f
    260 schema:familyName Salomaa
    261 schema:givenName Veikko
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022740164.96
    263 rdf:type schema:Person
    264 sg:person.01054443021.99 schema:affiliation grid-institutes:grid.18147.3b
    265 schema:familyName Iacoviello
    266 schema:givenName Licia
    267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054443021.99
    268 rdf:type schema:Person
    269 sg:person.01066412116.09 schema:affiliation grid-institutes:grid.8241.f
    270 schema:familyName Belch
    271 schema:givenName Jill J. F.
    272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066412116.09
    273 rdf:type schema:Person
    274 sg:person.01076476665.47 schema:affiliation grid-institutes:grid.13648.38
    275 schema:familyName Waldeyer
    276 schema:givenName Christoph
    277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076476665.47
    278 rdf:type schema:Person
    279 sg:person.01152603060.89 schema:affiliation grid-institutes:grid.4777.3
    280 schema:familyName Kee
    281 schema:givenName Frank
    282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152603060.89
    283 rdf:type schema:Person
    284 sg:person.01153404427.25 schema:affiliation grid-institutes:grid.7497.d
    285 schema:familyName Rothenbacher
    286 schema:givenName Dietrich
    287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153404427.25
    288 rdf:type schema:Person
    289 sg:person.01231243722.24 schema:affiliation grid-institutes:grid.452396.f
    290 schema:familyName Koenig
    291 schema:givenName Wolfgang
    292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231243722.24
    293 rdf:type schema:Person
    294 sg:person.01255257303.12 schema:affiliation grid-institutes:grid.14758.3f
    295 schema:familyName Kuulasmaa
    296 schema:givenName Kari
    297 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255257303.12
    298 rdf:type schema:Person
    299 sg:person.01255556215.22 schema:affiliation grid-institutes:grid.419543.e
    300 schema:familyName Costanzo
    301 schema:givenName Simona
    302 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255556215.22
    303 rdf:type schema:Person
    304 sg:person.01277357122.18 schema:affiliation grid-institutes:grid.4567.0
    305 schema:familyName Thorand
    306 schema:givenName Barbara
    307 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277357122.18
    308 rdf:type schema:Person
    309 sg:person.01356271321.99 schema:affiliation grid-institutes:grid.14758.3f
    310 schema:familyName Palosaari
    311 schema:givenName Tarja
    312 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356271321.99
    313 rdf:type schema:Person
    314 sg:person.01365524177.17 schema:affiliation grid-institutes:grid.452396.f
    315 schema:familyName Blankenberg
    316 schema:givenName Stefan
    317 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365524177.17
    318 rdf:type schema:Person
    319 sg:person.013706140257.01 schema:affiliation grid-institutes:grid.5252.0
    320 schema:familyName Meisinger
    321 schema:givenName Christa
    322 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013706140257.01
    323 rdf:type schema:Person
    324 sg:person.01372515157.76 schema:affiliation grid-institutes:grid.4777.3
    325 schema:familyName McKnight
    326 schema:givenName Amy Jayne
    327 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372515157.76
    328 rdf:type schema:Person
    329 sg:person.015507477503.20 schema:affiliation grid-institutes:grid.6582.9
    330 schema:familyName Rehm
    331 schema:givenName Martin
    332 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015507477503.20
    333 rdf:type schema:Person
    334 sg:person.016241124507.72 schema:affiliation grid-institutes:grid.425910.b
    335 schema:familyName Sans
    336 schema:givenName Susana
    337 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016241124507.72
    338 rdf:type schema:Person
    339 sg:person.016465323374.03 schema:affiliation grid-institutes:grid.12650.30
    340 schema:familyName Söderberg
    341 schema:givenName Stefan
    342 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016465323374.03
    343 rdf:type schema:Person
    344 sg:person.0637662640.88 schema:affiliation grid-institutes:grid.512917.9
    345 schema:familyName Linneberg
    346 schema:givenName Allan
    347 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637662640.88
    348 rdf:type schema:Person
    349 sg:person.0660107161.47 schema:affiliation grid-institutes:grid.14758.3f
    350 schema:familyName Jousilahti
    351 schema:givenName Pekka
    352 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660107161.47
    353 rdf:type schema:Person
    354 sg:person.0722421410.95 schema:affiliation grid-institutes:grid.413396.a
    355 schema:familyName Padró
    356 schema:givenName Teresa
    357 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722421410.95
    358 rdf:type schema:Person
    359 sg:person.0765171035.15 schema:affiliation grid-institutes:grid.452396.f
    360 schema:familyName Zeller
    361 schema:givenName Tanja
    362 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765171035.15
    363 rdf:type schema:Person
    364 sg:person.0776375711.50 schema:affiliation grid-institutes:grid.12650.30
    365 schema:familyName Hultdin
    366 schema:givenName Johan
    367 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776375711.50
    368 rdf:type schema:Person
    369 sg:pub.10.1007/s10654-014-9952-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026792434
    370 https://doi.org/10.1007/s10654-014-9952-x
    371 rdf:type schema:CreativeWork
    372 sg:pub.10.1038/s41591-019-0627-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122360816
