Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Simone Mocellin, Saveria Tropea, Clara Benna, Carlo Riccardo Rossi

ABSTRACT

BACKGROUND: Dysfunction of the circadian clock and single polymorphisms of some circadian genes have been linked to cancer susceptibility, although data are scarce and findings inconsistent. We aimed to investigate the association between circadian pathway genetic variation and risk of developing common cancers based on the findings of genome-wide association studies (GWASs). METHODS: Single nucleotide polymorphisms (SNPs) of 17 circadian genes reported by three GWAS meta-analyses dedicated to breast (Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) Consortium; cases, n = 15,748; controls, n = 18,084), prostate (Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE) Consortium; cases, n = 14,160; controls, n = 12,724) and lung carcinoma (Transdisciplinary Research In Cancer of the Lung (TRICL) Consortium; cases, n = 12,160; controls, n = 16,838) in patients of European ancestry were utilized to perform pathway analysis by means of the adaptive rank truncated product (ARTP) method. Data were also available for the following subgroups: estrogen receptor negative breast cancer, aggressive prostate cancer, squamous lung carcinoma and lung adenocarcinoma. RESULTS: We found a highly significant statistical association between circadian pathway genetic variation and the risk of breast (pathway P value = 1.9 × 10-6; top gene RORA, gene P value = 0.0003), prostate (pathway P value = 4.1 × 10-6; top gene ARNTL, gene P value = 0.0002) and lung cancer (pathway P value = 6.9 × 10-7; top gene RORA, gene P value = 2.0 × 10-6), as well as all their subgroups. Out of 17 genes investigated, 15 were found to be significantly associated with the risk of cancer: four genes were shared by all three malignancies (ARNTL, CLOCK, RORA and RORB), two by breast and lung cancer (CRY1 and CRY2) and three by prostate and lung cancer (NPAS2, NR1D1 and PER3), whereas four genes were specific for lung cancer (ARNTL2, CSNK1E, NR1D2 and PER2) and two for breast cancer (PER1, RORC). CONCLUSIONS: Our findings, based on the largest series ever utilized for ARTP-based gene and pathway analysis, support the hypothesis that circadian pathway genetic variation is involved in cancer predisposition. More... »

PAGES

20

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12916-018-1010-1

DOI

http://dx.doi.org/10.1186/s12916-018-1010-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100905732

