Postpartum plasma metabolomic profile among women with preeclampsia and preterm delivery: implications for long-term health View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-10-13

AUTHORS

Xiumei Hong, Boyang Zhang, Liming Liang, Yan Zhang, Yuelong Ji, Guoying Wang, Hongkai Ji, Clary B. Clish, Irina Burd, Colleen Pearson, Barry Zuckerman, Frank B. Hu, Xiaobin Wang

ABSTRACT

BackgroundPreeclampsia and preterm delivery (PTD) are believed to affect women’s long-term health including cardiovascular disease (CVD), but the biological underpinnings are largely unknown. We aimed to test whether maternal postpartum metabolomic profiles, especially CVD-related metabolites, varied according to PTD subtypes with and without preeclampsia, in a US urban, low-income multi-ethnic population.MethodsThis study, from the Boston Birth Cohort, included 980 women with term delivery, 79 with medically indicated PTD (mPTD) and preeclampsia, 52 with mPTD only, and 219 with spontaneous PTD (sPTD). Metabolomic profiling in postpartum plasma was conducted by liquid chromatography-mass spectrometry. Linear regression models were used to assess the associations of each metabolite with mPTD with preeclampsia, mPTD only, and sPTD, respectively, adjusting for pertinent covariates. Weighted gene coexpression network analysis was applied to investigate interconnected metabolites associated with the PTD/preeclampsia subgroups. Bonferroni correction was applied to account for multiple testing.ResultsA total of 380 known metabolites were analyzed. Compared to term controls, women with mPTD and preeclampsia showed a significant increase in 36 metabolites, mainly representing acylcarnitines and multiple classes of lipids (diacylglycerols, triacylglycerols, phosphocholines, and lysophosphocholines), as well as a decrease in 11 metabolites including nucleotides, steroids, and cholesteryl esters (CEs) (P < 1.3 × 10−4). Alterations of diacylglycerols, triacylglycerols, and CEs in women with mPTD and preeclampsia remained significant when compared to women with mPTD only. In contrast, the metabolite differences between women with mPTD only and term controls were only seen in phosphatidylethanolamine class. Women with sPTD had significantly different levels of 16 metabolites mainly in amino acid, nucleotide, and steroid classes compared to term controls, of which, anthranilic acid, bilirubin, and steroids also had shared associations in women with mPTD and preeclampsia.ConclusionIn this sample of US high-risk women, PTD/preeclampsia subgroups each showed some unique and shared associations with maternal postpartum plasma metabolites, including those known to be predictors of future CVD. These findings, if validated, may provide new insight into metabolomic alterations underlying clinically observed PTD/preeclampsia subgroups and implications for women’s future cardiometabolic health. More... »

PAGES

277

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12916-020-01741-4

DOI

http://dx.doi.org/10.1186/s12916-020-01741-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1131627857

