NMR-based metabolomics identifies patients at high risk of death within two years after acute myocardial infarction in the AMI-Florence II ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Alessia Vignoli, Leonardo Tenori, Betti Giusti, Panteleimon G. Takis, Serafina Valente, Nazario Carrabba, Daniela Balzi, Alessandro Barchielli, Niccolò Marchionni, Gian Franco Gensini, Rossella Marcucci, Claudio Luchinat, Anna Maria Gori

ABSTRACT

BACKGROUND: Risk stratification and management of acute myocardial infarction patients continue to be challenging despite considerable efforts made in the last decades by many clinicians and researchers. The aim of this study was to investigate the metabolomic fingerprint of acute myocardial infarction using nuclear magnetic resonance spectroscopy on patient serum samples and to evaluate the possible role of metabolomics in the prognostic stratification of acute myocardial infarction patients. METHODS: In total, 978 acute myocardial infarction patients were enrolled in this study; of these, 146 died and 832 survived during 2 years of follow-up after the acute myocardial infarction. Serum samples were analyzed via high-resolution 1H-nuclear magnetic resonance spectroscopy and the spectra were used to characterize the metabolic fingerprint of patients. Multivariate statistics were used to create a prognostic model for the prediction of death within 2 years after the cardiovascular event. RESULTS: In the training set, metabolomics showed significant differential clustering of the two outcomes cohorts. A prognostic risk model predicted death with 76.9% sensitivity, 79.5% specificity, and 78.2% accuracy, and an area under the receiver operating characteristics curve of 0.859. These results were reproduced in the validation set, obtaining 72.6% sensitivity, 72.6% specificity, and 72.6% accuracy. Cox models were used to compare the known prognostic factors (for example, Global Registry of Acute Coronary Events score, age, sex, Killip class) with the metabolomic random forest risk score. In the univariate analysis, many prognostic factors were statistically associated with the outcomes; among them, the random forest score calculated from the nuclear magnetic resonance data showed a statistically relevant hazard ratio of 6.45 (p = 2.16×10-16). Moreover, in the multivariate regression only age, dyslipidemia, previous cerebrovascular disease, Killip class, and random forest score remained statistically significant, demonstrating their independence from the other variables. CONCLUSIONS: For the first time, metabolomic profiling technologies were used to discriminate between patients with different outcomes after an acute myocardial infarction. These technologies seem to be a valid and accurate addition to standard stratification based on clinical and biohumoral parameters. More... »

PAGES

3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12916-018-1240-2

DOI

http://dx.doi.org/10.1186/s12916-018-1240-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111252550

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30616610


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine", 
          "id": "https://www.grid.ac/institutes/grid.493068.0", 
          "name": [
            "Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy", 
            "Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine - C.I.R.M.M.P, Sesto Fiorentino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vignoli", 
        "givenName": "Alessia", 
        "id": "sg:person.013315476401.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315476401.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florence", 
          "id": "https://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy", 
            "Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tenori", 
        "givenName": "Leonardo", 
        "id": "sg:person.01136315131.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136315131.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Azienda Ospedaliero-Universitaria Careggi", 
          "id": "https://www.grid.ac/institutes/grid.24704.35", 
          "name": [
            "Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy", 
            "Careggi Hospital, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giusti", 
        "givenName": "Betti", 
        "id": "sg:person.0646476255.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646476255.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Giotto Biotech (Italy)", 
          "id": "https://www.grid.ac/institutes/grid.434457.5", 
          "name": [
            "Giotto Biotech S.r.l, Sesto Fiorentino, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takis", 
        "givenName": "Panteleimon G.", 
        "id": "sg:person.0703103176.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703103176.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Azienda Ospedaliero-Universitaria Careggi", 
          "id": "https://www.grid.ac/institutes/grid.24704.35", 
          "name": [
            "Careggi Hospital, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valente", 
        "givenName": "Serafina", 
        "id": "sg:person.01202607711.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202607711.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Azienda Ospedaliero-Universitaria Careggi", 
          "id": "https://www.grid.ac/institutes/grid.24704.35", 
          "name": [
            "Careggi Hospital, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carrabba", 
        "givenName": "Nazario", 
        "id": "sg:person.01305336113.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305336113.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit of Epidemiology, ASL 10, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balzi", 
        "givenName": "Daniela", 
        "id": "sg:person.01340752743.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340752743.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit of Epidemiology, ASL 10, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barchielli", 
        "givenName": "Alessandro", 
        "id": "sg:person.01310635357.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310635357.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Azienda Ospedaliero-Universitaria Careggi", 
          "id": "https://www.grid.ac/institutes/grid.24704.35", 
          "name": [
            "Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy", 
            "Careggi Hospital, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marchionni", 
        "givenName": "Niccol\u00f2", 
        "id": "sg:person.0637114553.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637114553.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centro Studi Medicina Avanzata (CESMAV), Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gensini", 