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29455641


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Circadian Clocks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto Oncologico Veneto", 
          "id": "https://www.grid.ac/institutes/grid.419546.b", 
          "name": [
            "Department of Surgery Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128, Padova, Italy", 
            "Istituto Oncologico Veneto, IOV-IRCCS, Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mocellin", 
        "givenName": "Simone", 
        "id": "sg:person.01370531503.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370531503.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Oncologico Veneto", 
          "id": "https://www.grid.ac/institutes/grid.419546.b", 
          "name": [
            "Istituto Oncologico Veneto, IOV-IRCCS, Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tropea", 
        "givenName": "Saveria", 
        "id": "sg:person.0657463556.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657463556.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Padua", 
          "id": "https://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Department of Surgery Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128, Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benna", 
        "givenName": "Clara", 
        "id": "sg:person.01125564646.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125564646.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Oncologico Veneto", 
          "id": "https://www.grid.ac/institutes/grid.419546.b", 
          "name": [
            "Department of Surgery Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128, Padova, Italy", 
            "Istituto Oncologico Veneto, IOV-IRCCS, Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rossi", 
        "givenName": "Carlo Riccardo", 
        "id": "sg:person.013321165112.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013321165112.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/gepi.20410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000660055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000660055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003078665", 
          "https://doi.org/10.1038/nrc2747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003078665", 
          "https://doi.org/10.1038/nrc2747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2014.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003292015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbagen.2016.11.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005943844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006536603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006536603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-62627-1.00023-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010720412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/07853890.2014.914808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010943567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg.2016.150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013004417", 
          "https://doi.org/10.1038/nrg.2016.150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014894112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0091965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016427621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019321742", 
          "https://doi.org/10.1038/nrg2884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019321742", 
          "https://doi.org/10.1038/nrg2884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2869.2008.00732.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019778451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2869.2008.00732.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019778451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.27653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022606261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.330.7499.1076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023200006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023968606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024678761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.25507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027655378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027844356", 
          "https://doi.org/10.1038/ng.3094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029459184", 
          "https://doi.org/10.1038/nrg3575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/dds334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030781303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2012.518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033270610", 
          "https://doi.org/10.1038/onc.2012.518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.smrv.2012.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037057702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-05-0631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038923975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040129669", 
          "https://doi.org/10.1038/nrc1072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040129669", 
          "https://doi.org/10.1038/nrc1072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280206077743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040133505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280206077743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040133505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041614038", 
          "https://doi.org/10.1038/ng853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041614038", 
          "https://doi.org/10.1038/ng853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcb.2013.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050027861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10552-005-9010-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050335660", 
          "https://doi.org/10.1007/s10552-005-9010-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10552-005-9010-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050335660", 
          "https://doi.org/10.1007/s10552-005-9010-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2011.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051554988", 
