Neighbourhood level real-time forecasting of dengue cases in tropical urban Singapore View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Yirong Chen, Janet Hui Yi Ong, Jayanthi Rajarethinam, Grace Yap, Lee Ching Ng, Alex R. Cook

ABSTRACT

BACKGROUND: Dengue, a vector-borne infectious disease caused by the dengue virus, has spread through tropical and subtropical regions of the world. All four serotypes of dengue viruses are endemic in the equatorial city state of Singapore, and frequent localised outbreaks occur, sometimes leading to national epidemics. Vector control remains the primary and most effective measure for dengue control and prevention. The objective of this study is to develop a novel framework for producing a spatio-temporal dengue forecast at a neighbourhood level spatial resolution that can be routinely used by Singapore's government agencies for planning of vector control for best efficiency. METHODS: The forecasting algorithm uses a mixture of purely spatial, purely temporal and spatio-temporal data to derive dynamic risk maps for dengue transmission. LASSO-based regression was used for the prediction models and separate sub-models were constructed for each forecast window. Data were divided into training and testing sets for out-of-sample validation. Neighbourhoods were categorised as high or low risk based on the forecast number of cases within the cell. The predictive accuracy of the categorisation was measured. RESULTS: Close concordance between the projections and the eventual incidence of dengue were observed. The average Matthew's correlation coefficient for a classification of the upper risk decile (operational capacity) is similar to the predictive performance at the optimal 30% cut-off. The quality of the spatial predictive algorithm as a classifier shows areas under the curve at all forecast windows being above 0.75 and above 0.80 within the next month. CONCLUSIONS: Spatially resolved forecasts of geographically structured diseases like dengue can be obtained at a neighbourhood level in highly urban environments at a precision that is suitable for guiding control efforts. The same method can be adapted to other urban and even rural areas, with appropriate adjustment to the grid size and shape. More... »

PAGES

129

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12916-018-1108-5

DOI

http://dx.doi.org/10.1186/s12916-018-1108-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105932551

