Mirror, mirror on the wall: which microbiomes will help heal them all? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-05-04

AUTHORS

Renuka R. Nayak, Peter J. Turnbaugh

ABSTRACT

BACKGROUND: Clinicians have known for centuries that there is substantial variability between patients in their response to medications-some individuals exhibit a miraculous recovery while others fail to respond at all. Still others experience dangerous side effects. The hunt for the factors responsible for this variation has been aided by the ability to sequence the human genome, but this just provides part of the picture. Here, we discuss the emerging field of study focused on the human microbiome and how it may help to better predict drug response and improve the treatment of human disease. DISCUSSION: Various clinical disciplines characterize drug response using either continuous or categorical descriptors that are then correlated to environmental and genetic risk factors. However, these approaches typically ignore the microbiome, which can directly metabolize drugs into downstream metabolites with altered activity, clearance, and/or toxicity. Variations in the ability of each individual's microbiome to metabolize drugs may be an underappreciated source of differences in clinical response. Complementary studies in humans and animal models are necessary to elucidate the mechanisms responsible and to test the feasibility of identifying microbiome-based biomarkers of treatment outcomes. We propose that the predictive power of genetic testing could be improved by taking a more comprehensive view of human genetics that encompasses our human and microbial genomes. Furthermore, unlike the human genome, the microbiome is rapidly altered by diet, pharmaceuticals, and other interventions, providing the potential to improve patient care by re-shaping our associated microbial communities. More... »

PAGES

72

References to SciGraph publications

  • 2012-10-17. Clinical Pharmacogenetics Implementation Consortium Guidelines for Human Leukocyte Antigen‐B Genotype and Allopurinol Dosing in CLINICAL PHARMACOLOGY & THERAPEUTICS
  • 2003-10-23. Drug methylation in cancer therapy: lessons from the TPMT polymorphism in ONCOGENE
  • 2012-03-13. The human microbiome: at the interface of health and disease in NATURE REVIEWS GENETICS
  • 2013-08-13. Personalizing health care: feasibility and future implications in BMC MEDICINE
  • 2015-12-02. Disentangling the effects of type 2 diabetes and metformin on the human gut microbiota in NATURE
  • 2012-04-11. How glycan metabolism shapes the human gut microbiota in NATURE REVIEWS MICROBIOLOGY
  • 2010-03. A human gut microbial gene catalogue established by metagenomic sequencing in NATURE
  • 2001-02-15. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms in NATURE
  • 2012-09-19. Pharmacogenomics Knowledge for Personalized Medicine in CLINICAL PHARMACOLOGY & THERAPEUTICS
  • 2008-11-05. Personal genomes: The case of the missing heritability in NATURE
  • 2015-02-25. Microbiome Engineering in NATURE
  • 2016-03-14. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism in NATURE REVIEWS MICROBIOLOGY
  • 2012-08-25. The success of pharmacogenomics in moving genetic association studies from bench to bedside: study design and implementation of precision medicine in the post-GWAS era in HUMAN GENETICS
  • 2013-12-11. Diet rapidly and reproducibly alters the human gut microbiome in NATURE
  • 2014-02-28. Personalized medicine: risk prediction, targeted therapies and mobile health technology in BMC MEDICINE
  • 2011-02-09. Charting a course for genomic medicine from base pairs to bedside in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12916-016-0622-6

    DOI

    http://dx.doi.org/10.1186/s12916-016-0622-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007462907