        "givenName": "Gian Franco", 
        "id": "sg:person.01332151330.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332151330.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Azienda Ospedaliero-Universitaria Careggi", 
          "id": "https://www.grid.ac/institutes/grid.24704.35", 
          "name": [
            "Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy", 
            "Careggi Hospital, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marcucci", 
        "givenName": "Rossella", 
        "id": "sg:person.01253344032.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253344032.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florence", 
          "id": "https://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy", 
            "Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine - C.I.R.M.M.P, Sesto Fiorentino, Italy", 
            "Department of Chemistry, University of Florence, Sesto Fiorentino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luchinat", 
        "givenName": "Claudio", 
        "id": "sg:person.0750040044.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750040044.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Azienda Ospedaliero-Universitaria Careggi", 
          "id": "https://www.grid.ac/institutes/grid.24704.35", 
          "name": [
            "Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy", 
            "Careggi Hospital, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gori", 
        "givenName": "Anna Maria", 
        "id": "sg:person.011411072457.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411072457.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1155/2013/298183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000543652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2011.09.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000786174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.163.19.2345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002833679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/2161-1165.1000227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003859320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4380-9_37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007048162", 
          "https://doi.org/10.1007/978-1-4612-4380-9_37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1752-8062.2011.00388.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008508649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep30785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008934411", 
          "https://doi.org/10.1038/srep30785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2016.09.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010405831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2010.1322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012246124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep36359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013677905", 
          "https://doi.org/10.1038/srep36359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2012.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017044286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcard.2013.08.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017068259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molonc.2014.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017172053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-0333-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017267081", 
          "https://doi.org/10.1007/978-1-4615-0333-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-0333-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017267081", 
          "https://doi.org/10.1007/978-1-4615-0333-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-011-9489-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017612656", 
          "https://doi.org/10.1007/s10858-011-9489-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0142610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017901133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(09)61717-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018244976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2015.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019169709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circgenetics.114.000216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020440456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circgenetics.114.000216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020440456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circgenetics.114.000216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020440456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.114.013116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024373499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.114.013116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024373499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1100/2012/186495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025619835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jprot.2015.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025860434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4551054a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027018706", 
          "https://doi.org/10.1038/4551054a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2015.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027919194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028161404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028161404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2011.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030144522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-016-0074-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030670355", 
          "https://doi.org/10.1007/s00216-016-0074-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-016-0074-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030670355", 
          "https://doi.org/10.1007/s00216-016-0074-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2013.10.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030924534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehv320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031315483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0135228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032101605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0124844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032250285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2006.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036329039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2006.02.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039527423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/fcp.12063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041947014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.numecd.2015.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042451485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044604503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045374897", 
