Polycystic ovary syndrome (PCOS) and COVID-19: an overlooked female patient population at potentially higher risk during the COVID-19 pandemic View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-07-15

AUTHORS

Ioannis Kyrou, Emmanouil Karteris, Tim Robbins, Kamaljit Chatha, Fotios Drenos, Harpal S. Randeva

ABSTRACT

BackgroundIn women of reproductive age, polycystic ovary syndrome (PCOS) constitutes the most frequent endocrine disorder. Women with PCOS are considered to typically belong to an age and sex group which is at lower risk for severe COVID-19.Main bodyEmerging data link the risk of severe COVID-19 with certain factors such as hyper-inflammation, ethnicity predisposition, low vitamin D levels, and hyperandrogenism, all of which have known direct associations with PCOS. Moreover, in this common female patient population, there is markedly high prevalence of multiple cardio-metabolic conditions, such as type 2 diabetes, obesity, and hypertension, which may significantly increase the risk for adverse COVID-19-related outcomes. This strong overlap of risk factors for both worse PCOS cardio-metabolic manifestations and severe COVID-19 should be highlighted for the clinical practice, particularly since women with PCOS often receive fragmented care from multiple healthcare services. Comprehensively informing women with PCOS regarding the potential risks from COVID-19 and how this may affect their management is also essential.ConclusionDespite the immense challenges posed by the COVID-19 outbreak to the healthcare systems in affected countries, attention should be directed to maintain a high standard of care for complex patients such as many women with PCOS and provide relevant practical recommendations for optimal management in the setting of this fast moving pandemic. More... »

PAGES

220

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12916-020-01697-5

DOI

http://dx.doi.org/10.1186/s12916-020-01697-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1129346485