          "https://doi.org/10.1038/ejhg.2011.39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2012.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052181924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2016.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053351801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-15-2980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063216043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5665/sleep.4978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073066289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.15074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083544897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms18040873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084957290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2016.69.4935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085080522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2017.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090371979"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Dysfunction of the circadian clock and single polymorphisms of some circadian genes have been linked to cancer susceptibility, although data are scarce and findings inconsistent. We aimed to investigate the association between circadian pathway genetic variation and risk of developing common cancers based on the findings of genome-wide association studies (GWASs).\nMETHODS: Single nucleotide polymorphisms (SNPs) of 17 circadian genes reported by three GWAS meta-analyses dedicated to breast (Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) Consortium; cases, n\u2009=\u200915,748; controls, n\u2009=\u200918,084), prostate (Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE) Consortium; cases, n\u2009=\u200914,160; controls, n\u2009=\u200912,724) and lung carcinoma (Transdisciplinary Research In Cancer of the Lung (TRICL) Consortium; cases, n\u2009=\u200912,160; controls, n\u2009=\u200916,838) in patients of European ancestry were utilized to perform pathway analysis by means of the adaptive rank truncated product (ARTP) method. Data were also available for the following subgroups: estrogen receptor negative breast cancer, aggressive prostate cancer, squamous lung carcinoma and lung adenocarcinoma.\nRESULTS: We found a highly significant statistical association between circadian pathway genetic variation and the risk of breast (pathway P value\u2009=\u20091.9\u2009\u00d7\u200910-6; top gene RORA, gene P value\u2009=\u20090.0003), prostate (pathway P value\u2009=\u20094.1\u2009\u00d7\u200910-6; top gene ARNTL, gene P value\u2009=\u20090.0002) and lung cancer (pathway P value\u2009=\u20096.9\u2009\u00d7\u200910-7; top gene RORA, gene P value\u2009=\u20092.0\u2009\u00d7\u200910-6), as well as all their subgroups. Out of 17 genes investigated, 15 were found to be significantly associated with the risk of cancer: four genes were shared by all three malignancies (ARNTL, CLOCK, RORA and RORB), two by breast and lung cancer (CRY1 and CRY2) and three by prostate and lung cancer (NPAS2, NR1D1 and PER3), whereas four genes were specific for lung cancer (ARNTL2, CSNK1E, NR1D2 and PER2) and two for breast cancer (PER1, RORC).\nCONCLUSIONS: Our findings, based on the largest series ever utilized for ARTP-based gene and pathway analysis, support the hypothesis that circadian pathway genetic variation is involved in cancer predisposition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12916-018-1010-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032885", 
        "issn": [
          "1741-7015"
        ], 
        "name": "BMC Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies", 
    "pagination": "20", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "199c5f34e5411e80c3232c85f901b66a2ad8ddcf9b30a154c5b2e2305b7e2736"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29455641"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101190723"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12916-018-1010-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100905732"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12916-018-1010-1", 
      "https://app.dimensions.ai/details/publication/pub.1100905732"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47991_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12916-018-1010-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12916-018-1010-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12916-018-1010-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12916-018-1010-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12916-018-1010-1'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      75 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12916-018-1010-1 schema:about N3f3e98c6504940a1a46ebe3043dbcadb
2 N456f30b5f2234d7abe3acbe6578f3733
3 N764cc89315f04078b5fa4aa3ea3f475c
4 Nabe4d1190a534cebaa5008b0f8c68583
5 Nae7759eeec0b438da85b762d5a7314b9
6 Nb7304f8ee637418fb7f36db9b61a927a
7 Ncb88d9dee16f426ca9df793a460cd0d6
8 Ndb5aff77f26d414c9c4adbabd7cb5928
9 anzsrc-for:11
10 anzsrc-for:1112
11 schema:author Nbe27571fefda4862adeb6c70af5714bf
12 schema:citation sg:pub.10.1007/s10552-005-9010-9
13 sg:pub.10.1038/ejhg.2011.39
14 sg:pub.10.1038/ng.3094
15 sg:pub.10.1038/ng853
16 sg:pub.10.1038/nrc1072
17 sg:pub.10.1038/nrc2747
18 sg:pub.10.1038/nrg.2016.150
19 sg:pub.10.1038/nrg2884
20 sg:pub.10.1038/nrg3575
21 sg:pub.10.1038/onc.2012.518
22 https://doi.org/10.1002/cncr.25507
23 https://doi.org/10.1002/gepi.20410
24 https://doi.org/10.1002/gepi.20422
25 https://doi.org/10.1002/ijc.27653
26 https://doi.org/10.1016/b978-0-444-62627-1.00023-8
27 https://doi.org/10.1016/j.ajhg.2017.06.005
28 https://doi.org/10.1016/j.bbagen.2016.11.030
29 https://doi.org/10.1016/j.cub.2016.04.011
30 https://doi.org/10.1016/j.smrv.2012.08.003
31 https://doi.org/10.1016/j.tcb.2013.07.002
32 https://doi.org/10.1016/j.tig.2012.03.004
33 https://doi.org/10.1016/j.tig.2014.07.004
34 https://doi.org/10.1073/pnas.0506580102
35 https://doi.org/10.1093/hmg/dds334
36 https://doi.org/10.1111/j.1365-2869.2008.00732.x
37 https://doi.org/10.1136/bmj.330.7499.1076
38 https://doi.org/10.1158/0008-5472.can-15-2980
39 https://doi.org/10.1158/1055-9965.epi-05-0631
40 https://doi.org/10.1177/0962280206077743
41 https://doi.org/10.1200/jco.2016.69.4935
42 https://doi.org/10.1371/journal.pgen.1003348
43 https://doi.org/10.1371/journal.pgen.1006122
44 https://doi.org/10.1371/journal.pone.0091965
45 https://doi.org/10.18632/oncotarget.15074
