Polycystic ovary syndrome (PCOS) and COVID-19: an overlooked female patient population at potentially higher risk during the COVID-19 pandemic View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-07-15

AUTHORS

Ioannis Kyrou, Emmanouil Karteris, Tim Robbins, Kamaljit Chatha, Fotios Drenos, Harpal S. Randeva

ABSTRACT

BackgroundIn women of reproductive age, polycystic ovary syndrome (PCOS) constitutes the most frequent endocrine disorder. Women with PCOS are considered to typically belong to an age and sex group which is at lower risk for severe COVID-19.Main bodyEmerging data link the risk of severe COVID-19 with certain factors such as hyper-inflammation, ethnicity predisposition, low vitamin D levels, and hyperandrogenism, all of which have known direct associations with PCOS. Moreover, in this common female patient population, there is markedly high prevalence of multiple cardio-metabolic conditions, such as type 2 diabetes, obesity, and hypertension, which may significantly increase the risk for adverse COVID-19-related outcomes. This strong overlap of risk factors for both worse PCOS cardio-metabolic manifestations and severe COVID-19 should be highlighted for the clinical practice, particularly since women with PCOS often receive fragmented care from multiple healthcare services. Comprehensively informing women with PCOS regarding the potential risks from COVID-19 and how this may affect their management is also essential.ConclusionDespite the immense challenges posed by the COVID-19 outbreak to the healthcare systems in affected countries, attention should be directed to maintain a high standard of care for complex patients such as many women with PCOS and provide relevant practical recommendations for optimal management in the setting of this fast moving pandemic. More... »

PAGES

220

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12916-020-01697-5

DOI

http://dx.doi.org/10.1186/s12916-020-01697-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1129346485

