Development and validation of a prognostic model to predict the prognosis of patients who underwent chemotherapy and resection of pancreatic ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Lei Huang, Yesilda Balavarca, Lydia van der Geest, Valery Lemmens, Liesbet Van Eycken, Harlinde De Schutter, Tom B. Johannesen, Vesna Zadnik, Maja Primic-Žakelj, Margit Mägi, Robert Grützmann, Marc G. Besselink, Petra Schrotz-King, Hermann Brenner, Lina Jansen

ABSTRACT

BACKGROUND: Pancreatic cancer (PaC) remains extremely lethal worldwide even after resection. PaC resection rates are low, making prognostic studies in resected PaC difficult. This large international population-based study aimed at exploring factors associated with survival in patients with resected TNM stage I-II PaC receiving chemotherapy and at developing and internationally validating a survival-predicting model. METHODS: Data of stage I-II PaC patients resected and receiving chemotherapy in 2003-2014 were obtained from the national cancer registries of Belgium, the Netherlands, Slovenia, and Norway, and the US Surveillance, Epidemiology, and End Results (SEER)-18 Program. Multivariable Cox proportional hazards models were constructed to investigate the associations of patient and tumor characteristics with overall survival, and analysis was performed in each country respectively without pooling. Prognostic factors remaining after backward selection in SEER-18 were used to build a nomogram, which was subjected to bootstrap internal validation and external validation using the European datasets. RESULTS: A total of 11,837 resected PaC patients were analyzed, with median survival time of 18-23 months and 3-year survival rates of 21-31%. In the main analysis, patient age, tumor T stage, N stage, and differentiation were associated with survival across most countries, with country-specific association patterns and strengths. However, tumor location was mostly not significantly associated with survival. Resection margin, hospital type, tumor size, positive and harvested lymph node number, lymph node ratio, and comorbidity number were associated with survival in certain countries where the information was available. A median survival time- and 1-, 2-, 3-, and 5-year survival probability-predictive nomogram incorporating the backward-selected variables in the main analysis was established. It fits each European national cohort similarly well. Calibration curves showed very good agreement between nomogram-prediction and actual observation. The concordance index of the nomogram (0.60) was significantly higher than that of the T and N stage-based model (0.56) for predicting survival. CONCLUSIONS: In these large international population-based cohorts, patients with resected PaC receiving chemotherapy have distinct characteristics independently associated with survival, with country-specific patterns and strengths. A robust benchmark population-based survival-predicting model is established and internationally validated. Like previous models predicting survival in resected PaC, our nomogram performs modestly. More... »

PAGES

66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12916-019-1304-y

DOI

http://dx.doi.org/10.1186/s12916-019-1304-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112970506

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30905320


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Heidelberg University", 
          "id": "https://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany", 
            "Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Cancer Research Center", 
          "id": "https://www.grid.ac/institutes/grid.7497.d", 
          "name": [
            "Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balavarca", 
        "givenName": "Yesilda", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Netherlands Cancer Registry (NCR), Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Geest", 
        "givenName": "Lydia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Netherlands Cancer Registry (NCR), Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lemmens", 
        "givenName": "Valery", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Belgian Cancer Registry (BCR), Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Eycken", 
        "givenName": "Liesbet", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Belgian Cancer Registry (BCR), Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Schutter", 
        "givenName": "Harlinde", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Registry of Norway", 
          "id": "https://www.grid.ac/institutes/grid.418941.1", 
          "name": [
            "Registry Department, The Cancer Registry of Norway (CRN), Oslo, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johannesen", 
        "givenName": "Tom B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Oncology Ljubljana", 
          "id": "https://www.grid.ac/institutes/grid.418872.0", 
          "name": [
            "Epidemiology and Cancer Registry, Institute of Oncology Ljubljana, Ljubljana, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zadnik", 
        "givenName": "Vesna", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Oncology Ljubljana", 
          "id": "https://www.grid.ac/institutes/grid.418872.0", 
          "name": [
            "Epidemiology and Cancer Registry, Institute of Oncology Ljubljana, Ljubljana, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Primic-\u017dakelj", 
        "givenName": "Maja", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Health Development", 
          "id": "https://www.grid.ac/institutes/grid.416712.7", 
          "name": [
            "Estonian Cancer Registry, National Institute for Health Development, Tallinn, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00e4gi", 
        "givenName": "Margit", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Department of Surgery, Friedrich-Alexander-University Erlangen-N\u00fcrnberg, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gr\u00fctzmann", 
        "givenName": "Robert", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dutch Pancreatic Cancer Group (DPCG), Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Besselink", 
        "givenName": "Marc G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Cancer Research Center", 
          "id": "https://www.grid.ac/institutes/grid.7497.d", 
          "name": [
            "Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schrotz-King", 
        "givenName": "Petra", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Cancer Research Center", 
          "id": "https://www.grid.ac/institutes/grid.7497.d", 
          "name": [
            "Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany", 