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33046083


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1114", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Paediatrics and Reproductive Medicine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Postpartum Period", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pre-Eclampsia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pregnancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Premature Birth", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205-2179, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205-2179, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Xiumei", 
        "id": "sg:person.07455744717.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07455744717.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Boyang", 
        "id": "sg:person.014673337750.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014673337750.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA", 
            "Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Liming", 
        "id": "sg:person.0725506330.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725506330.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yan", 
        "id": "sg:person.011172544120.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011172544120.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205-2179, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205-2179, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Yuelong", 
        "id": "sg:person.01352017472.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352017472.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205-2179, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205-2179, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Guoying", 
        "id": "sg:person.0732547265.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732547265.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Hongkai", 
        "id": "sg:person.010730056557.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730056557.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute of MIT and Harvard University, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Broad Institute of MIT and Harvard University, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clish", 
        "givenName": "Clary B.", 
        "id": "sg:person.0764632420.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764632420.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 21287, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 21287, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burd", 
        "givenName": "Irina", 
        "id": "sg:person.01027120565.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027120565.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, 02118, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, 02118, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pearson", 
        "givenName": "Colleen", 
        "id": "sg:person.01064326655.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064326655.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, 02118, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, 02118, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuckerman", 
        "givenName": "Barry", 
        "id": "sg:person.01335011405.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335011405.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Channing Division of Network Medicine, Department of Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA", 
            "Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA", 
            "Channing Division of Network Medicine, Department of Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Frank B.", 
        "id": "sg:person.01365031571.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365031571.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of General Pediatrics & Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205-2179, Baltimore, MD, USA", 
            "Division of General Pediatrics & Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiaobin", 
        "id": "sg:person.012670305724.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012670305724.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-9-559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020312314", 
          "https://doi.org/10.1186/1471-2105-9-559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm0410-400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016838609", 
          "https://doi.org/10.1038/nm0410-400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.2307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002009671", 
          "https://doi.org/10.1038/nm.2307"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-10-13", 
    "datePublishedReg": "2020-10-13", 
    "description": "BackgroundPreeclampsia and preterm delivery (PTD) are believed to affect women\u2019s long-term health including cardiovascular disease (CVD), but the biological underpinnings are largely unknown. We aimed to test whether maternal postpartum metabolomic profiles, especially CVD-related metabolites, varied according to PTD subtypes with and without preeclampsia, in a US urban, low-income multi-ethnic population.MethodsThis study, from the Boston Birth Cohort, included 980 women with term delivery, 79 with medically indicated PTD (mPTD) and preeclampsia, 52 with mPTD only, and 219 with spontaneous PTD (sPTD). Metabolomic profiling in postpartum plasma was conducted by liquid chromatography-mass spectrometry. Linear regression models were used to assess the associations of each metabolite with mPTD with preeclampsia, mPTD only, and sPTD, respectively, adjusting for pertinent covariates. Weighted gene coexpression network analysis was applied to investigate interconnected metabolites associated with the PTD/preeclampsia subgroups. Bonferroni correction was applied to account for multiple testing.ResultsA total of 380 known metabolites were analyzed. Compared to term controls, women with mPTD and preeclampsia showed a significant increase in 36 metabolites, mainly representing acylcarnitines and multiple classes of lipids (diacylglycerols, triacylglycerols, phosphocholines, and lysophosphocholines), as well as a decrease in 11 metabolites including nucleotides, steroids, and cholesteryl esters (CEs) (P\u2009<\u20091.3\u2009\u00d7\u200910\u22124). Alterations of diacylglycerols, triacylglycerols, and CEs in women with mPTD and preeclampsia remained significant when compared to women with mPTD only. In contrast, the metabolite differences between women with mPTD only and term controls were only seen in phosphatidylethanolamine class. Women with sPTD had significantly different levels of 16 metabolites mainly in amino acid, nucleotide, and steroid classes compared to term controls, of which, anthranilic acid, bilirubin, and steroids also had shared associations in women with mPTD and preeclampsia.ConclusionIn this sample of US high-risk women, PTD/preeclampsia subgroups each showed some unique and shared associations with maternal postpartum plasma metabolites, including those known to be predictors of future CVD. These findings, if validated, may provide new insight into metabolomic alterations underlying clinically observed PTD/preeclampsia subgroups and implications for women\u2019s future cardiometabolic health.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12916-020-01741-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2599832", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7426367", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2610826", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2688132", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9293552", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4729461", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9020408", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2612960", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2439005", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8473132", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2526563", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2621398", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7726341", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6818246", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3801869", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1032885", 
        "issn": [
          "1741-7015"
        ], 
        "name": "BMC Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "future cardiometabolic health", 
      "preterm delivery", 
      "long-term health", 
      "spontaneous PTD", 
      "cardiovascular disease", 
      "term controls", 
      "cholesteryl esters", 
      "women's long-term health", 
      "spontaneous preterm delivery", 
      "future cardiovascular disease", 
      "Boston Birth Cohort", 
      "high-risk women", 
      "metabolomic profiles", 
      "multi-ethnic population", 
      "PTD subtypes", 
      "postpartum plasma", 
      "cardiometabolic health", 
      "term delivery", 
      "ResultsA total", 
      "preeclampsia", 
      "phosphatidylethanolamine class", 
      "MethodsThis study", 
      "metabolomic alterations", 
      "birth cohort", 
      "plasma metabolites", 
      "pertinent covariates", 
      "women", 
      "weighted gene coexpression network analysis", 
      "metabolomic profiling", 
      "steroid classes", 
      "gene coexpression network analysis", 
      "liquid chromatography-mass spectrometry", 
      "metabolite differences", 
      "significant increase", 
      "biological underpinnings", 
      "linear regression models", 
      "subgroups", 
      "steroids", 
      "multiple testing", 
      "coexpression network analysis", 
      "regression models", 
      "association", 
      "health", 
      "metabolites", 
      "delivery", 
      "shared associations", 
      "alterations", 
      "BackgroundPreeclampsia", 
      "postpartum", 
      "cohort", 
      "ConclusionIn", 
      "bilirubin", 
      "subtypes", 
      "disease", 
      "MPTD", 
      "control", 
      "acylcarnitines", 
      "chromatography-mass spectrometry", 
      "total", 
      "amino acids", 
      "predictors", 
      "covariates", 
      "triacylglycerols", 
      "lipids", 
      "profile", 
      "population", 
      "acid", 
      "findings", 
      "new insights", 
      "anthranilic acid", 
      "differences", 
      "levels", 
      "decrease", 
      "testing", 
      "plasma", 
      "diacylglycerol", 
      "study", 
      "multiple classes", 
      "profiling", 
      "different levels", 
      "increase", 
      "contrast", 
      "implications", 
      "network analysis", 
      "samples", 
      "nucleotides", 
      "correction", 
      "underpinnings", 
      "esters", 
      "analysis", 
      "uses", 
      "class", 
      "insights", 
      "spectrometry", 
      "model"
    ], 
    "name": "Postpartum plasma metabolomic profile among women with preeclampsia and preterm delivery: implications for long-term health", 
    "pagination": "277", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1131627857"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12916-020-01741-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33046083"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12916-020-01741-4", 
      "https://app.dimensions.ai/details/publication/pub.1131627857"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_842.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12916-020-01741-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01741-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01741-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01741-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01741-4'