46 https://doi.org/10.3109/07853890.2014.914808
47 https://doi.org/10.3322/caac.21387
48 https://doi.org/10.3390/ijms18040873
49 https://doi.org/10.5665/sleep.4978
50 schema:datePublished 2018-12
51 schema:datePublishedReg 2018-12-01
52 schema:description BACKGROUND: Dysfunction of the circadian clock and single polymorphisms of some circadian genes have been linked to cancer susceptibility, although data are scarce and findings inconsistent. We aimed to investigate the association between circadian pathway genetic variation and risk of developing common cancers based on the findings of genome-wide association studies (GWASs). METHODS: Single nucleotide polymorphisms (SNPs) of 17 circadian genes reported by three GWAS meta-analyses dedicated to breast (Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) Consortium; cases, n = 15,748; controls, n = 18,084), prostate (Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE) Consortium; cases, n = 14,160; controls, n = 12,724) and lung carcinoma (Transdisciplinary Research In Cancer of the Lung (TRICL) Consortium; cases, n = 12,160; controls, n = 16,838) in patients of European ancestry were utilized to perform pathway analysis by means of the adaptive rank truncated product (ARTP) method. Data were also available for the following subgroups: estrogen receptor negative breast cancer, aggressive prostate cancer, squamous lung carcinoma and lung adenocarcinoma. RESULTS: We found a highly significant statistical association between circadian pathway genetic variation and the risk of breast (pathway P value = 1.9 × 10-6; top gene RORA, gene P value = 0.0003), prostate (pathway P value = 4.1 × 10-6; top gene ARNTL, gene P value = 0.0002) and lung cancer (pathway P value = 6.9 × 10-7; top gene RORA, gene P value = 2.0 × 10-6), as well as all their subgroups. Out of 17 genes investigated, 15 were found to be significantly associated with the risk of cancer: four genes were shared by all three malignancies (ARNTL, CLOCK, RORA and RORB), two by breast and lung cancer (CRY1 and CRY2) and three by prostate and lung cancer (NPAS2, NR1D1 and PER3), whereas four genes were specific for lung cancer (ARNTL2, CSNK1E, NR1D2 and PER2) and two for breast cancer (PER1, RORC). CONCLUSIONS: Our findings, based on the largest series ever utilized for ARTP-based gene and pathway analysis, support the hypothesis that circadian pathway genetic variation is involved in cancer predisposition.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N254cb90d65204f8d8da843884d57ce72
57 Nb71b07d2d8fc4d7c84e6e628d9f9ba11
58 sg:journal.1032885
59 schema:name Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies
60 schema:pagination 20
61 schema:productId N3a983d51515142bdb557312e3132de2a
62 N425539aeec464f65882d6ce3514524e5
63 N5eae9f655e0648a488ba720cd303093f
64 Nb835010c037e4453865e94ae9ed11ba6
65 Ne29fb449c4774483bd2f6c0fb339bf26
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100905732
67 https://doi.org/10.1186/s12916-018-1010-1
68 schema:sdDatePublished 2019-04-11T09:13
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N2bcfcd98e5ec4902a01809a17e90d6b0
71 schema:url https://link.springer.com/10.1186%2Fs12916-018-1010-1
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N254cb90d65204f8d8da843884d57ce72 schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N2bcfcd98e5ec4902a01809a17e90d6b0 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N3a983d51515142bdb557312e3132de2a schema:name dimensions_id
80 schema:value pub.1100905732
81 rdf:type schema:PropertyValue
82 N3ca27d7cc70448b38591eca601cdec1b rdf:first sg:person.01125564646.05
83 rdf:rest Nde92a9dbb29943799fa98e412f862762
84 N3f3e98c6504940a1a46ebe3043dbcadb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Risk
86 rdf:type schema:DefinedTerm
87 N425539aeec464f65882d6ce3514524e5 schema:name doi
88 schema:value 10.1186/s12916-018-1010-1
89 rdf:type schema:PropertyValue
90 N456f30b5f2234d7abe3acbe6578f3733 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Circadian Clocks
92 rdf:type schema:DefinedTerm
93 N5eae9f655e0648a488ba720cd303093f schema:name nlm_unique_id
94 schema:value 101190723
95 rdf:type schema:PropertyValue
96 N764cc89315f04078b5fa4aa3ea3f475c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Genetic Predisposition to Disease
98 rdf:type schema:DefinedTerm
99 Nabe4d1190a534cebaa5008b0f8c68583 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Polymorphism, Single Nucleotide
101 rdf:type schema:DefinedTerm
102 Nae7759eeec0b438da85b762d5a7314b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Neoplasms
104 rdf:type schema:DefinedTerm
105 Nb71b07d2d8fc4d7c84e6e628d9f9ba11 schema:volumeNumber 16
106 rdf:type schema:PublicationVolume
107 Nb7304f8ee637418fb7f36db9b61a927a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Humans
109 rdf:type schema:DefinedTerm
110 Nb835010c037e4453865e94ae9ed11ba6 schema:name pubmed_id
111 schema:value 29455641
112 rdf:type schema:PropertyValue
113 Nbe27571fefda4862adeb6c70af5714bf rdf:first sg:person.01370531503.96
114 rdf:rest Ne3cdbbdb979a49ea84649764a36409fc
115 Ncb88d9dee16f426ca9df793a460cd0d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Genome-Wide Association Study
117 rdf:type schema:DefinedTerm
118 Ndb5aff77f26d414c9c4adbabd7cb5928 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Genetic Variation
120 rdf:type schema:DefinedTerm
121 Nde92a9dbb29943799fa98e412f862762 rdf:first sg:person.013321165112.41
122 rdf:rest rdf:nil
123 Ne29fb449c4774483bd2f6c0fb339bf26 schema:name readcube_id
124 schema:value 199c5f34e5411e80c3232c85f901b66a2ad8ddcf9b30a154c5b2e2305b7e2736
125 rdf:type schema:PropertyValue
126 Ne3cdbbdb979a49ea84649764a36409fc rdf:first sg:person.0657463556.99
127 rdf:rest N3ca27d7cc70448b38591eca601cdec1b
128 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
129 schema:name Medical and Health Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
132 schema:name Oncology and Carcinogenesis
133 rdf:type schema:DefinedTerm
134 sg:journal.1032885 schema:issn 1741-7015
135 schema:name BMC Medicine
136 rdf:type schema:Periodical
137 sg:person.01125564646.05 schema:affiliation https://www.grid.ac/institutes/grid.5608.b
138 schema:familyName Benna
139 schema:givenName Clara
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125564646.05
141 rdf:type schema:Person
142 sg:person.013321165112.41 schema:affiliation https://www.grid.ac/institutes/grid.419546.b
143 schema:familyName Rossi
144 schema:givenName Carlo Riccardo