            "Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany", 
            "German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brenner", 
        "givenName": "Hermann", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Cancer Research Center", 
          "id": "https://www.grid.ac/institutes/grid.7497.d", 
          "name": [
            "Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany", 
            "German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jansen", 
        "givenName": "Lina", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijsu.2015.06.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000648922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000133125.85489.07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001532917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000133125.85489.07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001532917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2016.4324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003566268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.6548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006947600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.6548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006947600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e318263da2f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007099740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e318263da2f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007099740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e318263da2f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007099740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-011-1630-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007814044", 
          "https://doi.org/10.1245/s10434-011-1630-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jamcollsurg.2010.03.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008034947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/hpb.12401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011926963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013257560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archsurg.2007.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016283017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2010.1275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017077374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.01.8101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018545919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.01.8101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018545919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.9709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021748805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181613142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027183820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181613142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027183820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11605-012-1853-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027590090", 
          "https://doi.org/10.1007/s11605-012-1853-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2003.10.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027803541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0000000000001763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034628427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0000000000001763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034628427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19960229)15:4<361::aid-sim168>3.0.co;2-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037104179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780141510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038673592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13651820802356606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041082569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(14)71116-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041272828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdv295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045601700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ans.13277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046971418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2016.67.5553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048722193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.9892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053621552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.v21.i1.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071372243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077617256", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6004/jnccn.2014.0106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078952755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6004/jnccn.2014.0106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078952755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.148.3.6878708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082007470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.suronc.2017.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083529965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-017-5810-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083847848", 
          "https://doi.org/10.1245/s10434-017-5810-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-017-5810-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083847848", 
          "https://doi.org/10.1245/s10434-017-5810-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4149/neo_2017_318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084454331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4149/neo_2017_318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084454331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2017.72.4948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084762771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.30760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085126266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjsurg.2017.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085861185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6004/jnccn.2017.0131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091089483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6004/jnccn.2017.0131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091089483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2017.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091144877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2017.