    373 https://doi.org/10.1038/s41591-019-0627-8
    374 rdf:type schema:CreativeWork
    375 sg:pub.10.1038/s41598-018-38286-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111913152
    376 https://doi.org/10.1038/s41598-018-38286-9
    377 rdf:type schema:CreativeWork
    378 sg:pub.10.1186/1471-2458-12-343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017576905
    379 https://doi.org/10.1186/1471-2458-12-343
    380 rdf:type schema:CreativeWork
    381 sg:pub.10.1186/1471-2458-8-117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040742438
    382 https://doi.org/10.1186/1471-2458-8-117
    383 rdf:type schema:CreativeWork
    384 grid-institutes:grid.12650.30 schema:alternateName Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
    385 Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
    386 schema:name Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
    387 Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
    388 rdf:type schema:Organization
    389 grid-institutes:grid.13648.38 schema:alternateName Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
    390 schema:name Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
    391 rdf:type schema:Organization
    392 grid-institutes:grid.14758.3f schema:alternateName Finnish Institute for Health and Welfare, Helsinki, Finland
    393 schema:name Finnish Institute for Health and Welfare, Helsinki, Finland
    394 rdf:type schema:Organization
    395 grid-institutes:grid.18147.3b schema:alternateName Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy
    396 schema:name Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
    397 Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy
    398 rdf:type schema:Organization
    399 grid-institutes:grid.413396.a schema:alternateName Cardiovascular ICCC-Program, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
    400 schema:name Cardiovascular ICCC-Program, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
    401 rdf:type schema:Organization
    402 grid-institutes:grid.419543.e schema:alternateName Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
    403 schema:name Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
    404 rdf:type schema:Organization
    405 grid-institutes:grid.425910.b schema:alternateName Catalan Department of Health, 08005, Barcelona, Spain
    406 schema:name Catalan Department of Health, 08005, Barcelona, Spain
    407 rdf:type schema:Organization
    408 grid-institutes:grid.452396.f schema:alternateName DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
    409 German Center for Cardiovascular Research (DZHK e.V.), partner site Hamburg, Lübeck, Kiel, Hamburg, Germany
    410 schema:name Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
    411 DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
    412 Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
    413 German Center for Cardiovascular Research (DZHK e.V.), partner site Hamburg, Lübeck, Kiel, Hamburg, Germany
    414 Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081, Ulm, Germany
    415 rdf:type schema:Organization
    416 grid-institutes:grid.4567.0 schema:alternateName Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
    417 schema:name Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
    418 rdf:type schema:Organization
    419 grid-institutes:grid.4777.3 schema:alternateName Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University of Belfast, Belfast, UK
    420 Queen’s University of Belfast, UK Clinical Research Collaboration Centre of Excellence for Public Health, Belfast, UK
    421 schema:name Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University of Belfast, Belfast, UK
    422 Queen’s University of Belfast, UK Clinical Research Collaboration Centre of Excellence for Public Health, Belfast, UK
    423 rdf:type schema:Organization
    424 grid-institutes:grid.512917.9 schema:alternateName Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
    425 schema:name Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
    426 rdf:type schema:Organization
    427 grid-institutes:grid.5252.0 schema:alternateName Ludwig-Maximilians-Universität München, Chair of Epidemiology at UNIKA-T Augsburg, Augsburg, Germany
    428 schema:name Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
    429 Ludwig-Maximilians-Universität München, Chair of Epidemiology at UNIKA-T Augsburg, Augsburg, Germany
    430 rdf:type schema:Organization
    431 grid-institutes:grid.6582.9 schema:alternateName Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081, Ulm, Germany
    432 schema:name Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081, Ulm, Germany
    433 rdf:type schema:Organization
    434 grid-institutes:grid.7497.d schema:alternateName Division of Clinical Epidemiology and Aging Research C070, German Cancer Research Center (DKFZ), Heidelberg, Germany
    435 schema:name Division of Clinical Epidemiology and Aging Research C070, German Cancer Research Center (DKFZ), Heidelberg, Germany
    436 Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081, Ulm, Germany
    437 rdf:type schema:Organization
    438 grid-institutes:grid.8241.f schema:alternateName Cardiovascular Epidemiology Unit, Institute of Cardiovascular Research, University of Dundee, Dundee, UK
    439 Vascular Medicine Unit, Institute of Cardiovascular Disease, University of Dundee, Dundee, UK
    440 schema:name Cardiovascular Epidemiology Unit, Institute of Cardiovascular Research, University of Dundee, Dundee, UK
    441 Vascular Medicine Unit, Institute of Cardiovascular Disease, University of Dundee, Dundee, UK
    442 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...