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32664957


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Betacoronavirus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "COVID-19", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronavirus Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hyperandrogenism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertension", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pandemics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pneumonia, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polycystic Ovary Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "SARS-CoV-2", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK", 
            "Aston Medical Research Institute, Aston Medical School, Aston University, B4 7ET, Birmingham, UK", 
            "Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kyrou", 
        "givenName": "Ioannis", 
        "id": "sg:person.0605135161.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605135161.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Health and Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "College of Health and Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karteris", 
        "givenName": "Emmanouil", 
        "id": "sg:person.0650731720.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650731720.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Digital Healthcare, WMG, University of Warwick, CV4 7AL, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK", 
            "Institute of Digital Healthcare, WMG, University of Warwick, CV4 7AL, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robbins", 
        "givenName": "Tim", 
        "id": "sg:person.011576020373.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011576020373.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.15628.38", 
          "name": [
            "Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chatha", 
        "givenName": "Kamaljit", 
        "id": "sg:person.01001534573.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001534573.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Cardiovascular Science, University College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "College of Health and Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK", 
            "Institute of Cardiovascular Science, University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drenos", 
        "givenName": "Fotios", 
        "id": "sg:person.01001324722.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001324722.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK", 
            "Aston Medical Research Institute, Aston Medical School, Aston University, B4 7ET, Birmingham, UK", 
            "Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Randeva", 
        "givenName": "Harpal S.", 
        "id": "sg:person.0602277200.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602277200.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12863-015-0165-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021663643", 
          "https://doi.org/10.1186/s12863-015-0165-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40520-020-01570-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127418727", 
          "https://doi.org/10.1007/s40520-020-01570-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11325-019-01835-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1114996779", 
          "https://doi.org/10.1007/s11325-019-01835-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12020-020-02349-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128157536", 
          "https://doi.org/10.1007/s12020-020-02349-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41574-020-0353-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126051070", 
          "https://doi.org/10.1038/s41574-020-0353-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-017-4318-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090954332", 
          "https://doi.org/10.1007/s00125-017-4318-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-2789-5_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004592896", 
          "https://doi.org/10.1007/978-1-4471-2789-5_13"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-07-15", 
    "datePublishedReg": "2020-07-15", 
    "description": "BackgroundIn women of reproductive age, polycystic ovary syndrome (PCOS) constitutes the most frequent endocrine disorder. Women with PCOS are considered to typically belong to an age and sex group which is at lower risk for severe COVID-19.Main bodyEmerging data link the risk of severe COVID-19 with certain factors such as hyper-inflammation, ethnicity predisposition, low vitamin D levels, and hyperandrogenism, all of which have known direct associations with PCOS. Moreover, in this common female patient population, there is markedly high prevalence of multiple cardio-metabolic conditions, such as type 2 diabetes, obesity, and hypertension, which may significantly increase the risk for adverse COVID-19-related outcomes. This strong overlap of risk factors for both worse PCOS cardio-metabolic manifestations and severe COVID-19 should be highlighted for the clinical practice, particularly since women with PCOS often receive fragmented care from multiple healthcare services. Comprehensively informing women with PCOS regarding the potential risks from COVID-19 and how this may affect their management is also essential.ConclusionDespite the immense challenges posed by the COVID-19 outbreak to the healthcare systems in affected countries, attention should be directed to maintain a high standard of care for complex patients such as many women with PCOS and provide relevant practical recommendations for optimal management in the setting of this fast moving pandemic.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12916-020-01697-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032885", 
        "issn": [
          "1741-7015"
        ], 
        "name": "BMC Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "polycystic ovary syndrome", 
      "female patient population", 
      "severe COVID-19", 
      "ovary syndrome", 
      "patient population", 
      "adverse COVID-19-related outcomes", 
      "COVID-19", 
      "low vitamin D levels", 
      "COVID-19-related outcomes", 
      "vitamin D levels", 
      "frequent endocrine disorder", 
      "type 2 diabetes", 
      "cardio-metabolic conditions", 
      "multiple healthcare services", 
      "BackgroundIn women", 
      "endocrine disorders", 
      "D levels", 
      "complex patients", 
      "fragmented care", 
      "reproductive age", 
      "risk factors", 
      "high prevalence", 
      "high risk", 
      "lower risk", 
      "clinical practice", 
      "optimal management", 
      "women", 
      "COVID-19 outbreak", 
      "healthcare system", 
      "healthcare services", 
      "sex groups", 
      "COVID-19 pandemic", 
      "risk", 
      "syndrome", 
      "direct association", 
      "care", 
      "age", 
      "potential risk", 
      "hyperandrogenism", 
      "hypertension", 
      "pandemic", 
      "obesity", 
      "diabetes", 
      "patients", 
      "ConclusionDespite", 
      "population", 
      "prevalence", 
      "disorders", 
      "certain factors", 
      "predisposition", 
      "manifestations", 
      "outcomes", 
      "management", 
      "factors", 
      "association", 
      "outbreak", 
      "group", 
      "setting", 
      "high standards", 
      "practical recommendations", 
      "levels", 
      "recommendations", 
      "immense challenge", 
      "practice", 
      "data", 
      "services", 
      "standards", 
      "countries", 
      "overlap", 
      "strong overlap", 
      "challenges", 
      "conditions", 
      "attention", 
      "system"
    ], 
    "name": "Polycystic ovary syndrome (PCOS) and COVID-19: an overlooked female patient population at potentially higher risk during the COVID-19 pandemic", 
    "pagination": "220", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1129346485"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12916-020-01697-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32664957"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12916-020-01697-5", 
      "https://app.dimensions.ai/details/publication/pub.1129346485"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_855.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12916-020-01697-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01697-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01697-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01697-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12916-020-01697-5'


 

This table displays all metadata directly associated to this object as RDF triples.