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30078378


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dengue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forecasting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Singapore", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, 117549, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yirong", 
        "id": "sg:person.0641347167.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641347167.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Environment Agency", 
          "id": "https://www.grid.ac/institutes/grid.452367.1", 
          "name": [
            "Environmental Health Institute, 11 Biopolis Way, 138667, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ong", 
        "givenName": "Janet Hui Yi", 
        "id": "sg:person.014706015162.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014706015162.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Environment Agency", 
          "id": "https://www.grid.ac/institutes/grid.452367.1", 
          "name": [
            "Environmental Health Institute, 11 Biopolis Way, 138667, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajarethinam", 
        "givenName": "Jayanthi", 
        "id": "sg:person.013050723201.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013050723201.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Environment Agency", 
          "id": "https://www.grid.ac/institutes/grid.452367.1", 
          "name": [
            "Environmental Health Institute, 11 Biopolis Way, 138667, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yap", 
        "givenName": "Grace", 
        "id": "sg:person.01056722311.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056722311.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Environment Agency", 
          "id": "https://www.grid.ac/institutes/grid.452367.1", 
          "name": [
            "Environmental Health Institute, 11 Biopolis Way, 138667, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ng", 
        "givenName": "Lee Ching", 
        "id": "sg:person.0711345774.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711345774.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, 117549, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Alex R.", 
        "id": "sg:person.01034341733.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034341733.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0152688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001027784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0152688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001027784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4269/ajtmh.14-0671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001617435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4269/ajtmh.14-0671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001617435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4269/ajtmh.14-0671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001617435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meegid.2011.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003685548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/758674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004491724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004869272", 
          "https://doi.org/10.1038/nature12060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2149/tmh.2011-s05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007039771", 
          "https://doi.org/10.2149/tmh.2011-s05"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0001426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008117126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0136286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008885857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwf005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013660302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013701558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/10.3201/eid1206.051210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021943780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0001908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023349682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0004633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024014592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0166806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024156901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-016-1606-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031427993", 
          "https://doi.org/10.1186/s12879-016-1606-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-016-1606-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031427993", 
          "https://doi.org/10.1186/s12879-016-1606-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep33707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035218736", 
          "https://doi.org/10.1038/srep33707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2795(75)90109-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042105629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2795(75)90109-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042105629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0001760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042596488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sste.2014.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043593672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(96)00142-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044522995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1504964112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049388052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1501215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062439990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1509981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064741499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4269/ajtmh.2005.72.201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077014988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0005696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090331447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2542-5196(17)30064-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090378377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0005729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090746706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fimmu.2017.00863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090995060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0005973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092233778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclinepi.2017.11.