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091144877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccell.2017.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091212500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.31058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092312643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2017-314828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092829192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2017-314828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092829192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2017-314828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092829192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.31628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104995647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.31628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104995647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.31628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104995647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41436-018-0009-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105223792", 
          "https://doi.org/10.1038/s41436-018-0009-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41436-018-0009-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105223792", 
          "https://doi.org/10.1038/s41436-018-0009-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41436-018-0009-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105223792", 
          "https://doi.org/10.1038/s41436-018-0009-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41436-018-0009-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105223792", 
          "https://doi.org/10.1038/s41436-018-0009-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12916-018-1120-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105888641", 
          "https://doi.org/10.1186/s12916-018-1120-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.gastro.2018.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106013937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.gastro.2018.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106013937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12885-018-4901-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107663829", 
          "https://doi.org/10.1186/s12885-018-4901-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.canlet.2018.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109891734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.canlet.2018.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109891734"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Pancreatic cancer (PaC) remains extremely lethal worldwide even after resection. PaC resection rates are low, making prognostic studies in resected PaC difficult. This large international population-based study aimed at exploring factors associated with survival in patients with resected TNM stage I-II PaC receiving chemotherapy and at developing and internationally validating a survival-predicting model.\nMETHODS: Data of stage I-II PaC patients resected and receiving chemotherapy in 2003-2014 were obtained from the national cancer registries of Belgium, the Netherlands, Slovenia, and Norway, and the US Surveillance, Epidemiology, and End Results (SEER)-18 Program. Multivariable Cox proportional hazards models were constructed to investigate the associations of patient and tumor characteristics with overall survival, and analysis was performed in each country respectively without pooling. Prognostic factors remaining after backward selection in SEER-18 were used to build a nomogram, which was subjected to bootstrap internal validation and external validation using the European datasets.\nRESULTS: A total of 11,837 resected PaC patients were analyzed, with median survival time of 18-23\u2009months and 3-year survival rates of 21-31%. In the main analysis, patient age, tumor T stage, N stage, and differentiation were associated with survival across most countries, with country-specific association patterns and strengths. However, tumor location was mostly not significantly associated with survival. Resection margin, hospital type, tumor size, positive and harvested lymph node number, lymph node ratio, and comorbidity number were associated with survival in certain countries where the information was available. A median survival time- and 1-, 2-, 3-, and 5-year survival probability-predictive nomogram incorporating the backward-selected variables in the main analysis was established. It fits each European national cohort similarly well. Calibration curves showed very good agreement between nomogram-prediction and actual observation. The concordance index of the nomogram (0.60) was significantly higher than that of the T and N stage-based model (0.56) for predicting survival.\nCONCLUSIONS: In these large international population-based cohorts, patients with resected PaC receiving chemotherapy have distinct characteristics independently associated with survival, with country-specific patterns and strengths. A robust benchmark population-based survival-predicting model is established and internationally validated. Like previous models predicting survival in resected PaC, our nomogram performs modestly.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12916-019-1304-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032885", 
        "issn": [
          "1741-7015"
        ], 
        "name": "BMC Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Development and validation of a prognostic model to predict the prognosis of patients who underwent chemotherapy and resection of pancreatic adenocarcinoma: a large international population-based cohort study", 
    "pagination": "66", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12916-019-1304-y"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "beeb44131f589407d290afc36570a654a009b4b3ed2676f6a2933240d8f058b2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112970506"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101190723"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30905320"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12916-019-1304-y", 
      "https://app.dimensions.ai/details/publication/pub.1112970506"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119713_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12916-019-1304-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12916-019-1304-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12916-019-1304-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12916-019-1304-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12916-019-1304-y'


 