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013321165112.41
146 rdf:type schema:Person
147 sg:person.01370531503.96 schema:affiliation https://www.grid.ac/institutes/grid.419546.b
148 schema:familyName Mocellin
149 schema:givenName Simone
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370531503.96
151 rdf:type schema:Person
152 sg:person.0657463556.99 schema:affiliation https://www.grid.ac/institutes/grid.419546.b
153 schema:familyName Tropea
154 schema:givenName Saveria
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657463556.99
156 rdf:type schema:Person
157 sg:pub.10.1007/s10552-005-9010-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050335660
158 https://doi.org/10.1007/s10552-005-9010-9
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/ejhg.2011.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051554988
161 https://doi.org/10.1038/ejhg.2011.39
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/ng.3094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027844356
164 https://doi.org/10.1038/ng.3094
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/ng853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041614038
167 https://doi.org/10.1038/ng853
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nrc1072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040129669
170 https://doi.org/10.1038/nrc1072
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nrc2747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003078665
173 https://doi.org/10.1038/nrc2747
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nrg.2016.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013004417
176 https://doi.org/10.1038/nrg.2016.150
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nrg2884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019321742
179 https://doi.org/10.1038/nrg2884
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nrg3575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029459184
182 https://doi.org/10.1038/nrg3575
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/onc.2012.518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033270610
185 https://doi.org/10.1038/onc.2012.518
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1002/cncr.25507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027655378
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/gepi.20410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000660055
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1002/gepi.20422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006536603
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1002/ijc.27653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022606261
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/b978-0-444-62627-1.00023-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010720412
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.ajhg.2017.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090371979
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.bbagen.2016.11.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005943844
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.cub.2016.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053351801
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.smrv.2012.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037057702
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.tcb.2013.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050027861
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.tig.2012.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052181924
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.tig.2014.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003292015
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1073/pnas.0506580102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037705714
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/hmg/dds334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030781303
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/j.1365-2869.2008.00732.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019778451
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1136/bmj.330.7499.1076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023200006
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1158/0008-5472.can-15-2980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063216043
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1158/1055-9965.epi-05-0631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038923975
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1177/0962280206077743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040133505
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1200/jco.2016.69.4935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085080522
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1371/journal.pgen.1003348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023968606
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1371/journal.pgen.1006122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024678761
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1371/journal.pone.0091965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016427621
232 rdf:type schema:CreativeWork
233 https://doi.org/10.18632/oncotarget.15074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083544897
234 rdf:type schema:CreativeWork
235 https://doi.org/10.3109/07853890.2014.914808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010943567
236 rdf:type schema:CreativeWork
237 https://doi.org/10.3322/caac.21387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014894112
238 rdf:type schema:CreativeWork
239 https://doi.org/10.3390/ijms18040873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084957290
240 rdf:type schema:CreativeWork
241 https://doi.org/10.5665/sleep.4978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073066289
242 rdf:type schema:CreativeWork
243 https://www.grid.ac/institutes/grid.419546.b schema:alternateName Istituto Oncologico Veneto
244 schema:name Department of Surgery Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128, Padova, Italy
245 Istituto Oncologico Veneto, IOV-IRCCS, Padova, Italy
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.5608.b schema:alternateName University of Padua
248 schema:name Department of Surgery Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128, Padova, Italy
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...