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092998771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2017.11.314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099659527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1714457115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101131070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2018.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101224841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2018.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101224841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actatropica.2018.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101513995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actatropica.2018.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101513995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0006318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101678889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actatropica.2018.03.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101841009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0195065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101887765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1107160432", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1107160432", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1107160432", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Dengue, a vector-borne infectious disease caused by the dengue virus, has spread through tropical and subtropical regions of the world. All four serotypes of dengue viruses are endemic in the equatorial city state of Singapore, and frequent localised outbreaks occur, sometimes leading to national epidemics. Vector control remains the primary and most effective measure for dengue control and prevention. The objective of this study is to develop a novel framework for producing a spatio-temporal dengue forecast at a neighbourhood\u00a0level spatial resolution that can be routinely used by Singapore's government agencies for planning of vector control for best efficiency.\nMETHODS: The forecasting algorithm uses a mixture of purely spatial, purely temporal and spatio-temporal data to derive dynamic risk maps for dengue transmission. LASSO-based regression was used for the prediction models and separate sub-models were constructed for each forecast window. Data were divided into training and testing sets for out-of-sample validation. Neighbourhoods were categorised as high or low risk based on the forecast number of cases within the cell. The predictive accuracy of the categorisation was measured.\nRESULTS: Close concordance between the projections and the eventual incidence of dengue were observed. The average Matthew's correlation coefficient for a classification of the upper risk decile (operational capacity) is similar to the predictive performance at the optimal 30% cut-off. The quality of the spatial predictive algorithm as a classifier shows areas under the curve at all forecast windows being above 0.75 and above 0.80 within the next month.\nCONCLUSIONS: Spatially resolved forecasts of geographically structured diseases like dengue can be obtained at a neighbourhood\u00a0level in highly urban environments at a precision that is suitable for guiding control efforts. The same method can be adapted to other urban and even rural areas, with appropriate adjustment to the grid size and shape.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12916-018-1108-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032885", 
        "issn": [
          "1741-7015"
        ], 
        "name": "BMC Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Neighbourhood level real-time forecasting of dengue cases in tropical urban Singapore", 
    "pagination": "129", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aceea31c239d58847cf22423c561acd5733d43494fc781722b582bd496e43769"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30078378"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101190723"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12916-018-1108-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105932551"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12916-018-1108-5", 
      "https://app.dimensions.ai/details/publication/pub.1105932551"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000605.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12916-018-1108-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12916-018-1108-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12916-018-1108-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12916-018-1108-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12916-018-1108-5'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      21 PREDICATES      72 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12916-018-1108-5 schema:about N2c2c112b908442b78f6858b933ac1d6f
2 N493349151ff540548044d9859cde9107
3 Nd5bbfb7a2d1f4803b3f62bf2ee48b80f
4 Nf13feccbec01454583db2a0ce41e6f08
5 Nf6a1ae99ab3a42f68c81e620d0b79d6e
6 anzsrc-for:01
7 anzsrc-for:0104
8 schema:author Na7dc535528c84f3d8278bcfed8d6b6a9
9 schema:citation sg:pub.10.1038/nature12060
10 sg:pub.10.1038/srep33707
11 sg:pub.10.1186/s12879-016-1606-z
12 sg:pub.10.2149/tmh.2011-s05
13 https://app.dimensions.ai/details/publication/pub.1107160432
14 https://doi.org/10.1016/0005-2795(75)90109-9
15 https://doi.org/10.1016/j.actatropica.2018.03.006
16 https://doi.org/10.1016/j.actatropica.2018.03.026
17 https://doi.org/10.1016/j.jbi.2018.02.014
18 https://doi.org/10.1016/j.jclinepi.2017.11.019
19 https://doi.org/10.1016/j.meegid.2011.10.012
20 https://doi.org/10.1016/j.patrec.2005.10.010
21 https://doi.org/10.1016/j.scitotenv.2017.11.314
22 https://doi.org/10.1016/j.sste.2014.05.002
23 https://doi.org/10.1016/s0031-3203(96)00142-2
24 https://doi.org/10.1016/s2542-5196(17)30064-5
25 https://doi.org/10.1073/pnas.1504964112
26 https://doi.org/10.1073/pnas.1714457115
27 https://doi.org/10.1093/aje/kwf005
28 https://doi.org/10.1126/sciadv.1501215
29 https://doi.org/10.1155/2012/758674
30 https://doi.org/10.1289/ehp.1509981
31 https://doi.org/10.1371/journal.pntd.0001426
32 https://doi.org/10.1371/journal.pntd.0001760
33 https://doi.org/10.1371/journal.pntd.0001908
34 https://doi.org/10.1371/journal.pntd.0004633
35 https://doi.org/10.1371/journal.pntd.0005696