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32664957


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Betacoronavirus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "COVID-19", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronavirus Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hyperandrogenism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertension", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pandemics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pneumonia, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polycystic Ovary Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "SARS-CoV-2", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK", 
            "Aston Medical Research Institute, Aston Medical School, Aston University, B4 7ET, Birmingham, UK", 
            "Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kyrou", 
        "givenName": "Ioannis", 
        "id": "sg:person.0605135161.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605135161.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Health and Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "College of Health and Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karteris", 
        "givenName": "Emmanouil", 
        "id": "sg:person.0650731720.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650731720.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Digital Healthcare, WMG, University of Warwick, CV4 7AL, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK", 
            "Institute of Digital Healthcare, WMG, University of Warwick, CV4 7AL, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robbins", 
        "givenName": "Tim", 
        "id": "sg:person.011576020373.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011576020373.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.15628.38", 
          "name": [
            "Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chatha", 
        "givenName": "Kamaljit", 
        "id": "sg:person.01001534573.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001534573.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Cardiovascular Science, University College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "College of Health and Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK", 
            "Institute of Cardiovascular Science, University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drenos", 
        "givenName": "Fotios", 
        "id": "sg:person.01001324722.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001324722.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK", 
            "Aston Medical Research Institute, Aston Medical School, Aston University, B4 7ET, Birmingham, UK", 
            "Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Randeva", 
        "givenName": "Harpal S.", 
        "id": "sg:person.0602277200.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602277200.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41574-020-0353-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126051070", 
          "https://doi.org/10.1038/s41574-020-0353-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11325-019-01835-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1114996779", 
          "https://doi.org/10.1007/s11325-019-01835-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12863-015-0165-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021663643", 
          "https://doi.org/10.1186/s12863-015-0165-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-017-4318-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090954332", 
          "https://doi.org/10.1007/s00125-017-4318-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-2789-5_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004592896", 
          "https://doi.org/10.1007/978-1-4471-2789-5_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12020-020-02349-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128157536", 
          "https://doi.org/10.1007/s12020-020-02349-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40520-020-01570-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127418727", 
          "https://doi.org/10.1007/s40520-020-01570-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-07-15", 
    "datePublishedReg": "2020-07-15", 
    "description": "BackgroundIn women of reproductive age, polycystic ovary syndrome (PCOS) constitutes the most frequent endocrine disorder. Women with PCOS are considered to typically belong to an age and sex group which is at lower risk for severe COVID-19.Main bodyEmerging data link the risk of severe COVID-19 with certain factors such as hyper-inflammation, ethnicity predisposition, low vitamin D levels, and hyperandrogenism, all of which have known direct associations with PCOS. Moreover, in this common female patient population, there is markedly high prevalence of multiple cardio-metabolic conditions, such as type 2 diabetes, obesity, and hypertension, which may significantly increase the risk for adverse COVID-19-related outcomes. This strong overlap of risk factors for both worse PCOS cardio-metabolic manifestations and severe COVID-19 should be highlighted for the clinical practice, particularly since women with PCOS often receive fragmented care from multiple healthcare services. Comprehensively informing women with PCOS regarding the potential risks from COVID-19 and how this may affect their management is also essential.ConclusionDespite the immense challenges posed by the COVID-19 outbreak to the healthcare systems in affected countries, attention should be directed to maintain a high standard of care for complex patients such as many women with PCOS and provide relevant practical recommendations for optimal management in the setting of this fast moving pandemic.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12916-020-01697-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032885", 
        "issn": [
          "1741-7015"
        ], 
        "name": "BMC Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "polycystic ovary syndrome", 
      "female patient population", 
      "severe COVID-19", 
      "ovary syndrome", 
      "patient population", 
      "adverse COVID-19-related outcomes", 
      "COVID-19", 
      "low vitamin D levels", 
      "COVID-19-related outcomes", 
      "vitamin D levels", 
      "frequent endocrine disorder", 
      "type 2 diabetes", 
      "cardio-metabolic conditions", 
      "multiple healthcare services", 
      "BackgroundIn women", 
      "endocrine disorders", 
      "D levels", 
      "complex patients", 
      "fragmented care", 
      "reproductive age", 
      "risk factors", 
      "high prevalence", 
      "high risk", 
      "lower risk", 
      "clinical practice", 
      "optimal management", 
      "women", 
      "COVID-19 outbreak", 
      "healthcare system", 
      "healthcare services", 
      "sex groups", 
      "COVID-19 pandemic", 
      "risk", 
      "syndrome", 
      "direct association", 
      "care", 
      "age", 
      "potential risk", 
      "hyperandrogenism", 
      "hypertension", 
      "pandemic", 
      "obesity", 
      "diabetes", 
      "patients", 
      "ConclusionDespite", 
      "population", 
      "prevalence", 
      "disorders", 
      "certain factors", 
      "predisposition", 
      "manifestations", 
      "outcomes", 
      "management", 
      "factors", 
      "association", 
      "outbreak", 
      "group", 
      "setting", 
      "high standards", 
      "practical recommendations", 
      "levels", 
      "recommendations", 
      "immense challenge", 
      "practice", 
      "data", 
      "services", 
      "standards", 
      "countries", 
      "overlap", 
      "strong overlap", 
      "challenges", 
      "conditions", 
      "attention", 
      "system"
    ], 
    "name": "Polycystic ovary syndrome (PCOS) and COVID-19: an overlooked female patient population at potentially higher risk during the COVID-19 pandemic", 
    "pagination": "220", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1129346485"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12916-020-01697-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32664957"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12916-020-01697-5", 
      "https://app.dimensions.ai/details/publication/pub.1129346485"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_838.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12916-020-01697-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01697-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01697-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01697-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01697-5'


 

This table displays all metadata directly associated to this object as RDF triples.