280 TRIPLES      22 PREDICATES      124 URIs      108 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12916-020-01697-5 schema:about N0043d50db8554d75b608d325018c8616
2 N0db8f0e32c1742af9bc1f122d4ddd7b7
3 N1e88a2bebdd5486fa3f675b7017c61e6
4 N25e6b914bd06459cbc0d11c5f5203e58
5 N37465bb9f9c7473184a3e6fb7b9e6ca2
6 N4a1fdd90ba9e4eb6b42b350c27839130
7 N73fd9262acef40a384b25dddb037be6c
8 N76edf9f5ac2042e59d65d92dd9fcde89
9 N7a483b9f79844b0dba6efa7ce63ae80e
10 N8ac494e3ce9b47a789b7bee8216ce35d
11 N8d3f7eed5ee54129873fee39041a24d2
12 Nb61afba25cc642f6a81d4a625ede453b
13 Nca7b243a17664889bf54dc6475ede459
14 Nd4cadb7f73c24430b5aa46b28bf8fe22
15 Ne6700f93de4e4937b5275dc0742f0c80
16 Neae0152042884602a10ce5da6a3985a5
17 anzsrc-for:11
18 anzsrc-for:1103
19 anzsrc-for:1117
20 schema:author Nec222188541c4d2c9b97363422230e72
21 schema:citation sg:pub.10.1007/978-1-4471-2789-5_13
22 sg:pub.10.1007/s00125-017-4318-z
23 sg:pub.10.1007/s11325-019-01835-1
24 sg:pub.10.1007/s12020-020-02349-7
25 sg:pub.10.1007/s40520-020-01570-8
26 sg:pub.10.1038/s41574-020-0353-9
27 sg:pub.10.1186/s12863-015-0165-4
28 schema:datePublished 2020-07-15
29 schema:datePublishedReg 2020-07-15
30 schema:description BackgroundIn women of reproductive age, polycystic ovary syndrome (PCOS) constitutes the most frequent endocrine disorder. Women with PCOS are considered to typically belong to an age and sex group which is at lower risk for severe COVID-19.Main bodyEmerging data link the risk of severe COVID-19 with certain factors such as hyper-inflammation, ethnicity predisposition, low vitamin D levels, and hyperandrogenism, all of which have known direct associations with PCOS. Moreover, in this common female patient population, there is markedly high prevalence of multiple cardio-metabolic conditions, such as type 2 diabetes, obesity, and hypertension, which may significantly increase the risk for adverse COVID-19-related outcomes. This strong overlap of risk factors for both worse PCOS cardio-metabolic manifestations and severe COVID-19 should be highlighted for the clinical practice, particularly since women with PCOS often receive fragmented care from multiple healthcare services. Comprehensively informing women with PCOS regarding the potential risks from COVID-19 and how this may affect their management is also essential.ConclusionDespite the immense challenges posed by the COVID-19 outbreak to the healthcare systems in affected countries, attention should be directed to maintain a high standard of care for complex patients such as many women with PCOS and provide relevant practical recommendations for optimal management in the setting of this fast moving pandemic.
31 schema:genre article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf Naf5d0f1836ac4c0f9b6a11b2c1a189ce
35 Nf23322243bda423d9f46fe51a2724c78
36 sg:journal.1032885
37 schema:keywords BackgroundIn women
38 COVID-19
39 COVID-19 outbreak
40 COVID-19 pandemic
41 COVID-19-related outcomes
42 ConclusionDespite
43 D levels
44 adverse COVID-19-related outcomes
45 age
46 association
47 attention
48 cardio-metabolic conditions
49 care
50 certain factors
51 challenges
52 clinical practice
53 complex patients
54 conditions
55 countries
56 data
57 diabetes
58 direct association
59 disorders
60 endocrine disorders
61 factors
62 female patient population
63 fragmented care
64 frequent endocrine disorder
65 group
66 healthcare services
67 healthcare system
68 high prevalence
69 high risk
70 high standards
71 hyperandrogenism
72 hypertension
73 immense challenge
74 levels
75 low vitamin D levels
76 lower risk
77 management
78 manifestations
79 multiple healthcare services
80 obesity
81 optimal management
82 outbreak
83 outcomes
84 ovary syndrome
85 overlap
86 pandemic
87 patient population
88 patients
89 polycystic ovary syndrome
90 population
91 potential risk
92 practical recommendations
93 practice
94 predisposition
95 prevalence
96 recommendations
97 reproductive age
98 risk
99 risk factors
100 services
101 setting
102 severe COVID-19
103 sex groups
104 standards
105 strong overlap
106 syndrome
107 system
108 type 2 diabetes
109 vitamin D levels
110 women
111 schema:name Polycystic ovary syndrome (PCOS) and COVID-19: an overlooked female patient population at potentially higher risk during the COVID-19 pandemic