36 https://doi.org/10.1371/journal.pntd.0005729
37 https://doi.org/10.1371/journal.pntd.0005973
38 https://doi.org/10.1371/journal.pntd.0006318
39 https://doi.org/10.1371/journal.pone.0136286
40 https://doi.org/10.1371/journal.pone.0152688
41 https://doi.org/10.1371/journal.pone.0166806
42 https://doi.org/10.1371/journal.pone.0195065
43 https://doi.org/10.3201/10.3201/eid1206.051210
44 https://doi.org/10.3389/fimmu.2017.00863
45 https://doi.org/10.4269/ajtmh.14-0671
46 https://doi.org/10.4269/ajtmh.2005.72.201
47 schema:datePublished 2018-12
48 schema:datePublishedReg 2018-12-01
49 schema:description BACKGROUND: Dengue, a vector-borne infectious disease caused by the dengue virus, has spread through tropical and subtropical regions of the world. All four serotypes of dengue viruses are endemic in the equatorial city state of Singapore, and frequent localised outbreaks occur, sometimes leading to national epidemics. Vector control remains the primary and most effective measure for dengue control and prevention. The objective of this study is to develop a novel framework for producing a spatio-temporal dengue forecast at a neighbourhood level spatial resolution that can be routinely used by Singapore's government agencies for planning of vector control for best efficiency. METHODS: The forecasting algorithm uses a mixture of purely spatial, purely temporal and spatio-temporal data to derive dynamic risk maps for dengue transmission. LASSO-based regression was used for the prediction models and separate sub-models were constructed for each forecast window. Data were divided into training and testing sets for out-of-sample validation. Neighbourhoods were categorised as high or low risk based on the forecast number of cases within the cell. The predictive accuracy of the categorisation was measured. RESULTS: Close concordance between the projections and the eventual incidence of dengue were observed. The average Matthew's correlation coefficient for a classification of the upper risk decile (operational capacity) is similar to the predictive performance at the optimal 30% cut-off. The quality of the spatial predictive algorithm as a classifier shows areas under the curve at all forecast windows being above 0.75 and above 0.80 within the next month. CONCLUSIONS: Spatially resolved forecasts of geographically structured diseases like dengue can be obtained at a neighbourhood level in highly urban environments at a precision that is suitable for guiding control efforts. The same method can be adapted to other urban and even rural areas, with appropriate adjustment to the grid size and shape.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N0357c146481b41519415f19c8bc9ff3c
54 Ne45b7fee3c394f7884f9fba2a3a1305f
55 sg:journal.1032885
56 schema:name Neighbourhood level real-time forecasting of dengue cases in tropical urban Singapore
57 schema:pagination 129
58 schema:productId N1bae7eca4e03469a80a732b8cc6ecd70
59 N2f2893bb666343caa518a4fe8b360497
60 N786f016fb2f846368ba8bb18d1986fb5
61 N84452870955c49998bab76deee3f3d8c
62 N98f1a5f58303449eafc2beb04a46c296
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105932551
64 https://doi.org/10.1186/s12916-018-1108-5
65 schema:sdDatePublished 2019-04-10T15:15
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N6ee36623d3b1451a94f010a6353caca3
68 schema:url https://link.springer.com/10.1186%2Fs12916-018-1108-5
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0357c146481b41519415f19c8bc9ff3c schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N1bae7eca4e03469a80a732b8cc6ecd70 schema:name readcube_id
75 schema:value aceea31c239d58847cf22423c561acd5733d43494fc781722b582bd496e43769
76 rdf:type schema:PropertyValue
77 N23d6b3c74bb24dda9981625f1e18af39 schema:name Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, 117549, Singapore, Singapore
78 rdf:type schema:Organization
79 N2c2c112b908442b78f6858b933ac1d6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Forecasting
81 rdf:type schema:DefinedTerm
82 N2f2893bb666343caa518a4fe8b360497 schema:name doi
83 schema:value 10.1186/s12916-018-1108-5
84 rdf:type schema:PropertyValue
85 N493349151ff540548044d9859cde9107 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Dengue
87 rdf:type schema:DefinedTerm
88 N6ee36623d3b1451a94f010a6353caca3 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N786f016fb2f846368ba8bb18d1986fb5 schema:name nlm_unique_id
91 schema:value 101190723
92 rdf:type schema:PropertyValue
93 N84452870955c49998bab76deee3f3d8c schema:name pubmed_id
94 schema:value 30078378
95 rdf:type schema:PropertyValue
96 N8c7510b075934afba6b2e01ac7ba3390 rdf:first sg:person.014706015162.48
97 rdf:rest Nfb66fe2fe20c42d3b17afa7f9c2c24af
98 N98f1a5f58303449eafc2beb04a46c296 schema:name dimensions_id
99 schema:value pub.1105932551
100 rdf:type schema:PropertyValue
101 Na7dc535528c84f3d8278bcfed8d6b6a9 rdf:first sg:person.0641347167.22
102 rdf:rest N8c7510b075934afba6b2e01ac7ba3390
103 Nb79a89eaf33f428aacf828be252b8d91 rdf:first sg:person.0711345774.42
104 rdf:rest Nc92c6bdba78441dcada218e19ff624ca
105 Nc92c6bdba78441dcada218e19ff624ca rdf:first sg:person.01034341733.34
106 rdf:rest rdf:nil
107 Nce1af6ffaa464c62996b2db0d8bffe5b rdf:first sg:person.01056722311.59
108 rdf:rest Nb79a89eaf33f428aacf828be252b8d91
109 Nd5bbfb7a2d1f4803b3f62bf2ee48b80f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Singapore
111 rdf:type schema:DefinedTerm
112 Ne45b7fee3c394f7884f9fba2a3a1305f schema:volumeNumber 16
113 rdf:type schema:PublicationVolume
114 Nf13feccbec01454583db2a0ce41e6f08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Humans
116 rdf:type schema:DefinedTerm
117 Nf4131390817a46d1a34e6f22f0f9d3f8 schema:name Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, 117549, Singapore, Singapore
118 rdf:type schema:Organization
119 Nf6a1ae99ab3a42f68c81e620d0b79d6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Incidence
121 rdf:type schema:DefinedTerm
122 Nfb66fe2fe20c42d3b17afa7f9c2c24af rdf:first sg:person.013050723201.56
123 rdf:rest Nce1af6ffaa464c62996b2db0d8bffe5b
124 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
125 schema:name Mathematical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
128 schema:name Statistics
129 rdf:type schema:DefinedTerm
130 sg:journal.1032885 schema:issn 1741-7015
131 schema:name BMC Medicine
132 rdf:type schema:Periodical
133 sg:person.01034341733.34 schema:affiliation Nf4131390817a46d1a34e6f22f0f9d3f8
134 schema:familyName Cook
135 schema:givenName Alex R.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034341733.34
137 rdf:type schema:Person
138 sg:person.01056722311.59 schema:affiliation https://www.grid.ac/institutes/grid.452367.1