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27146150


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Microbiome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbial Consortia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Precision Medicine", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Microbiology and Immunology, G.W. Hooper Foundation, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 USA", 
              "id": "http://www.grid.ac/institutes/grid.266102.1", 
              "name": [
                "Department of Microbiology and Immunology, G.W. Hooper Foundation, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nayak", 
            "givenName": "Renuka R.", 
            "id": "sg:person.0626521114.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626521114.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology and Immunology, G.W. Hooper Foundation, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 USA", 
              "id": "http://www.grid.ac/institutes/grid.266102.1", 
              "name": [
                "Department of Microbiology and Immunology, G.W. Hooper Foundation, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Turnbaugh", 
            "givenName": "Peter J.", 
            "id": "sg:person.01065252767.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065252767.89"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/sj.onc.1206944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047762125", 
              "https://doi.org/10.1038/sj.onc.1206944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045246944", 
              "https://doi.org/10.1038/nrmicro2746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013830289", 
              "https://doi.org/10.1038/nature12820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro.2016.17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046096323", 
              "https://doi.org/10.1038/nrmicro.2016.17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1741-7015-11-179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020503758", 
              "https://doi.org/10.1186/1741-7015-11-179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014535385", 
              "https://doi.org/10.1038/nature15766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/clpt.2012.96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042146639", 
              "https://doi.org/10.1038/clpt.2012.96"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1741-7015-12-37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051770865", 
              "https://doi.org/10.1186/1741-7015-12-37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037658930", 
              "https://doi.org/10.1038/nature09764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35057149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046153445", 
              "https://doi.org/10.1038/35057149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018201256", 
              "https://doi.org/10.1038/nrg3182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/456018a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050730348", 
              "https://doi.org/10.1038/456018a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/clpt.2012.209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029660138", 
              "https://doi.org/10.1038/clpt.2012.209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/518s10a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033973424", 
              "https://doi.org/10.1038/518s10a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-012-1221-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025303210", 
              "https://doi.org/10.1007/s00439-012-1221-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050498034", 
              "https://doi.org/10.1038/nature08821"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-05-04", 
        "datePublishedReg": "2016-05-04", 
        "description": "BACKGROUND: Clinicians have known for centuries that there is substantial variability between patients in their response to medications-some individuals exhibit a miraculous recovery while others fail to respond at all. Still others experience dangerous side effects. The hunt for the factors responsible for this variation has been aided by the ability to sequence the human genome, but this just provides part of the picture. Here, we discuss the emerging field of study focused on the human microbiome and how it may help to better predict drug response and improve the treatment of human disease.\nDISCUSSION: Various clinical disciplines characterize drug response using either continuous or categorical descriptors that are then correlated to environmental and genetic risk factors. However, these approaches typically ignore the microbiome, which can directly metabolize drugs into downstream metabolites with altered activity, clearance, and/or toxicity. Variations in the ability of each individual's microbiome to metabolize drugs may be an underappreciated source of differences in clinical response. Complementary studies in humans and animal models are necessary to elucidate the mechanisms responsible and to test the feasibility of identifying microbiome-based biomarkers of treatment outcomes. We propose that the predictive power of genetic testing could be improved by taking a more comprehensive view of human genetics that encompasses our human and microbial genomes. Furthermore, unlike the human genome, the microbiome is rapidly altered by diet, pharmaceuticals, and other interventions, providing the potential to improve patient care by re-shaping our associated microbial communities.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12916-016-0622-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2682320", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4898633", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7745722", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4241681", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1032885", 
            "issn": [
              "1741-7015"
            ], 
            "name": "BMC Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "microbiome-based biomarkers", 
          "drug response", 
          "genetic risk factors", 
          "dangerous side effects", 
          "clinical response", 
          "risk factors", 
          "treatment outcomes", 
          "side effects", 
          "animal models", 
          "patient care", 
          "genetic testing", 
          "altered activity", 
          "clinical disciplines", 
          "downstream metabolites", 
          "drugs", 
          "individual microbiomes", 