112 schema:pagination 220
113 schema:productId N44f26eee36fe48bbb4c33fd1a1363338
114 N80b0e73de7ac42779461e5bdd17a1be9
115 Nac036eacdff34592b8d6cb2e30dff818
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129346485
117 https://doi.org/10.1186/s12916-020-01697-5
118 schema:sdDatePublished 2022-05-10T10:28
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher Nf708e73d0e5343d1a7816cea2bcf6fb9
121 schema:url https://doi.org/10.1186/s12916-020-01697-5
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N0043d50db8554d75b608d325018c8616 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Coronavirus Infections
127 rdf:type schema:DefinedTerm
128 N0db8f0e32c1742af9bc1f122d4ddd7b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Pneumonia, Viral
130 rdf:type schema:DefinedTerm
131 N1aa44b573f8a4cc0866dca241b369756 rdf:first sg:person.011576020373.58
132 rdf:rest N421bd23eba6e44cf9979808d405a7503
133 N1e88a2bebdd5486fa3f675b7017c61e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Hyperandrogenism
135 rdf:type schema:DefinedTerm
136 N25e6b914bd06459cbc0d11c5f5203e58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Pandemics
138 rdf:type schema:DefinedTerm
139 N37465bb9f9c7473184a3e6fb7b9e6ca2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Betacoronavirus
141 rdf:type schema:DefinedTerm
142 N421bd23eba6e44cf9979808d405a7503 rdf:first sg:person.01001534573.16
143 rdf:rest Na4f3f9f8fc04461c910e6c8372339691
144 N44f26eee36fe48bbb4c33fd1a1363338 schema:name pubmed_id
145 schema:value 32664957
146 rdf:type schema:PropertyValue
147 N4a1fdd90ba9e4eb6b42b350c27839130 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Humans
149 rdf:type schema:DefinedTerm
150 N608c78991fa54bb890fbb1e37abb605f rdf:first sg:person.0602277200.68
151 rdf:rest rdf:nil
152 N73fd9262acef40a384b25dddb037be6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name SARS-CoV-2
154 rdf:type schema:DefinedTerm
155 N76edf9f5ac2042e59d65d92dd9fcde89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Female
157 rdf:type schema:DefinedTerm
158 N7a483b9f79844b0dba6efa7ce63ae80e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Obesity
160 rdf:type schema:DefinedTerm
161 N80b0e73de7ac42779461e5bdd17a1be9 schema:name dimensions_id
162 schema:value pub.1129346485
163 rdf:type schema:PropertyValue
164 N8ac494e3ce9b47a789b7bee8216ce35d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Metabolic Diseases
166 rdf:type schema:DefinedTerm
167 N8d3f7eed5ee54129873fee39041a24d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Polycystic Ovary Syndrome
169 rdf:type schema:DefinedTerm
170 Na4f3f9f8fc04461c910e6c8372339691 rdf:first sg:person.01001324722.89
171 rdf:rest N608c78991fa54bb890fbb1e37abb605f
172 Nac036eacdff34592b8d6cb2e30dff818 schema:name doi
173 schema:value 10.1186/s12916-020-01697-5
174 rdf:type schema:PropertyValue
175 Naf5d0f1836ac4c0f9b6a11b2c1a189ce schema:volumeNumber 18
176 rdf:type schema:PublicationVolume
177 Nb61afba25cc642f6a81d4a625ede453b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Prevalence
179 rdf:type schema:DefinedTerm
180 Nbfe7baaee5e141acb34c7daaec4862cb rdf:first sg:person.0650731720.45
181 rdf:rest N1aa44b573f8a4cc0866dca241b369756
182 Nca7b243a17664889bf54dc6475ede459 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Diabetes Mellitus, Type 2
184 rdf:type schema:DefinedTerm
185 Nd4cadb7f73c24430b5aa46b28bf8fe22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name COVID-19
187 rdf:type schema:DefinedTerm
188 Ne6700f93de4e4937b5275dc0742f0c80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Risk Factors
190 rdf:type schema:DefinedTerm
191 Neae0152042884602a10ce5da6a3985a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Hypertension
193 rdf:type schema:DefinedTerm
194 Nec222188541c4d2c9b97363422230e72 rdf:first sg:person.0605135161.99
195 rdf:rest Nbfe7baaee5e141acb34c7daaec4862cb
196 Nf23322243bda423d9f46fe51a2724c78 schema:issueNumber 1
197 rdf:type schema:PublicationIssue
198 Nf708e73d0e5343d1a7816cea2bcf6fb9 schema:name Springer Nature - SN SciGraph project
199 rdf:type schema:Organization
200 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
201 schema:name Medical and Health Sciences
202 rdf:type schema:DefinedTerm
203 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
204 schema:name Clinical Sciences