139 schema:familyName Yap
140 schema:givenName Grace
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056722311.59
142 rdf:type schema:Person
143 sg:person.013050723201.56 schema:affiliation https://www.grid.ac/institutes/grid.452367.1
144 schema:familyName Rajarethinam
145 schema:givenName Jayanthi
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013050723201.56
147 rdf:type schema:Person
148 sg:person.014706015162.48 schema:affiliation https://www.grid.ac/institutes/grid.452367.1
149 schema:familyName Ong
150 schema:givenName Janet Hui Yi
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014706015162.48
152 rdf:type schema:Person
153 sg:person.0641347167.22 schema:affiliation N23d6b3c74bb24dda9981625f1e18af39
154 schema:familyName Chen
155 schema:givenName Yirong
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641347167.22
157 rdf:type schema:Person
158 sg:person.0711345774.42 schema:affiliation https://www.grid.ac/institutes/grid.452367.1
159 schema:familyName Ng
160 schema:givenName Lee Ching
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711345774.42
162 rdf:type schema:Person
163 sg:pub.10.1038/nature12060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004869272
164 https://doi.org/10.1038/nature12060
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/srep33707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035218736
167 https://doi.org/10.1038/srep33707
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/s12879-016-1606-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031427993
170 https://doi.org/10.1186/s12879-016-1606-z
171 rdf:type schema:CreativeWork
172 sg:pub.10.2149/tmh.2011-s05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007039771
173 https://doi.org/10.2149/tmh.2011-s05
174 rdf:type schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1107160432 schema:CreativeWork
176 https://doi.org/10.1016/0005-2795(75)90109-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042105629
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.actatropica.2018.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101513995
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.actatropica.2018.03.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101841009
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jbi.2018.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101224841
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jclinepi.2017.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092998771
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.meegid.2011.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003685548
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.patrec.2005.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013701558
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.scitotenv.2017.11.314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099659527
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.sste.2014.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043593672
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0031-3203(96)00142-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044522995
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s2542-5196(17)30064-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090378377
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1073/pnas.1504964112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049388052
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1073/pnas.1714457115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101131070
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/aje/kwf005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013660302
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/sciadv.1501215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062439990
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1155/2012/758674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004491724
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1289/ehp.1509981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064741499
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1371/journal.pntd.0001426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008117126
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1371/journal.pntd.0001760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042596488
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1371/journal.pntd.0001908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023349682
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1371/journal.pntd.0004633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024014592
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1371/journal.pntd.0005696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090331447
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1371/journal.pntd.0005729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090746706
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1371/journal.pntd.0005973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092233778
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pntd.0006318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101678889
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1371/journal.pone.0136286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008885857
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1371/journal.pone.0152688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001027784
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1371/journal.pone.0166806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024156901
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1371/journal.pone.0195065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101887765
233 rdf:type schema:CreativeWork
234 https://doi.org/10.3201/10.3201/eid1206.051210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021943780
235 rdf:type schema:CreativeWork
236 https://doi.org/10.3389/fimmu.2017.00863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090995060
237 rdf:type schema:CreativeWork
238 https://doi.org/10.4269/ajtmh.14-0671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001617435
239 rdf:type schema:CreativeWork
240 https://doi.org/10.4269/ajtmh.2005.72.201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077014988
241 rdf:type schema:CreativeWork
242 https://www.grid.ac/institutes/grid.452367.1 schema:alternateName National Environment Agency
243 schema:name Environmental Health Institute, 11 Biopolis Way, 138667, Singapore, Singapore
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...