          "https://doi.org/10.1038/nprot.2007.376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(10)60484-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050271356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcin.2013.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050663267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0016957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050809527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-014-0761-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050992814", 
          "https://doi.org/10.1007/s11306-014-0761-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.284.7.835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051626208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051713071", 
          "https://doi.org/10.1038/nrmicro1152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051713071", 
          "https://doi.org/10.1038/nrmicro1152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc1002.105133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052971022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.5b00919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055078397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr800615t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056294552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2002-35181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057417826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1160/th12-09-0709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063293193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075302887", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077967037", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-16-1153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079390782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0175591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084870520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7mt00071e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085435247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehx393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091616736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jproteome.7b00404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092475499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ejhf.1076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099638476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/openhrt-2017-000709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101406839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/openhrt-2017-000709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101406839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2018.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101697619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2018.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101697619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3001968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102728208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201804736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105478191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201804736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105478191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201804736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105478191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201804736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105478191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458929"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Risk stratification and management of acute myocardial infarction patients continue to be challenging despite considerable efforts made in the last decades by many clinicians and researchers. The aim of this study was to investigate the metabolomic fingerprint of acute myocardial infarction using nuclear magnetic resonance spectroscopy on patient serum samples and to evaluate the possible role of metabolomics in the prognostic stratification of acute myocardial infarction patients.\nMETHODS: In total, 978 acute myocardial infarction patients were enrolled in this study; of these, 146 died and 832 survived during 2 years of follow-up after the acute myocardial infarction. Serum samples were analyzed via high-resolution 1H-nuclear magnetic resonance spectroscopy\u00a0and the spectra were used to characterize the metabolic fingerprint of patients. Multivariate statistics were used to create a prognostic model for the prediction of death within 2 years after the cardiovascular event.\nRESULTS: In the training set, metabolomics showed significant differential clustering of the two outcomes cohorts. A prognostic risk model predicted death with 76.9% sensitivity, 79.5% specificity, and 78.2% accuracy, and an area under the receiver operating characteristics curve of 0.859. These results were reproduced in the validation set, obtaining 72.6% sensitivity, 72.6% specificity, and 72.6% accuracy. Cox models were used to compare the known prognostic factors (for example, Global Registry of Acute Coronary Events score, age, sex, Killip class) with the metabolomic random forest risk score. In the univariate analysis, many prognostic factors were statistically associated with the outcomes; among them, the random forest score calculated from the nuclear magnetic resonance data\u00a0showed a statistically relevant hazard ratio of 6.45 (p = 2.16\u00d710-16). Moreover, in the multivariate regression only age, dyslipidemia, previous cerebrovascular disease, Killip class, and random forest score remained statistically significant, demonstrating their independence from the other variables.\nCONCLUSIONS: For the first time, metabolomic profiling technologies were used to discriminate between patients with different outcomes after an acute myocardial infarction. These technologies seem to be a valid and accurate addition to standard stratification based on clinical and biohumoral parameters.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12916-018-1240-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3938219", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3940174", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1032885", 