          "human microbiome", 
          "microbiome", 
          "human diseases", 
          "substantial variability", 
          "response", 
          "medications", 
          "underappreciated source", 
          "patients", 
          "clinicians", 
          "disease", 
          "biomarkers", 
          "clearance", 
          "care", 
          "outcomes", 
          "diet", 
          "intervention", 
          "factors", 
          "treatment", 
          "miraculous recovery", 
          "study", 
          "toxicity", 
          "complementary studies", 
          "metabolites", 
          "human genetics", 
          "predictive power", 
          "humans", 
          "individuals", 
          "ability", 
          "differences", 
          "testing", 
          "activity", 
          "recovery", 
          "human genome", 
          "effect", 
          "mechanism", 
          "genetics", 
          "wall", 
          "feasibility", 
          "comprehensive view", 
          "pharmaceuticals", 
          "potential", 
          "variability", 
          "Hunt", 
          "genome", 
          "picture", 
          "part", 
          "variation", 
          "categorical descriptors", 
          "community", 
          "model", 
          "approach", 
          "view", 
          "microbial genomes", 
          "microbial communities", 
          "source", 
          "field of study", 
          "disciplines", 
          "field", 
          "mirror", 
          "descriptors", 
          "century", 
          "power"
        ], 
        "name": "Mirror, mirror on the wall: which microbiomes will help heal them all?", 
        "pagination": "72", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007462907"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12916-016-0622-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27146150"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12916-016-0622-6", 
          "https://app.dimensions.ai/details/publication/pub.1007462907"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_718.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12916-016-0622-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12916-016-0622-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12916-016-0622-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12916-016-0622-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12916-016-0622-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    242 TRIPLES      22 PREDICATES      126 URIs      102 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12916-016-0622-6 schema:about N059e1d38df2b460dac0eecdc1da78168
    2 N1af362375d39453f946b363f3e3c1fc6
    3 N31e3a7677c5f4faf9d3161dc2520af94
    4 N5d639f64ae7b4614b3d6b0137c317176
    5 N67be676fda674f6dacf30b1092fbce46
    6 Nfb16275e8c63408f94bb854d0fa27612
    7 anzsrc-for:11
    8 anzsrc-for:1103
    9 schema:author Nee9f529abe5e437c848a9f16a316c71b
    10 schema:citation sg:pub.10.1007/s00439-012-1221-z
    11 sg:pub.10.1038/35057149
    12 sg:pub.10.1038/456018a
    13 sg:pub.10.1038/518s10a
    14 sg:pub.10.1038/clpt.2012.209
    15 sg:pub.10.1038/clpt.2012.96
    16 sg:pub.10.1038/nature08821
    17 sg:pub.10.1038/nature09764
    18 sg:pub.10.1038/nature12820
    19 sg:pub.10.1038/nature15766
    20 sg:pub.10.1038/nrg3182
    21 sg:pub.10.1038/nrmicro.2016.17
    22 sg:pub.10.1038/nrmicro2746
    23 sg:pub.10.1038/sj.onc.1206944
    24 sg:pub.10.1186/1741-7015-11-179
    25 sg:pub.10.1186/1741-7015-12-37
    26 schema:datePublished 2016-05-04
    27 schema:datePublishedReg 2016-05-04
    28 schema:description BACKGROUND: Clinicians have known for centuries that there is substantial variability between patients in their response to medications-some individuals exhibit a miraculous recovery while others fail to respond at all. Still others experience dangerous side effects. The hunt for the factors responsible for this variation has been aided by the ability to sequence the human genome, but this just provides part of the picture. Here, we discuss the emerging field of study focused on the human microbiome and how it may help to better predict drug response and improve the treatment of human disease. DISCUSSION: Various clinical disciplines characterize drug response using either continuous or categorical descriptors that are then correlated to environmental and genetic risk factors. However, these approaches typically ignore the microbiome, which can directly metabolize drugs into downstream metabolites with altered activity, clearance, and/or toxicity. Variations in the ability of each individual's microbiome to metabolize drugs may be an underappreciated source of differences in clinical response. Complementary studies in humans and animal models are necessary to elucidate the mechanisms responsible and to test the feasibility of identifying microbiome-based biomarkers of treatment outcomes. We propose that the predictive power of genetic testing could be improved by taking a more comprehensive view of human genetics that encompasses our human and microbial genomes. Furthermore, unlike the human genome, the microbiome is rapidly altered by diet, pharmaceuticals, and other interventions, providing the potential to improve patient care by re-shaping our associated microbial communities.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf Nd676c7efa1954435ac03f702e489b428
    33 Ndea83f5f78fc4c95b2d4d4d7da65a379
    34 sg:journal.1032885
    35 schema:keywords Hunt
    36 ability
    37 activity
    38 altered activity
    39 animal models
    40 approach
    41 biomarkers
    42 care
    43 categorical descriptors
    44 century
    45 clearance
    46 clinical disciplines
    47 clinical response
    48 clinicians
    49 community
    50 complementary studies
    51 comprehensive view
    52 dangerous side effects
    53 descriptors
    54 diet
    55 differences
    56 disciplines
    57 disease
    58 downstream metabolites
    59 drug response
    60 drugs
    61 effect
    62 factors
    63 feasibility
    64 field
    65 field of study
    66 genetic risk factors
    67 genetic testing
    68 genetics
    69 genome
    70 human diseases
    71 human genetics
    72 human genome
    73 human microbiome
    74 humans
    75 individual microbiomes
    76 individuals
    77 intervention
    78 mechanism
    79 medications
    80 metabolites
    81 microbial communities
    82 microbial genomes
    83 microbiome
    84 microbiome-based biomarkers
    85 miraculous recovery
    86 mirror
    87 model
    88 outcomes
    89 part
    90 patient care
    91 patients
    92 pharmaceuticals
    93 picture
    94 potential
    95 power