280 TRIPLES      22 PREDICATES      124 URIs      108 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12916-020-01697-5 schema:about N0749ca93b54c44ad897964efad8c7a25
2 N0f35269ef06042b3b4d6a6a15c33b170
3 N1fca889f0d4b408780bb703076e7ea30
4 N2fe0100ecf1c4bc4b4a0f9d4267b3272
5 N4dac502bd2a2427a8277b89863e9117c
6 N5edb3e279dcf46f68a1924ad4ca63d59
7 N748d605e6bb44c4aa638b7ca040e211a
8 N7d03e242d33a49bcb36927d2db1ec391
9 N7f398db3493c474dba6f09c7234f237e
10 N9b7f603c6c674a6f8a1ee71726d2e6c4
11 N9ef7626ff69e44218af72dc6bbc8878a
12 N9f70bf23f6a544cd8d188a772e3e001a
13 Nc2ae0d068bf340139bdb13a76b60f95a
14 Ncf488f4a81db460d8a5935c84158c247
15 Nd6772a317b404877aa6852ff74c69f72
16 Nf8c26e6187b64aabb2ebdf8e7f16ec6c
17 anzsrc-for:11
18 anzsrc-for:1103
19 anzsrc-for:1117
20 schema:author N4324ae464129423eaf5d162b3632d2b2
21 schema:citation sg:pub.10.1007/978-1-4471-2789-5_13
22 sg:pub.10.1007/s00125-017-4318-z
23 sg:pub.10.1007/s11325-019-01835-1
24 sg:pub.10.1007/s12020-020-02349-7
25 sg:pub.10.1007/s40520-020-01570-8
26 sg:pub.10.1038/s41574-020-0353-9
27 sg:pub.10.1186/s12863-015-0165-4
28 schema:datePublished 2020-07-15
29 schema:datePublishedReg 2020-07-15
30 schema:description BackgroundIn women of reproductive age, polycystic ovary syndrome (PCOS) constitutes the most frequent endocrine disorder. Women with PCOS are considered to typically belong to an age and sex group which is at lower risk for severe COVID-19.Main bodyEmerging data link the risk of severe COVID-19 with certain factors such as hyper-inflammation, ethnicity predisposition, low vitamin D levels, and hyperandrogenism, all of which have known direct associations with PCOS. Moreover, in this common female patient population, there is markedly high prevalence of multiple cardio-metabolic conditions, such as type 2 diabetes, obesity, and hypertension, which may significantly increase the risk for adverse COVID-19-related outcomes. This strong overlap of risk factors for both worse PCOS cardio-metabolic manifestations and severe COVID-19 should be highlighted for the clinical practice, particularly since women with PCOS often receive fragmented care from multiple healthcare services. Comprehensively informing women with PCOS regarding the potential risks from COVID-19 and how this may affect their management is also essential.ConclusionDespite the immense challenges posed by the COVID-19 outbreak to the healthcare systems in affected countries, attention should be directed to maintain a high standard of care for complex patients such as many women with PCOS and provide relevant practical recommendations for optimal management in the setting of this fast moving pandemic.
31 schema:genre article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf Nba9d28743e1349ae9d26d5c9cf8195fd
35 Nd49910a49218471ea963fffe38bc72c2
36 sg:journal.1032885
37 schema:keywords BackgroundIn women
38 COVID-19
39 COVID-19 outbreak
40 COVID-19 pandemic
41 COVID-19-related outcomes
42 ConclusionDespite
43 D levels
44 adverse COVID-19-related outcomes
45 age
46 association
47 attention
48 cardio-metabolic conditions
49 care
50 certain factors
51 challenges
52 clinical practice
53 complex patients
54 conditions
55 countries
56 data
57 diabetes
58 direct association
59 disorders
60 endocrine disorders
61 factors
62 female patient population
63 fragmented care
64 frequent endocrine disorder
65 group
66 healthcare services
67 healthcare system
68 high prevalence
69 high risk
70 high standards
71 hyperandrogenism
72 hypertension
73 immense challenge
74 levels
75 low vitamin D levels
76 lower risk
77 management
78 manifestations
79 multiple healthcare services
80 obesity
81 optimal management
82 outbreak
83 outcomes
84 ovary syndrome
85 overlap
86 pandemic
87 patient population
88 patients
89 polycystic ovary syndrome
90 population
91 potential risk
92 practical recommendations
93 practice
94 predisposition
95 prevalence
96 recommendations
97 reproductive age
98 risk
99 risk factors
100 services
101 setting
102 severe COVID-19
103 sex groups
104 standards
105 strong overlap
106 syndrome
107 system
108 type 2 diabetes
109 vitamin D levels
110 women
111 schema:name Polycystic ovary syndrome (PCOS) and COVID-19: an overlooked female patient population at potentially higher risk during the COVID-19 pandemic