        "issn": [
          "1741-7015"
        ], 
        "name": "BMC Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "NMR-based metabolomics identifies patients at high risk of death within two years after acute myocardial infarction in the AMI-Florence II cohort", 
    "pagination": "3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bf1f664c9e41ca46593f73be8e50f58703e96aac1ffb199487131c3d9eab29ab"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30616610"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101190723"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12916-018-1240-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111252550"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12916-018-1240-2", 
      "https://app.dimensions.ai/details/publication/pub.1111252550"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55819_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12916-018-1240-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12916-018-1240-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12916-018-1240-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12916-018-1240-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12916-018-1240-2'


 

This table displays all metadata directly associated to this object as RDF triples.

371 TRIPLES      21 PREDICATES      91 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12916-018-1240-2 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nbbfc1375d6f647eea47be048818c9a70
4 schema:citation sg:pub.10.1007/978-1-4612-4380-9_37
5 sg:pub.10.1007/978-1-4615-0333-0
6 sg:pub.10.1007/s00216-016-0074-z
7 sg:pub.10.1007/s10858-011-9489-1
8 sg:pub.10.1007/s11306-014-0761-8
9 sg:pub.10.1023/a:1010933404324
10 sg:pub.10.1038/4551054a
11 sg:pub.10.1038/nprot.2007.376
12 sg:pub.10.1038/nrmicro1152
13 sg:pub.10.1038/srep30785
14 sg:pub.10.1038/srep36359
15 https://app.dimensions.ai/details/publication/pub.1075302887
16 https://app.dimensions.ai/details/publication/pub.1077967037
17 https://doi.org/10.1001/archinte.163.19.2345
18 https://doi.org/10.1001/jama.2010.1322
19 https://doi.org/10.1001/jama.284.7.835
20 https://doi.org/10.1002/anie.201804736
21 https://doi.org/10.1002/ejhf.1076
22 https://doi.org/10.1016/j.ab.2006.02.033
23 https://doi.org/10.1016/j.ahj.2006.10.004
24 https://doi.org/10.1016/j.ahj.2012.02.005
25 https://doi.org/10.1016/j.amjcard.2016.09.052
26 https://doi.org/10.1016/j.atherosclerosis.2013.10.036
27 https://doi.org/10.1016/j.atherosclerosis.2015.08.022
28 https://doi.org/10.1016/j.ijcard.2013.08.042
29 https://doi.org/10.1016/j.jacc.2011.02.011
30 https://doi.org/10.1016/j.jacc.2011.09.083
31 https://doi.org/10.1016/j.jacc.2015.02.018
32 https://doi.org/10.1016/j.jbi.2018.03.007
33 https://doi.org/10.1016/j.jcin.2013.11.017
34 https://doi.org/10.1016/j.jprot.2015.03.011
35 https://doi.org/10.1016/j.molonc.2014.07.012
36 https://doi.org/10.1016/j.numecd.2015.06.003
37 https://doi.org/10.1016/s0140-6736(09)61717-7
38 https://doi.org/10.1016/s0140-6736(10)60484-9
39 https://doi.org/10.1021/acs.analchem.5b00919
40 https://doi.org/10.1021/acs.jproteome.7b00404
41 https://doi.org/10.1021/pr800615t
42 https://doi.org/10.1039/c7mt00071e
43 https://doi.org/10.1055/s-2002-35181
44 https://doi.org/10.1093/eurheartj/ehv320
45 https://doi.org/10.1093/eurheartj/ehx393
46 https://doi.org/10.1093/nar/gks1065
47 https://doi.org/10.1100/2012/186495
48 https://doi.org/10.1111/fcp.12063
49 https://doi.org/10.1111/j.1752-8062.2011.00388.x
50 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
51 https://doi.org/10.1136/openhrt-2017-000709
52 https://doi.org/10.1155/2013/298183
53 https://doi.org/10.1158/1078-0432.ccr-16-1153
54 https://doi.org/10.1160/th12-09-0709
55 https://doi.org/10.1161/cir.0000000000000152
56 https://doi.org/10.1161/circgenetics.114.000216
57 https://doi.org/10.1161/circulationaha.114.013116
58 https://doi.org/10.1161/hc1002.105133
59 https://doi.org/10.1371/journal.pone.0016957
60 https://doi.org/10.1371/journal.pone.0124844
61 https://doi.org/10.1371/journal.pone.0135228
62 https://doi.org/10.1371/journal.pone.0142610
63 https://doi.org/10.1371/journal.pone.0175591
64 https://doi.org/10.2307/3001968
65 https://doi.org/10.4172/2161-1165.1000227
66 schema:datePublished 2019-12
67 schema:datePublishedReg 2019-12-01
68 schema:description BACKGROUND: Risk stratification and management of acute myocardial infarction patients continue to be challenging despite considerable efforts made in the last decades by many clinicians and researchers. The aim of this study was to investigate the metabolomic fingerprint of acute myocardial infarction using nuclear magnetic resonance spectroscopy on patient serum samples and to evaluate the possible role of metabolomics in the prognostic stratification of acute myocardial infarction patients. METHODS: In total, 978 acute myocardial infarction patients were enrolled in this study; of these, 146 died and 832 survived during 2 years of follow-up after the acute myocardial infarction. Serum samples were analyzed via high-resolution 1H-nuclear magnetic resonance spectroscopy and the spectra were used to characterize the metabolic fingerprint of patients. Multivariate statistics were used to create a prognostic model for the prediction of death within 2 years after the cardiovascular event. RESULTS: In the training set, metabolomics showed significant differential clustering of the two outcomes cohorts. A prognostic risk model predicted death with 76.9% sensitivity, 79.5% specificity, and 78.2% accuracy, and an area under the receiver operating characteristics curve of 0.859. These results were reproduced in the validation set, obtaining 72.6% sensitivity, 72.6% specificity, and 72.6% accuracy. Cox models were used to compare the known prognostic factors (for example, Global Registry of Acute Coronary Events score, age, sex, Killip class) with the metabolomic random forest risk score. In the univariate analysis, many prognostic factors were statistically associated with the outcomes; among them, the random forest score calculated from the nuclear magnetic resonance data showed a statistically relevant hazard ratio of 6.45 (p = 2.16×10-16). Moreover, in the multivariate regression only age, dyslipidemia, previous cerebrovascular disease, Killip class, and random forest score remained statistically significant, demonstrating their independence from the other variables. CONCLUSIONS: For the first time, metabolomic profiling technologies were used to discriminate between patients with different outcomes after an acute myocardial infarction. These technologies seem to be a valid and accurate addition to standard stratification based on clinical and biohumoral parameters.