This table displays all metadata directly associated to this object as RDF triples.

322 TRIPLES      21 PREDICATES      75 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12916-019-1304-y schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N17806f5abf8b4c67b7ba039c7144c426
4 schema:citation sg:pub.10.1007/s11605-012-1853-2
5 sg:pub.10.1038/s41436-018-0009-5
6 sg:pub.10.1186/s12885-018-4901-9
7 sg:pub.10.1186/s12916-018-1120-9
8 sg:pub.10.1245/s10434-011-1630-6
9 sg:pub.10.1245/s10434-017-5810-x
10 https://app.dimensions.ai/details/publication/pub.1077617256
11 https://doi.org/10.1001/archsurg.2007.17
12 https://doi.org/10.1001/jama.2010.1275
13 https://doi.org/10.1001/jama.2016.4324
14 https://doi.org/10.1002/(sici)1097-0258(19960229)15:4<361::aid-sim168>3.0.co;2-4
15 https://doi.org/10.1002/bjs.6548
16 https://doi.org/10.1002/bjs.9709
17 https://doi.org/10.1002/bjs.9892
18 https://doi.org/10.1002/cncr.31058
19 https://doi.org/10.1002/ijc.30760
20 https://doi.org/10.1002/ijc.31628
21 https://doi.org/10.1002/sim.4780141510
22 https://doi.org/10.1016/j.amjsurg.2017.05.007
23 https://doi.org/10.1016/j.canlet.2018.11.007
24 https://doi.org/10.1016/j.ccell.2017.07.007
25 https://doi.org/10.1016/j.ejca.2003.10.026
26 https://doi.org/10.1016/j.ejca.2017.06.034
27 https://doi.org/10.1016/j.ijsu.2015.06.050
28 https://doi.org/10.1016/j.jamcollsurg.2010.03.037
29 https://doi.org/10.1016/j.suronc.2017.01.007
30 https://doi.org/10.1016/s1470-2045(14)71116-7
31 https://doi.org/10.1053/j.gastro.2018.08.009
32 https://doi.org/10.1080/13651820802356606
33 https://doi.org/10.1093/annonc/mdv295
34 https://doi.org/10.1097/01.sla.0000133125.85489.07
35 https://doi.org/10.1097/sla.0000000000001763
36 https://doi.org/10.1097/sla.0b013e3181613142
37 https://doi.org/10.1097/sla.0b013e318263da2f
38 https://doi.org/10.1111/ans.13277
39 https://doi.org/10.1111/hpb.12401
40 https://doi.org/10.1136/gutjnl-2017-314828
41 https://doi.org/10.1148/radiology.148.3.6878708
42 https://doi.org/10.1200/jco.2005.01.8101
43 https://doi.org/10.1200/jco.2016.67.5553
44 https://doi.org/10.1200/jco.2017.72.4948
45 https://doi.org/10.3322/caac.21262
46 https://doi.org/10.3748/wjg.v21.i1.262
47 https://doi.org/10.4149/neo_2017_318
48 https://doi.org/10.6004/jnccn.2014.0106
49 https://doi.org/10.6004/jnccn.2017.0131
50 schema:datePublished 2019-12
51 schema:datePublishedReg 2019-12-01
52 schema:description BACKGROUND: Pancreatic cancer (PaC) remains extremely lethal worldwide even after resection. PaC resection rates are low, making prognostic studies in resected PaC difficult. This large international population-based study aimed at exploring factors associated with survival in patients with resected TNM stage I-II PaC receiving chemotherapy and at developing and internationally validating a survival-predicting model. METHODS: Data of stage I-II PaC patients resected and receiving chemotherapy in 2003-2014 were obtained from the national cancer registries of Belgium, the Netherlands, Slovenia, and Norway, and the US Surveillance, Epidemiology, and End Results (SEER)-18 Program. Multivariable Cox proportional hazards models were constructed to investigate the associations of patient and tumor characteristics with overall survival, and analysis was performed in each country respectively without pooling. Prognostic factors remaining after backward selection in SEER-18 were used to build a nomogram, which was subjected to bootstrap internal validation and external validation using the European datasets. RESULTS: A total of 11,837 resected PaC patients were analyzed, with median survival time of 18-23 months and 3-year survival rates of 21-31%. In the main analysis, patient age, tumor T stage, N stage, and differentiation were associated with survival across most countries, with country-specific association patterns and strengths. However, tumor location was mostly not significantly associated with survival. Resection margin, hospital type, tumor size, positive and harvested lymph node number, lymph node ratio, and comorbidity number were associated with survival in certain countries where the information was available. A median survival time- and 1-, 2-, 3-, and 5-year survival probability-predictive nomogram incorporating the backward-selected variables in the main analysis was established. It fits each European national cohort similarly well. Calibration curves showed very good agreement between nomogram-prediction and actual observation. The concordance index of the nomogram (0.60) was significantly higher than that of the T and N stage-based model (0.56) for predicting survival. CONCLUSIONS: In these large international population-based cohorts, patients with resected PaC receiving chemotherapy have distinct characteristics independently associated with survival, with country-specific patterns and strengths. A robust benchmark population-based survival-predicting model is established and internationally validated. Like previous models predicting survival in resected PaC, our nomogram performs modestly.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N1069967ac2ef46638c4ab4202fb27efa
57 N6c04a8037a1d48f395e8346bd384407d
58 sg:journal.1032885
59 schema:name Development and validation of a prognostic model to predict the prognosis of patients who underwent chemotherapy and resection of pancreatic adenocarcinoma: a large international population-based cohort study
60 schema:pagination 66
61 schema:productId N16c37eb316a0497b94ff2e1db458d32c
62 N514ce950bdf64508a2c3d2ed4472a0df
63 N86043c2d437e408fb495f58c29727545
64 Nb91a066567fb42fcb23d2799744f6d73
65 Nbd63fb000fc64b35a5c652e8090b1a5f
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112970506
67 https://doi.org/10.1186/s12916-019-1304-y
68 schema:sdDatePublished 2019-04-15T08:47
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N632110fa0d1c4ec3bc75c59e44c677af
71 schema:url https://link.springer.com/10.1186%2Fs12916-019-1304-y
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N0a559a0cb7e148a9a14cb94e17198e3c rdf:first N2833c668909441bca950d748cef0acbd
76 rdf:rest N92430b879e4743aeb1c6aedda83407b9
77 N0c113135aeb14ac988b2b8fffdf002f0 schema:affiliation https://www.grid.ac/institutes/grid.7497.d
78 schema:familyName Balavarca
79 schema:givenName Yesilda
80 rdf:type schema:Person
81 N1069967ac2ef46638c4ab4202fb27efa schema:volumeNumber 17
82 rdf:type schema:PublicationVolume
83 N16c37eb316a0497b94ff2e1db458d32c schema:name nlm_unique_id
84 schema:value 101190723
85 rdf:type schema:PropertyValue
86 N17806f5abf8b4c67b7ba039c7144c426 rdf:first Na510b01d04c44436ba67fa99be5d1a06
87 rdf:rest Nb622da34809f4e60a67c01c1073aebaf
88 N2833c668909441bca950d748cef0acbd schema:affiliation Nf2048d78855643919d49136302258e5e
89 schema:familyName Besselink
90 schema:givenName Marc G.