112 schema:pagination 220
113 schema:productId N138bf41464354e3199bb109554783d7e
114 N7f1405d5352746c1a8d6e7cd699d183e
115 Na0b6a042a87042668b942199041186c8
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129346485
117 https://doi.org/10.1186/s12916-020-01697-5
118 schema:sdDatePublished 2022-05-20T07:36
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher N9de95f85334d4199a4d5d57cffac668f
121 schema:url https://doi.org/10.1186/s12916-020-01697-5
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N0749ca93b54c44ad897964efad8c7a25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Hyperandrogenism
127 rdf:type schema:DefinedTerm
128 N0f35269ef06042b3b4d6a6a15c33b170 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Polycystic Ovary Syndrome
130 rdf:type schema:DefinedTerm
131 N138bf41464354e3199bb109554783d7e schema:name doi
132 schema:value 10.1186/s12916-020-01697-5
133 rdf:type schema:PropertyValue
134 N1fca889f0d4b408780bb703076e7ea30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name COVID-19
136 rdf:type schema:DefinedTerm
137 N2fe0100ecf1c4bc4b4a0f9d4267b3272 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Pandemics
139 rdf:type schema:DefinedTerm
140 N36de1231b8b74056b72dd3174399e620 rdf:first sg:person.01001324722.89
141 rdf:rest N5afc14790cf3447b9cf8e550feaa3985
142 N4324ae464129423eaf5d162b3632d2b2 rdf:first sg:person.0605135161.99
143 rdf:rest Nee9e9e8ed90e4f129f5bc087844d813c
144 N4dac502bd2a2427a8277b89863e9117c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Betacoronavirus
146 rdf:type schema:DefinedTerm
147 N5afc14790cf3447b9cf8e550feaa3985 rdf:first sg:person.0602277200.68
148 rdf:rest rdf:nil
149 N5edb3e279dcf46f68a1924ad4ca63d59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Risk Factors
151 rdf:type schema:DefinedTerm
152 N748d605e6bb44c4aa638b7ca040e211a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Prevalence
154 rdf:type schema:DefinedTerm
155 N7d03e242d33a49bcb36927d2db1ec391 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name SARS-CoV-2
157 rdf:type schema:DefinedTerm
158 N7f1405d5352746c1a8d6e7cd699d183e schema:name dimensions_id
159 schema:value pub.1129346485
160 rdf:type schema:PropertyValue
161 N7f398db3493c474dba6f09c7234f237e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Humans
163 rdf:type schema:DefinedTerm
164 N9b7f603c6c674a6f8a1ee71726d2e6c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Hypertension
166 rdf:type schema:DefinedTerm
167 N9de95f85334d4199a4d5d57cffac668f schema:name Springer Nature - SN SciGraph project
168 rdf:type schema:Organization
169 N9ef7626ff69e44218af72dc6bbc8878a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Pneumonia, Viral
171 rdf:type schema:DefinedTerm
172 N9f70bf23f6a544cd8d188a772e3e001a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Coronavirus Infections
174 rdf:type schema:DefinedTerm
175 Na0b6a042a87042668b942199041186c8 schema:name pubmed_id
176 schema:value 32664957
177 rdf:type schema:PropertyValue
178 Na441d29bb75c49dea24d269e406cf74c rdf:first sg:person.01001534573.16
179 rdf:rest N36de1231b8b74056b72dd3174399e620
180 Nab4dab8f680a409297494ddfa8eab2ee rdf:first sg:person.011576020373.58
181 rdf:rest Na441d29bb75c49dea24d269e406cf74c
182 Nba9d28743e1349ae9d26d5c9cf8195fd schema:issueNumber 1
183 rdf:type schema:PublicationIssue
184 Nc2ae0d068bf340139bdb13a76b60f95a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Female
186 rdf:type schema:DefinedTerm
187 Ncf488f4a81db460d8a5935c84158c247 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Obesity
189 rdf:type schema:DefinedTerm
190 Nd49910a49218471ea963fffe38bc72c2 schema:volumeNumber 18
191 rdf:type schema:PublicationVolume
192 Nd6772a317b404877aa6852ff74c69f72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Metabolic Diseases
194 rdf:type schema:DefinedTerm
195 Nee9e9e8ed90e4f129f5bc087844d813c rdf:first sg:person.0650731720.45
196 rdf:rest Nab4dab8f680a409297494ddfa8eab2ee
197 Nf8c26e6187b64aabb2ebdf8e7f16ec6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Diabetes Mellitus, Type 2
199 rdf:type schema:DefinedTerm
200 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
201 schema:name Medical and Health Sciences
202 rdf:type schema:DefinedTerm
203 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
204 schema:name Clinical Sciences