69 schema:genre research_article
70 schema:inLanguage en
71 schema:isAccessibleForFree true
72 schema:isPartOf N57b2e651fdb946c8814dcbaa3a08ec57
73 N5feafeae913e4de99f6d7768ced0e9d6
74 sg:journal.1032885
75 schema:name NMR-based metabolomics identifies patients at high risk of death within two years after acute myocardial infarction in the AMI-Florence II cohort
76 schema:pagination 3
77 schema:productId N0225d0fd57de44f4b7c07f2f56fc31b0
78 N63eea7c6a46d4a8ea6ec63d28806f714
79 N98e8c09b43fb418bafef8ba46fcd6382
80 Na3f0f29b1b6e43f3b000891a5b9deaf9
81 Nf41392359ecd42f2b2c4d6b02285a670
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111252550
83 https://doi.org/10.1186/s12916-018-1240-2
84 schema:sdDatePublished 2019-04-11T08:36
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N0fa9b6f9edf541b18ee323c156d8c6b1
87 schema:url https://link.springer.com/10.1186%2Fs12916-018-1240-2
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N0211f6bd686d4b269ba6bc3efc1db000 rdf:first sg:person.01332151330.61
92 rdf:rest N39ac1848605547c1bbee891e0b3c3314
93 N0225d0fd57de44f4b7c07f2f56fc31b0 schema:name pubmed_id
94 schema:value 30616610
95 rdf:type schema:PropertyValue
96 N0fa9b6f9edf541b18ee323c156d8c6b1 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N11c5f08e95644951bd5b0ef1868a08c6 rdf:first sg:person.01136315131.19
99 rdf:rest Nd6650a6ededd44c7844794a37e191f4f
100 N39ac1848605547c1bbee891e0b3c3314 rdf:first sg:person.01253344032.07
101 rdf:rest N911042c95e9c44a79d0851102fd8370f
102 N43c236baa41d4442a6642afbac677769 schema:name Unit of Epidemiology, ASL 10, Florence, Italy
103 rdf:type schema:Organization
104 N52e3a1a478ff46d1ba8d13628b35d4de rdf:first sg:person.01340752743.37
105 rdf:rest Nfee49977e78946fd88b698b75784cea2
106 N57b2e651fdb946c8814dcbaa3a08ec57 schema:issueNumber 1
107 rdf:type schema:PublicationIssue
108 N5a2dbf2af6f84cae8f32418f6b2e1ea8 rdf:first sg:person.0703103176.36
109 rdf:rest Nbf875128084e48e58bd6a4f628d16c44
110 N5feafeae913e4de99f6d7768ced0e9d6 schema:volumeNumber 17
111 rdf:type schema:PublicationVolume
112 N63eea7c6a46d4a8ea6ec63d28806f714 schema:name dimensions_id
113 schema:value pub.1111252550
114 rdf:type schema:PropertyValue
115 N6f959f72169b43ec963269c6d6bbe3f0 schema:name Unit of Epidemiology, ASL 10, Florence, Italy
116 rdf:type schema:Organization
117 N7c923a974c214e2c820df509e19a4e44 rdf:first sg:person.0637114553.80
118 rdf:rest N0211f6bd686d4b269ba6bc3efc1db000
119 N8cf7846f9c0c425399e8181c6b57fb5e rdf:first sg:person.01305336113.68
120 rdf:rest N52e3a1a478ff46d1ba8d13628b35d4de
121 N911042c95e9c44a79d0851102fd8370f rdf:first sg:person.0750040044.84
122 rdf:rest Nff9c51c49a6344e4b74a66fcbd69bb5c
123 N98e8c09b43fb418bafef8ba46fcd6382 schema:name doi
124 schema:value 10.1186/s12916-018-1240-2
125 rdf:type schema:PropertyValue
126 Na3f0f29b1b6e43f3b000891a5b9deaf9 schema:name readcube_id
127 schema:value bf1f664c9e41ca46593f73be8e50f58703e96aac1ffb199487131c3d9eab29ab
128 rdf:type schema:PropertyValue
129 Nbbfc1375d6f647eea47be048818c9a70 rdf:first sg:person.013315476401.33
130 rdf:rest N11c5f08e95644951bd5b0ef1868a08c6
131 Nbf875128084e48e58bd6a4f628d16c44 rdf:first sg:person.01202607711.03
132 rdf:rest N8cf7846f9c0c425399e8181c6b57fb5e
133 Nd6650a6ededd44c7844794a37e191f4f rdf:first sg:person.0646476255.74
134 rdf:rest N5a2dbf2af6f84cae8f32418f6b2e1ea8
135 Ne2449b45c2de458ca1eef89536bfc7b6 schema:name Centro Studi Medicina Avanzata (CESMAV), Florence, Italy
136 rdf:type schema:Organization
137 Nf41392359ecd42f2b2c4d6b02285a670 schema:name nlm_unique_id
138 schema:value 101190723
139 rdf:type schema:PropertyValue