 

This table displays all metadata directly associated to this object as RDF triples.

338 TRIPLES      21 PREDICATES      132 URIs      121 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12916-020-01741-4 schema:about N089bccc48a7d4f2a9ec42e10265abc37
2 N108db539c4734d6bbda072c6eb211c53
3 N2021c15d65594cc3bf1ba01fb101ea3a
4 N4f1c6b1b8d304836839a3a92777801a5
5 N64a629eb6cff42239560845db63ef571
6 N9b28ecc243cd487fa4153696441a8f37
7 Nb66b213f97934fe48d8426a1d44f24cf
8 Nca97119bc7f94ebdad02749b148ecab8
9 Nfc78d533b61342b8a41b031fd3eafb95
10 anzsrc-for:11
11 anzsrc-for:1114
12 schema:author Nef7ed766c0944bf9a675cc7262fb0266
13 schema:citation sg:pub.10.1038/nm.2307
14 sg:pub.10.1038/nm0410-400
15 sg:pub.10.1186/1471-2105-9-559
16 schema:datePublished 2020-10-13
17 schema:datePublishedReg 2020-10-13
18 schema:description BackgroundPreeclampsia and preterm delivery (PTD) are believed to affect women’s long-term health including cardiovascular disease (CVD), but the biological underpinnings are largely unknown. We aimed to test whether maternal postpartum metabolomic profiles, especially CVD-related metabolites, varied according to PTD subtypes with and without preeclampsia, in a US urban, low-income multi-ethnic population.MethodsThis study, from the Boston Birth Cohort, included 980 women with term delivery, 79 with medically indicated PTD (mPTD) and preeclampsia, 52 with mPTD only, and 219 with spontaneous PTD (sPTD). Metabolomic profiling in postpartum plasma was conducted by liquid chromatography-mass spectrometry. Linear regression models were used to assess the associations of each metabolite with mPTD with preeclampsia, mPTD only, and sPTD, respectively, adjusting for pertinent covariates. Weighted gene coexpression network analysis was applied to investigate interconnected metabolites associated with the PTD/preeclampsia subgroups. Bonferroni correction was applied to account for multiple testing.ResultsA total of 380 known metabolites were analyzed. Compared to term controls, women with mPTD and preeclampsia showed a significant increase in 36 metabolites, mainly representing acylcarnitines and multiple classes of lipids (diacylglycerols, triacylglycerols, phosphocholines, and lysophosphocholines), as well as a decrease in 11 metabolites including nucleotides, steroids, and cholesteryl esters (CEs) (P < 1.3 × 10−4). Alterations of diacylglycerols, triacylglycerols, and CEs in women with mPTD and preeclampsia remained significant when compared to women with mPTD only. In contrast, the metabolite differences between women with mPTD only and term controls were only seen in phosphatidylethanolamine class. Women with sPTD had significantly different levels of 16 metabolites mainly in amino acid, nucleotide, and steroid classes compared to term controls, of which, anthranilic acid, bilirubin, and steroids also had shared associations in women with mPTD and preeclampsia.ConclusionIn this sample of US high-risk women, PTD/preeclampsia subgroups each showed some unique and shared associations with maternal postpartum plasma metabolites, including those known to be predictors of future CVD. These findings, if validated, may provide new insight into metabolomic alterations underlying clinically observed PTD/preeclampsia subgroups and implications for women’s future cardiometabolic health.
19 schema:genre article
20 schema:isAccessibleForFree true
21 schema:isPartOf N3b636d47461843f3ac6fd4b359bd122f
22 N9404fc55cb3a4be5ae0f701156a0d8eb
23 sg:journal.1032885
24 schema:keywords BackgroundPreeclampsia
25 Boston Birth Cohort
26 ConclusionIn
27 MPTD
28 MethodsThis study
29 PTD subtypes
30 ResultsA total
31 acid
32 acylcarnitines
33 alterations
34 amino acids
35 analysis
36 anthranilic acid
37 association
38 bilirubin
39 biological underpinnings
40 birth cohort
41 cardiometabolic health
42 cardiovascular disease
43 cholesteryl esters
44 chromatography-mass spectrometry
45 class
46 coexpression network analysis
47 cohort
48 contrast
49 control
50 correction
51 covariates
52 decrease
53 delivery
54 diacylglycerol
55 differences
56 different levels
57 disease
58 esters
59 findings
60 future cardiometabolic health
61 future cardiovascular disease