205 rdf:type schema:DefinedTerm
206 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
207 schema:name Public Health and Health Services
208 rdf:type schema:DefinedTerm
209 sg:journal.1032885 schema:issn 1741-7015
210 schema:name BMC Medicine
211 schema:publisher Springer Nature
212 rdf:type schema:Periodical
213 sg:person.01001324722.89 schema:affiliation grid-institutes:grid.83440.3b
214 schema:familyName Drenos
215 schema:givenName Fotios
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001324722.89
217 rdf:type schema:Person
218 sg:person.01001534573.16 schema:affiliation grid-institutes:grid.15628.38
219 schema:familyName Chatha
220 schema:givenName Kamaljit
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001534573.16
222 rdf:type schema:Person
223 sg:person.011576020373.58 schema:affiliation grid-institutes:grid.7372.1
224 schema:familyName Robbins
225 schema:givenName Tim
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011576020373.58
227 rdf:type schema:Person
228 sg:person.0602277200.68 schema:affiliation grid-institutes:grid.7372.1
229 schema:familyName Randeva
230 schema:givenName Harpal S.
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602277200.68
232 rdf:type schema:Person
233 sg:person.0605135161.99 schema:affiliation grid-institutes:grid.7372.1
234 schema:familyName Kyrou
235 schema:givenName Ioannis
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605135161.99
237 rdf:type schema:Person
238 sg:person.0650731720.45 schema:affiliation grid-institutes:grid.7728.a
239 schema:familyName Karteris
240 schema:givenName Emmanouil
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650731720.45
242 rdf:type schema:Person
243 sg:pub.10.1007/978-1-4471-2789-5_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004592896
244 https://doi.org/10.1007/978-1-4471-2789-5_13
245 rdf:type schema:CreativeWork
246 sg:pub.10.1007/s00125-017-4318-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1090954332
247 https://doi.org/10.1007/s00125-017-4318-z
248 rdf:type schema:CreativeWork
249 sg:pub.10.1007/s11325-019-01835-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114996779
250 https://doi.org/10.1007/s11325-019-01835-1
251 rdf:type schema:CreativeWork
252 sg:pub.10.1007/s12020-020-02349-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128157536
253 https://doi.org/10.1007/s12020-020-02349-7
254 rdf:type schema:CreativeWork
255 sg:pub.10.1007/s40520-020-01570-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127418727
256 https://doi.org/10.1007/s40520-020-01570-8
257 rdf:type schema:CreativeWork
258 sg:pub.10.1038/s41574-020-0353-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126051070
259 https://doi.org/10.1038/s41574-020-0353-9
260 rdf:type schema:CreativeWork
261 sg:pub.10.1186/s12863-015-0165-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021663643
262 https://doi.org/10.1186/s12863-015-0165-4
263 rdf:type schema:CreativeWork
264 grid-institutes:grid.15628.38 schema:alternateName Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK
265 schema:name Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK
266 rdf:type schema:Organization
267 grid-institutes:grid.7372.1 schema:alternateName Institute of Digital Healthcare, WMG, University of Warwick, CV4 7AL, Coventry, UK
268 Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK
269 schema:name Aston Medical Research Institute, Aston Medical School, Aston University, B4 7ET, Birmingham, UK
270 Institute of Digital Healthcare, WMG, University of Warwick, CV4 7AL, Coventry, UK
271 Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK
272 Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK
273 rdf:type schema:Organization
274 grid-institutes:grid.7728.a schema:alternateName College of Health and Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK
275 schema:name College of Health and Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK
276 rdf:type schema:Organization
277 grid-institutes:grid.83440.3b schema:alternateName Institute of Cardiovascular Science, University College London, London, UK
278 schema:name College of Health and Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK
279 Institute of Cardiovascular Science, University College London, London, UK
280 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...