91 rdf:type schema:Person
92 N2deb777e394c4952814e38ef08213e86 schema:affiliation https://www.grid.ac/institutes/grid.416712.7
93 schema:familyName Mägi
94 schema:givenName Margit
95 rdf:type schema:Person
96 N351a561ab11c448b80088ffaf0d97fd3 rdf:first N8ed706e31221447b98ba55d1222d2115
97 rdf:rest N5552d6b8e2f243a0a6dda71524a2b539
98 N3601d444f42241eda1efc763fd04ee56 rdf:first N774e85f6c7e744c281d79ae2f2682333
99 rdf:rest N84aab478ac2543bcbe93370bbb474c86
100 N3dc2ae7d76e444acafbe6a46d30d4ac1 schema:name Netherlands Cancer Registry (NCR), Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, The Netherlands
101 rdf:type schema:Organization
102 N3ffa19f4148048c3b507f3174c829d76 schema:name Netherlands Cancer Registry (NCR), Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, The Netherlands
103 rdf:type schema:Organization
104 N424d52473eb8406496648997d7102ee4 rdf:first Nc1cdf822f0c94ac5861dcab6b66e843b
105 rdf:rest N3601d444f42241eda1efc763fd04ee56
106 N514ce950bdf64508a2c3d2ed4472a0df schema:name dimensions_id
107 schema:value pub.1112970506
108 rdf:type schema:PropertyValue
109 N5552d6b8e2f243a0a6dda71524a2b539 rdf:first Nadb550f4e050440e939c23ce5888f97e
110 rdf:rest rdf:nil
111 N632110fa0d1c4ec3bc75c59e44c677af schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N6c04a8037a1d48f395e8346bd384407d schema:issueNumber 1
114 rdf:type schema:PublicationIssue
115 N774e85f6c7e744c281d79ae2f2682333 schema:affiliation https://www.grid.ac/institutes/grid.418872.0
116 schema:familyName Zadnik
117 schema:givenName Vesna
118 rdf:type schema:Person
119 N810a846bfa65493599f24bef85566879 rdf:first Nb009ed07967c4a57aa8771058e227968
120 rdf:rest N9a7ce55132fa4a469949ad8166e9bae2
121 N84aab478ac2543bcbe93370bbb474c86 rdf:first Nf0159a2b948646be9ddc9ebcb448dad2
122 rdf:rest Naa25250e5e36460e91789c1e1242c361
123 N86043c2d437e408fb495f58c29727545 schema:name readcube_id
124 schema:value beeb44131f589407d290afc36570a654a009b4b3ed2676f6a2933240d8f058b2
125 rdf:type schema:PropertyValue
126 N8a7c6756f22e483ea8cbda4b0a587b31 rdf:first Nf920ab247bcb44768a1e27ab76c15225
127 rdf:rest N424d52473eb8406496648997d7102ee4
128 N8ed706e31221447b98ba55d1222d2115 schema:affiliation https://www.grid.ac/institutes/grid.7497.d
129 schema:familyName Brenner
130 schema:givenName Hermann
131 rdf:type schema:Person
132 N92430b879e4743aeb1c6aedda83407b9 rdf:first Nd367b10d5caf497eabb77c1289258e51
133 rdf:rest N351a561ab11c448b80088ffaf0d97fd3
134 N9505b5bbcbfc4e85a7741647c08b47c9 schema:name Belgian Cancer Registry (BCR), Brussels, Belgium
135 rdf:type schema:Organization
136 N974e9845fc1442819179a6ad70a01638 rdf:first Nd8897ba0aab14ef8b89a416e258987e3
137 rdf:rest N0a559a0cb7e148a9a14cb94e17198e3c
138 N9a7ce55132fa4a469949ad8166e9bae2 rdf:first Na7d1c396f9074252b4d27f1b67297f91
139 rdf:rest Ncc18fa85a1434e3580fddd87ed7784b6
140 Na510b01d04c44436ba67fa99be5d1a06 schema:affiliation https://www.grid.ac/institutes/grid.7700.0
141 schema:familyName Huang
142 schema:givenName Lei
143 rdf:type schema:Person
144 Na7d1c396f9074252b4d27f1b67297f91 schema:affiliation N3ffa19f4148048c3b507f3174c829d76
145 schema:familyName Lemmens
146 schema:givenName Valery
147 rdf:type schema:Person
148 Naa25250e5e36460e91789c1e1242c361 rdf:first N2deb777e394c4952814e38ef08213e86
149 rdf:rest N974e9845fc1442819179a6ad70a01638
150 Naa34d1f8971f4dc8bda4784c39da9a53 schema:affiliation N9505b5bbcbfc4e85a7741647c08b47c9
151 schema:familyName Van Eycken
152 schema:givenName Liesbet
153 rdf:type schema:Person
154 Nadb550f4e050440e939c23ce5888f97e schema:affiliation https://www.grid.ac/institutes/grid.7497.d
155 schema:familyName Jansen
156 schema:givenName Lina
157 rdf:type schema:Person
158 Nb009ed07967c4a57aa8771058e227968 schema:affiliation N3dc2ae7d76e444acafbe6a46d30d4ac1
159 schema:familyName van der Geest
160 schema:givenName Lydia
161 rdf:type schema:Person
162 Nb622da34809f4e60a67c01c1073aebaf rdf:first N0c113135aeb14ac988b2b8fffdf002f0
163 rdf:rest N810a846bfa65493599f24bef85566879
164 Nb91a066567fb42fcb23d2799744f6d73 schema:name pubmed_id
165 schema:value 30905320
166 rdf:type schema:PropertyValue
167 Nbd63fb000fc64b35a5c652e8090b1a5f schema:name doi
168 schema:value 10.1186/s12916-019-1304-y
169 rdf:type schema:PropertyValue
170 Nc1cdf822f0c94ac5861dcab6b66e843b schema:affiliation https://www.grid.ac/institutes/grid.418941.1
171 schema:familyName Johannesen
172 schema:givenName Tom B.
173 rdf:type schema:Person
174 Ncc18fa85a1434e3580fddd87ed7784b6 rdf:first Naa34d1f8971f4dc8bda4784c39da9a53
175 rdf:rest N8a7c6756f22e483ea8cbda4b0a587b31
176 Nd367b10d5caf497eabb77c1289258e51 schema:affiliation https://www.grid.ac/institutes/grid.7497.d