62 gene coexpression network analysis
63 health
64 high-risk women
65 implications
66 increase
67 insights
68 levels
69 linear regression models
70 lipids
71 liquid chromatography-mass spectrometry
72 long-term health
73 metabolite differences
74 metabolites
75 metabolomic alterations
76 metabolomic profiles
77 metabolomic profiling
78 model
79 multi-ethnic population
80 multiple classes
81 multiple testing
82 network analysis
83 new insights
84 nucleotides
85 pertinent covariates
86 phosphatidylethanolamine class
87 plasma
88 plasma metabolites
89 population
90 postpartum
91 postpartum plasma
92 predictors
93 preeclampsia
94 preterm delivery
95 profile
96 profiling
97 regression models
98 samples
99 shared associations
100 significant increase
101 spectrometry
102 spontaneous PTD
103 spontaneous preterm delivery
104 steroid classes
105 steroids
106 study
107 subgroups
108 subtypes
109 term controls
110 term delivery
111 testing
112 total
113 triacylglycerols
114 underpinnings
115 uses
116 weighted gene coexpression network analysis
117 women
118 women's long-term health
119 schema:name Postpartum plasma metabolomic profile among women with preeclampsia and preterm delivery: implications for long-term health
120 schema:pagination 277
121 schema:productId N13761b1e81ec4e6bbe9f593b59655fa1
122 N43b8f4464cb146ed8087efb5a05a6f16
123 N9abf6426c4454ff7bacaf27e9ad88114
124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131627857
125 https://doi.org/10.1186/s12916-020-01741-4
126 schema:sdDatePublished 2022-10-01T06:47
127 schema:sdLicense https://scigraph.springernature.com/explorer/license/
128 schema:sdPublisher N3b1a07bda48b46baad5f24ac4c47803f
129 schema:url https://doi.org/10.1186/s12916-020-01741-4
130 sgo:license sg:explorer/license/
131 sgo:sdDataset articles
132 rdf:type schema:ScholarlyArticle
133 N089bccc48a7d4f2a9ec42e10265abc37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Postpartum Period
135 rdf:type schema:DefinedTerm
136 N0c8aaecbd558440782b98ce7591ca7d8 rdf:first sg:person.0725506330.81
137 rdf:rest N94057acbe5bc4297960c75d1340abff3
138 N108db539c4734d6bbda072c6eb211c53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Humans
140 rdf:type schema:DefinedTerm
141 N13761b1e81ec4e6bbe9f593b59655fa1 schema:name pubmed_id
142 schema:value 33046083
143 rdf:type schema:PropertyValue
144 N16e10f1d533649dcac73147ed9151771 rdf:first sg:person.0764632420.16
145 rdf:rest N4480a39bdfe64cd5a0dc780f33e2a461
146 N2021c15d65594cc3bf1ba01fb101ea3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Metabolomics
148 rdf:type schema:DefinedTerm
149 N34011450a08d47bdb1dd2a30fd31cc76 rdf:first sg:person.012670305724.16
150 rdf:rest rdf:nil
151 N3b1a07bda48b46baad5f24ac4c47803f schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 N3b636d47461843f3ac6fd4b359bd122f schema:issueNumber 1
154 rdf:type schema:PublicationIssue
155 N43b8f4464cb146ed8087efb5a05a6f16 schema:name dimensions_id
156 schema:value pub.1131627857
157 rdf:type schema:PropertyValue
158 N4480a39bdfe64cd5a0dc780f33e2a461 rdf:first sg:person.01027120565.50
159 rdf:rest N73c07211b0ab4a10af66eae491f51304
160 N4f1c6b1b8d304836839a3a92777801a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Pregnancy
162 rdf:type schema:DefinedTerm
163 N62bb8eec874c4673a4ee4181c12a0e2d rdf:first sg:person.014673337750.36
164 rdf:rest N0c8aaecbd558440782b98ce7591ca7d8
165 N64a629eb6cff42239560845db63ef571 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Adult
167 rdf:type schema:DefinedTerm
168 N66ab74025dcc44488b62502abe7e3b5a rdf:first sg:person.0732547265.98
169 rdf:rest Ne0a70600b6cf46d796c39483dbcf7cf9
170 N73c07211b0ab4a10af66eae491f51304 rdf:first sg:person.01064326655.39
171 rdf:rest Na29d44d6a1a448f996e417c02868aa8f
172 N82f0d142f9d64420b515519871710242 rdf:first sg:person.01365031571.41
173 rdf:rest N34011450a08d47bdb1dd2a30fd31cc76
174 N9404fc55cb3a4be5ae0f701156a0d8eb schema:volumeNumber 18
175 rdf:type schema:PublicationVolume
176 N94057acbe5bc4297960c75d1340abff3 rdf:first sg:person.011172544120.86
177 rdf:rest Nc71b561820b049048560d52c3e03bd24
178 N9abf6426c4454ff7bacaf27e9ad88114 schema:name doi
179 schema:value 10.1186/s12916-020-01741-4
180 rdf:type schema:PropertyValue