140 Nfee49977e78946fd88b698b75784cea2 rdf:first sg:person.01310635357.95
141 rdf:rest N7c923a974c214e2c820df509e19a4e44
142 Nff9c51c49a6344e4b74a66fcbd69bb5c rdf:first sg:person.011411072457.08
143 rdf:rest rdf:nil
144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
145 schema:name Medical and Health Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
148 schema:name Clinical Sciences
149 rdf:type schema:DefinedTerm
150 sg:grant.3938219 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-018-1240-2
151 rdf:type schema:MonetaryGrant
152 sg:grant.3940174 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-018-1240-2
153 rdf:type schema:MonetaryGrant
154 sg:journal.1032885 schema:issn 1741-7015
155 schema:name BMC Medicine
156 rdf:type schema:Periodical
157 sg:person.01136315131.19 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
158 schema:familyName Tenori
159 schema:givenName Leonardo
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136315131.19
161 rdf:type schema:Person
162 sg:person.011411072457.08 schema:affiliation https://www.grid.ac/institutes/grid.24704.35
163 schema:familyName Gori
164 schema:givenName Anna Maria
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411072457.08
166 rdf:type schema:Person
167 sg:person.01202607711.03 schema:affiliation https://www.grid.ac/institutes/grid.24704.35
168 schema:familyName Valente
169 schema:givenName Serafina
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202607711.03
171 rdf:type schema:Person
172 sg:person.01253344032.07 schema:affiliation https://www.grid.ac/institutes/grid.24704.35
173 schema:familyName Marcucci
174 schema:givenName Rossella
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253344032.07
176 rdf:type schema:Person
177 sg:person.01305336113.68 schema:affiliation https://www.grid.ac/institutes/grid.24704.35
178 schema:familyName Carrabba
179 schema:givenName Nazario
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305336113.68
181 rdf:type schema:Person
182 sg:person.01310635357.95 schema:affiliation N6f959f72169b43ec963269c6d6bbe3f0
183 schema:familyName Barchielli
184 schema:givenName Alessandro
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310635357.95
186 rdf:type schema:Person
187 sg:person.013315476401.33 schema:affiliation https://www.grid.ac/institutes/grid.493068.0
188 schema:familyName Vignoli
189 schema:givenName Alessia
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315476401.33
191 rdf:type schema:Person
192 sg:person.01332151330.61 schema:affiliation Ne2449b45c2de458ca1eef89536bfc7b6
193 schema:familyName Gensini
194 schema:givenName Gian Franco
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332151330.61
196 rdf:type schema:Person
197 sg:person.01340752743.37 schema:affiliation N43c236baa41d4442a6642afbac677769
198 schema:familyName Balzi
199 schema:givenName Daniela
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340752743.37
201 rdf:type schema:Person
202 sg:person.0637114553.80 schema:affiliation https://www.grid.ac/institutes/grid.24704.35
203 schema:familyName Marchionni
204 schema:givenName Niccolò
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637114553.80
206 rdf:type schema:Person
207 sg:person.0646476255.74 schema:affiliation https://www.grid.ac/institutes/grid.24704.35
208 schema:familyName Giusti
209 schema:givenName Betti
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646476255.74
211 rdf:type schema:Person
212 sg:person.0703103176.36 schema:affiliation https://www.grid.ac/institutes/grid.434457.5
213 schema:familyName Takis
214 schema:givenName Panteleimon G.