177 schema:familyName Schrotz-King
178 schema:givenName Petra
179 rdf:type schema:Person
180 Nd8897ba0aab14ef8b89a416e258987e3 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
181 schema:familyName Grützmann
182 schema:givenName Robert
183 rdf:type schema:Person
184 Ne57c1e1cb9ba4ab185329398fae46ba3 schema:name Belgian Cancer Registry (BCR), Brussels, Belgium
185 rdf:type schema:Organization
186 Nf0159a2b948646be9ddc9ebcb448dad2 schema:affiliation https://www.grid.ac/institutes/grid.418872.0
187 schema:familyName Primic-Žakelj
188 schema:givenName Maja
189 rdf:type schema:Person
190 Nf2048d78855643919d49136302258e5e schema:name Dutch Pancreatic Cancer Group (DPCG), Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
191 rdf:type schema:Organization
192 Nf920ab247bcb44768a1e27ab76c15225 schema:affiliation Ne57c1e1cb9ba4ab185329398fae46ba3
193 schema:familyName De Schutter
194 schema:givenName Harlinde
195 rdf:type schema:Person
196 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
197 schema:name Medical and Health Sciences
198 rdf:type schema:DefinedTerm
199 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
200 schema:name Public Health and Health Services
201 rdf:type schema:DefinedTerm
202 sg:journal.1032885 schema:issn 1741-7015
203 schema:name BMC Medicine
204 rdf:type schema:Periodical
205 sg:pub.10.1007/s11605-012-1853-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027590090
206 https://doi.org/10.1007/s11605-012-1853-2
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/s41436-018-0009-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105223792
209 https://doi.org/10.1038/s41436-018-0009-5
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/s12885-018-4901-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107663829
212 https://doi.org/10.1186/s12885-018-4901-9
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/s12916-018-1120-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105888641
215 https://doi.org/10.1186/s12916-018-1120-9
216 rdf:type schema:CreativeWork
217 sg:pub.10.1245/s10434-011-1630-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007814044
218 https://doi.org/10.1245/s10434-011-1630-6
219 rdf:type schema:CreativeWork
220 sg:pub.10.1245/s10434-017-5810-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083847848
221 https://doi.org/10.1245/s10434-017-5810-x
222 rdf:type schema:CreativeWork
223 https://app.dimensions.ai/details/publication/pub.1077617256 schema:CreativeWork
224 https://doi.org/10.1001/archsurg.2007.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016283017
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1001/jama.2010.1275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017077374
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1001/jama.2016.4324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003566268
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1002/(sici)1097-0258(19960229)15:4<361::aid-sim168>3.0.co;2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037104179
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1002/bjs.6548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006947600
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1002/bjs.9709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021748805
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1002/bjs.9892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053621552
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1002/cncr.31058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092312643
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1002/ijc.30760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085126266
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1002/ijc.31628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104995647
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1002/sim.4780141510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038673592
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.amjsurg.2017.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085861185
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.canlet.2018.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109891734
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.ccell.2017.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091212500
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.ejca.2003.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027803541
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.ejca.2017.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091144877