181 N9b28ecc243cd487fa4153696441a8f37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Female
183 rdf:type schema:DefinedTerm
184 Na29d44d6a1a448f996e417c02868aa8f rdf:first sg:person.01335011405.96
185 rdf:rest N82f0d142f9d64420b515519871710242
186 Nb66b213f97934fe48d8426a1d44f24cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Pre-Eclampsia
188 rdf:type schema:DefinedTerm
189 Nc71b561820b049048560d52c3e03bd24 rdf:first sg:person.01352017472.54
190 rdf:rest N66ab74025dcc44488b62502abe7e3b5a
191 Nca97119bc7f94ebdad02749b148ecab8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Risk Factors
193 rdf:type schema:DefinedTerm
194 Ne0a70600b6cf46d796c39483dbcf7cf9 rdf:first sg:person.010730056557.41
195 rdf:rest N16e10f1d533649dcac73147ed9151771
196 Nef7ed766c0944bf9a675cc7262fb0266 rdf:first sg:person.07455744717.08
197 rdf:rest N62bb8eec874c4673a4ee4181c12a0e2d
198 Nfc78d533b61342b8a41b031fd3eafb95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Premature Birth
200 rdf:type schema:DefinedTerm
201 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
202 schema:name Medical and Health Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:1114 schema:inDefinedTermSet anzsrc-for:
205 schema:name Paediatrics and Reproductive Medicine
206 rdf:type schema:DefinedTerm
207 sg:grant.2439005 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
208 rdf:type schema:MonetaryGrant
209 sg:grant.2526563 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
210 rdf:type schema:MonetaryGrant
211 sg:grant.2599832 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
212 rdf:type schema:MonetaryGrant
213 sg:grant.2610826 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
214 rdf:type schema:MonetaryGrant
215 sg:grant.2612960 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
216 rdf:type schema:MonetaryGrant
217 sg:grant.2621398 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
218 rdf:type schema:MonetaryGrant
219 sg:grant.2688132 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
220 rdf:type schema:MonetaryGrant
221 sg:grant.3801869 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
222 rdf:type schema:MonetaryGrant
223 sg:grant.4729461 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
224 rdf:type schema:MonetaryGrant
225 sg:grant.6818246 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
226 rdf:type schema:MonetaryGrant
227 sg:grant.7426367 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
228 rdf:type schema:MonetaryGrant
229 sg:grant.7726341 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
230 rdf:type schema:MonetaryGrant
231 sg:grant.8473132 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
232 rdf:type schema:MonetaryGrant
233 sg:grant.9020408 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
234 rdf:type schema:MonetaryGrant
235 sg:grant.9293552 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-020-01741-4
236 rdf:type schema:MonetaryGrant
237 sg:journal.1032885 schema:issn 1741-7015
238 schema:name BMC Medicine
239 schema:publisher Springer Nature
240 rdf:type schema:Periodical
241 sg:person.01027120565.50 schema:affiliation grid-institutes:grid.21107.35
242 schema:familyName Burd
243 schema:givenName Irina
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027120565.50
245 rdf:type schema:Person
246 sg:person.01064326655.39 schema:affiliation grid-institutes:grid.189504.1
247 schema:familyName Pearson
248 schema:givenName Colleen
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064326655.39
250 rdf:type schema:Person
251 sg:person.010730056557.41 schema:affiliation grid-institutes:grid.21107.35
252 schema:familyName Ji
253 schema:givenName Hongkai
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730056557.41
255 rdf:type schema:Person
256 sg:person.011172544120.86 schema:affiliation grid-institutes:grid.21107.35
257 schema:familyName Zhang
258 schema:givenName Yan
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011172544120.86
260 rdf:type schema:Person
261 sg:person.012670305724.16 schema:affiliation grid-institutes:grid.21107.35
262 schema:familyName Wang
263 schema:givenName Xiaobin
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012670305724.16
265 rdf:type schema:Person