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703103176.36
216 rdf:type schema:Person
217 sg:person.0750040044.84 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
218 schema:familyName Luchinat
219 schema:givenName Claudio
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750040044.84
221 rdf:type schema:Person
222 sg:pub.10.1007/978-1-4612-4380-9_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007048162
223 https://doi.org/10.1007/978-1-4612-4380-9_37
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/978-1-4615-0333-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017267081
226 https://doi.org/10.1007/978-1-4615-0333-0
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00216-016-0074-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030670355
229 https://doi.org/10.1007/s00216-016-0074-z
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s10858-011-9489-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017612656
232 https://doi.org/10.1007/s10858-011-9489-1
233 rdf:type schema:CreativeWork
234 sg:pub.10.1007/s11306-014-0761-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050992814
235 https://doi.org/10.1007/s11306-014-0761-8
236 rdf:type schema:CreativeWork
237 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
238 https://doi.org/10.1023/a:1010933404324
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/4551054a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027018706
241 https://doi.org/10.1038/4551054a
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/nprot.2007.376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045374897
244 https://doi.org/10.1038/nprot.2007.376
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/nrmicro1152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051713071
247 https://doi.org/10.1038/nrmicro1152
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/srep30785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008934411
250 https://doi.org/10.1038/srep30785
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/srep36359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013677905
253 https://doi.org/10.1038/srep36359
254 rdf:type schema:CreativeWork
255 https://app.dimensions.ai/details/publication/pub.1075302887 schema:CreativeWork
256 https://app.dimensions.ai/details/publication/pub.1077967037 schema:CreativeWork
257 https://doi.org/10.1001/archinte.163.19.2345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002833679
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1001/jama.2010.1322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012246124
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1001/jama.284.7.835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051626208
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1002/anie.201804736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105478191
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1002/ejhf.1076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099638476
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/j.ab.2006.02.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039527423
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1016/j.ahj.2006.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036329039
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1016/j.ahj.2012.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017044286
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1016/j.amjcard.2016.09.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010405831
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1016/j.atherosclerosis.2013.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030924534
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1016/j.atherosclerosis.2015.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027919194
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1016/j.ijcard.2013.08.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017068259
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1016/j.jacc.2011.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030144522
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1016/j.jacc.2011.09.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000786174
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1016/j.jacc.2015.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019169709
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1016/j.jbi.2018.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101697619
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1016/j.jcin.2013.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050663267
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1016/j.jprot.2015.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025860434
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1016/j.molonc.2014.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017172053
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1016/j.numecd.2015.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042451485
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1016/s0140-6736(09)61717-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018244976
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1016/s0140-6736(10)60484-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050271356
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1021/acs.analchem.5b00919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055078397
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1021/acs.jproteome.7b00404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092475499
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1021/pr800615t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056294552
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1039/c7mt00071e schema:sameAs https://app.dimensions.ai/details/publication/pub.1085435247
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1055/s-2002-35181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057417826
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1093/eurheartj/ehv320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031315483
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1093/eurheartj/ehx393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091616736
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1093/nar/gks1065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044604503
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1100/2012/186495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025619835
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1111/fcp.12063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041947014
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1111/j.1752-8062.2011.00388.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008508649
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458929
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1136/openhrt-2017-000709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101406839
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1155/2013/298183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000543652
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1158/1078-0432.ccr-16-1153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079390782
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1160/th12-09-0709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063293193
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1161/cir.0000000000000152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028161404
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1161/circgenetics.114.000216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020440456
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1161/circulationaha.114.013116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024373499
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1161/hc1002.105133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052971022
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1371/journal.pone.0016957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050809527
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1371/journal.pone.0124844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032250285
344 rdf:type schema:CreativeWork
345 https://doi.org/10.1371/journal.pone.0135228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032101605
346 rdf:type schema:CreativeWork
347 https://doi.org/10.1371/journal.pone.0142610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017901133
348 rdf:type schema:CreativeWork
349 https://doi.org/10.1371/journal.pone.0175591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084870520
350 rdf:type schema:CreativeWork
351 https://doi.org/10.2307/3001968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102728208
352 rdf:type schema:CreativeWork
353 https://doi.org/10.4172/2161-1165.1000227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003859320
354 rdf:type schema:CreativeWork
355 https://www.grid.ac/institutes/grid.24704.35 schema:alternateName Azienda Ospedaliero-Universitaria Careggi
356 schema:name Careggi Hospital, Florence, Italy
357 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
358 rdf:type schema:Organization
359 https://www.grid.ac/institutes/grid.434457.5 schema:alternateName Giotto Biotech (Italy)
360 schema:name Giotto Biotech S.r.l, Sesto Fiorentino, Florence, Italy
361 rdf:type schema:Organization
362 https://www.grid.ac/institutes/grid.493068.0 schema:alternateName Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine
363 schema:name Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine - C.I.R.M.M.P, Sesto Fiorentino, Italy
364 Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
365 rdf:type schema:Organization
366 https://www.grid.ac/institutes/grid.8404.8 schema:alternateName University of Florence
367 schema:name Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine - C.I.R.M.M.P, Sesto Fiorentino, Italy
368 Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
369 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
370 Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
371 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...