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.ijsu.2015.06.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000648922
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.jamcollsurg.2010.03.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008034947
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.suronc.2017.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083529965
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/s1470-2045(14)71116-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041272828
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1053/j.gastro.2018.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106013937
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1080/13651820802356606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041082569
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/annonc/mdv295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045601700
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1097/01.sla.0000133125.85489.07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001532917
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1097/sla.0000000000001763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034628427
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1097/sla.0b013e3181613142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027183820
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1097/sla.0b013e318263da2f schema:sameAs https://app.dimensions.ai/details/publication/pub.1007099740
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1111/ans.13277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046971418
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1111/hpb.12401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011926963
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1136/gutjnl-2017-314828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092829192
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1148/radiology.148.3.6878708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082007470
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1200/jco.2005.01.8101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018545919
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1200/jco.2016.67.5553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048722193
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1200/jco.2017.72.4948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084762771
291 rdf:type schema:CreativeWork
292 https://doi.org/10.3322/caac.21262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013257560
293 rdf:type schema:CreativeWork
294 https://doi.org/10.3748/wjg.v21.i1.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071372243
295 rdf:type schema:CreativeWork
296 https://doi.org/10.4149/neo_2017_318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084454331
297 rdf:type schema:CreativeWork
298 https://doi.org/10.6004/jnccn.2014.0106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078952755
299 rdf:type schema:CreativeWork
300 https://doi.org/10.6004/jnccn.2017.0131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091089483
301 rdf:type schema:CreativeWork
302 https://www.grid.ac/institutes/grid.416712.7 schema:alternateName National Institute for Health Development
303 schema:name Estonian Cancer Registry, National Institute for Health Development, Tallinn, Estonia
304 rdf:type schema:Organization
305 https://www.grid.ac/institutes/grid.418872.0 schema:alternateName Institute of Oncology Ljubljana
306 schema:name Epidemiology and Cancer Registry, Institute of Oncology Ljubljana, Ljubljana, Slovenia
307 rdf:type schema:Organization
308 https://www.grid.ac/institutes/grid.418941.1 schema:alternateName Cancer Registry of Norway
309 schema:name Registry Department, The Cancer Registry of Norway (CRN), Oslo, Norway
310 rdf:type schema:Organization
311 https://www.grid.ac/institutes/grid.5330.5 schema:alternateName University of Erlangen-Nuremberg
312 schema:name Department of Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
313 rdf:type schema:Organization
314 https://www.grid.ac/institutes/grid.7497.d schema:alternateName German Cancer Research Center
315 schema:name Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
316 Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
317 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
318 rdf:type schema:Organization
319 https://www.grid.ac/institutes/grid.7700.0 schema:alternateName Heidelberg University
320 schema:name Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
321 Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
322 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...