266 sg:person.01335011405.96 schema:affiliation grid-institutes:grid.189504.1
267 schema:familyName Zuckerman
268 schema:givenName Barry
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335011405.96
270 rdf:type schema:Person
271 sg:person.01352017472.54 schema:affiliation grid-institutes:grid.21107.35
272 schema:familyName Ji
273 schema:givenName Yuelong
274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352017472.54
275 rdf:type schema:Person
276 sg:person.01365031571.41 schema:affiliation grid-institutes:grid.62560.37
277 schema:familyName Hu
278 schema:givenName Frank B.
279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365031571.41
280 rdf:type schema:Person
281 sg:person.014673337750.36 schema:affiliation grid-institutes:grid.21107.35
282 schema:familyName Zhang
283 schema:givenName Boyang
284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014673337750.36
285 rdf:type schema:Person
286 sg:person.0725506330.81 schema:affiliation grid-institutes:grid.38142.3c
287 schema:familyName Liang
288 schema:givenName Liming
289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725506330.81
290 rdf:type schema:Person
291 sg:person.0732547265.98 schema:affiliation grid-institutes:grid.21107.35
292 schema:familyName Wang
293 schema:givenName Guoying
294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732547265.98
295 rdf:type schema:Person
296 sg:person.07455744717.08 schema:affiliation grid-institutes:grid.21107.35
297 schema:familyName Hong
298 schema:givenName Xiumei
299 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07455744717.08
300 rdf:type schema:Person
301 sg:person.0764632420.16 schema:affiliation grid-institutes:grid.66859.34
302 schema:familyName Clish
303 schema:givenName Clary B.
304 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764632420.16
305 rdf:type schema:Person
306 sg:pub.10.1038/nm.2307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002009671
307 https://doi.org/10.1038/nm.2307
308 rdf:type schema:CreativeWork
309 sg:pub.10.1038/nm0410-400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016838609
310 https://doi.org/10.1038/nm0410-400
311 rdf:type schema:CreativeWork
312 sg:pub.10.1186/1471-2105-9-559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020312314
313 https://doi.org/10.1186/1471-2105-9-559
314 rdf:type schema:CreativeWork
315 grid-institutes:grid.189504.1 schema:alternateName Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, 02118, Boston, MA, USA
316 schema:name Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, 02118, Boston, MA, USA
317 rdf:type schema:Organization
318 grid-institutes:grid.21107.35 schema:alternateName Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205-2179, Baltimore, MD, USA
319 Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205, Baltimore, MD, USA
320 Division of General Pediatrics & Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA
321 Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 21287, Baltimore, MD, USA
322 schema:name Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205-2179, Baltimore, MD, USA
323 Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, 21205, Baltimore, MD, USA
324 Division of General Pediatrics & Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA
325 Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 21287, Baltimore, MD, USA
326 rdf:type schema:Organization
327 grid-institutes:grid.38142.3c schema:alternateName Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
328 schema:name Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
329 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
330 rdf:type schema:Organization
331 grid-institutes:grid.62560.37 schema:alternateName Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
332 schema:name Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
333 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
334 Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
335 rdf:type schema:Organization
336 grid-institutes:grid.66859.34 schema:alternateName Broad Institute of MIT and Harvard University, Cambridge, MA, USA
337 schema:name Broad Institute of MIT and Harvard University, Cambridge, MA, USA
338 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...