205 rdf:type schema:DefinedTerm
206 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
207 schema:name Public Health and Health Services
208 rdf:type schema:DefinedTerm
209 sg:journal.1032885 schema:issn 1741-7015
210 schema:name BMC Medicine
211 schema:publisher Springer Nature
212 rdf:type schema:Periodical
213 sg:person.01001324722.89 schema:affiliation grid-institutes:grid.83440.3b
214 schema:familyName Drenos
215 schema:givenName Fotios
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001324722.89
217 rdf:type schema:Person
218 sg:person.01001534573.16 schema:affiliation grid-institutes:grid.15628.38
219 schema:familyName Chatha
220 schema:givenName Kamaljit
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001534573.16
222 rdf:type schema:Person
223 sg:person.011576020373.58 schema:affiliation grid-institutes:grid.7372.1
224 schema:familyName Robbins
225 schema:givenName Tim
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011576020373.58
227 rdf:type schema:Person
228 sg:person.0602277200.68 schema:affiliation grid-institutes:grid.7372.1
229 schema:familyName Randeva
230 schema:givenName Harpal S.
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602277200.68
232 rdf:type schema:Person
233 sg:person.0605135161.99 schema:affiliation grid-institutes:grid.7372.1
234 schema:familyName Kyrou
235 schema:givenName Ioannis
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605135161.99
237 rdf:type schema:Person
238 sg:person.0650731720.45 schema:affiliation grid-institutes:grid.7728.a
239 schema:familyName Karteris
240 schema:givenName Emmanouil
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650731720.45
242 rdf:type schema:Person
243 sg:pub.10.1007/978-1-4471-2789-5_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004592896
244 https://doi.org/10.1007/978-1-4471-2789-5_13
245 rdf:type schema:CreativeWork
246 sg:pub.10.1007/s00125-017-4318-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1090954332
247 https://doi.org/10.1007/s00125-017-4318-z
248 rdf:type schema:CreativeWork
249 sg:pub.10.1007/s11325-019-01835-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114996779
250 https://doi.org/10.1007/s11325-019-01835-1
251 rdf:type schema:CreativeWork
252 sg:pub.10.1007/s12020-020-02349-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128157536
253 https://doi.org/10.1007/s12020-020-02349-7
254 rdf:type schema:CreativeWork
255 sg:pub.10.1007/s40520-020-01570-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127418727
256 https://doi.org/10.1007/s40520-020-01570-8
257 rdf:type schema:CreativeWork
258 sg:pub.10.1038/s41574-020-0353-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126051070
259 https://doi.org/10.1038/s41574-020-0353-9
260 rdf:type schema:CreativeWork
261 sg:pub.10.1186/s12863-015-0165-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021663643
262 https://doi.org/10.1186/s12863-015-0165-4
263 rdf:type schema:CreativeWork
264 grid-institutes:grid.15628.38 schema:alternateName Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK
265 schema:name Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK
266 rdf:type schema:Organization
267 grid-institutes:grid.7372.1 schema:alternateName Institute of Digital Healthcare, WMG, University of Warwick, CV4 7AL, Coventry, UK
268 Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK
269 schema:name Aston Medical Research Institute, Aston Medical School, Aston University, B4 7ET, Birmingham, UK
270 Institute of Digital Healthcare, WMG, University of Warwick, CV4 7AL, Coventry, UK
271 Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK
272 Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, CV2 2DX, Coventry, UK
273 rdf:type schema:Organization
274 grid-institutes:grid.7728.a schema:alternateName College of Health and Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK
275 schema:name College of Health and Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK
276 rdf:type schema:Organization
277 grid-institutes:grid.83440.3b schema:alternateName Institute of Cardiovascular Science, University College London, London, UK
278 schema:name College of Health and Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK
279 Institute of Cardiovascular Science, University College London, London, UK
280 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...