    96 predictive power
    97 recovery
    98 response
    99 risk factors
    100 side effects
    101 source
    102 study
    103 substantial variability
    104 testing
    105 toxicity
    106 treatment
    107 treatment outcomes
    108 underappreciated source
    109 variability
    110 variation
    111 view
    112 wall
    113 schema:name Mirror, mirror on the wall: which microbiomes will help heal them all?
    114 schema:pagination 72
    115 schema:productId N3e2f9f8e1a224ca3a0bd62d0e7b7b255
    116 N4e3d09c7ed0e4ee68df58b0f7d51db00
    117 Na35083569f4843ecbfb18ae1cff582e7
    118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007462907
    119 https://doi.org/10.1186/s12916-016-0622-6
    120 schema:sdDatePublished 2022-01-01T18:43
    121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    122 schema:sdPublisher Nfc08495cf1db401c9e7f296f1cf6d026
    123 schema:url https://doi.org/10.1186/s12916-016-0622-6
    124 sgo:license sg:explorer/license/
    125 sgo:sdDataset articles
    126 rdf:type schema:ScholarlyArticle
    127 N059e1d38df2b460dac0eecdc1da78168 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Gastrointestinal Microbiome
    129 rdf:type schema:DefinedTerm
    130 N1af362375d39453f946b363f3e3c1fc6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Microbial Consortia
    132 rdf:type schema:DefinedTerm
    133 N31e3a7677c5f4faf9d3161dc2520af94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Precision Medicine
    135 rdf:type schema:DefinedTerm
    136 N3e2f9f8e1a224ca3a0bd62d0e7b7b255 schema:name doi
    137 schema:value 10.1186/s12916-016-0622-6
    138 rdf:type schema:PropertyValue
    139 N4e3d09c7ed0e4ee68df58b0f7d51db00 schema:name pubmed_id
    140 schema:value 27146150
    141 rdf:type schema:PropertyValue
    142 N55fc247a2e6d4c1c88ab9b88c40f329a rdf:first sg:person.01065252767.89
    143 rdf:rest rdf:nil
    144 N5d639f64ae7b4614b3d6b0137c317176 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Genome, Human
    146 rdf:type schema:DefinedTerm
    147 N67be676fda674f6dacf30b1092fbce46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Metagenomics
    149 rdf:type schema:DefinedTerm
    150 Na35083569f4843ecbfb18ae1cff582e7 schema:name dimensions_id
    151 schema:value pub.1007462907
    152 rdf:type schema:PropertyValue
    153 Nd676c7efa1954435ac03f702e489b428 schema:issueNumber 1
    154 rdf:type schema:PublicationIssue
    155 Ndea83f5f78fc4c95b2d4d4d7da65a379 schema:volumeNumber 14
    156 rdf:type schema:PublicationVolume
    157 Nee9f529abe5e437c848a9f16a316c71b rdf:first sg:person.0626521114.51
    158 rdf:rest N55fc247a2e6d4c1c88ab9b88c40f329a
    159 Nfb16275e8c63408f94bb854d0fa27612 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Humans
    161 rdf:type schema:DefinedTerm
    162 Nfc08495cf1db401c9e7f296f1cf6d026 schema:name Springer Nature - SN SciGraph project
    163 rdf:type schema:Organization
    164 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Medical and Health Sciences
    166 rdf:type schema:DefinedTerm
    167 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Clinical Sciences
    169 rdf:type schema:DefinedTerm
    170 sg:grant.2682320 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-016-0622-6
    171 rdf:type schema:MonetaryGrant
    172 sg:grant.4241681 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-016-0622-6
    173 rdf:type schema:MonetaryGrant
    174 sg:grant.4898633 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-016-0622-6
    175 rdf:type schema:MonetaryGrant
    176 sg:grant.7745722 http://pending.schema.org/fundedItem sg:pub.10.1186/s12916-016-0622-6
    177 rdf:type schema:MonetaryGrant
    178 sg:journal.1032885 schema:issn 1741-7015
    179 schema:name BMC Medicine
    180 schema:publisher Springer Nature
    181 rdf:type schema:Periodical
    182 sg:person.01065252767.89 schema:affiliation grid-institutes:grid.266102.1
    183 schema:familyName Turnbaugh
    184 schema:givenName Peter J.
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065252767.89
    186 rdf:type schema:Person
    187 sg:person.0626521114.51 schema:affiliation grid-institutes:grid.266102.1
    188 schema:familyName Nayak
    189 schema:givenName Renuka R.
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626521114.51
    191 rdf:type schema:Person
    192 sg:pub.10.1007/s00439-012-1221-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025303210
    193 https://doi.org/10.1007/s00439-012-1221-z
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/35057149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046153445
    196 https://doi.org/10.1038/35057149
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/456018a schema:sameAs https://app.dimensions.ai/details/publication/pub.1050730348
    199 https://doi.org/10.1038/456018a
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/518s10a schema:sameAs https://app.dimensions.ai/details/publication/pub.1033973424
    202 https://doi.org/10.1038/518s10a
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/clpt.2012.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029660138
    205 https://doi.org/10.1038/clpt.2012.209
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/clpt.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042146639
    208 https://doi.org/10.1038/clpt.2012.96
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nature08821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050498034
    211 https://doi.org/10.1038/nature08821
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nature09764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037658930
    214 https://doi.org/10.1038/nature09764
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nature12820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013830289
    217 https://doi.org/10.1038/nature12820
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nature15766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014535385
    220 https://doi.org/10.1038/nature15766
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nrg3182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018201256
    223 https://doi.org/10.1038/nrg3182
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nrmicro.2016.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046096323
    226 https://doi.org/10.1038/nrmicro.2016.17
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nrmicro2746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045246944
    229 https://doi.org/10.1038/nrmicro2746
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/sj.onc.1206944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047762125
    232 https://doi.org/10.1038/sj.onc.1206944
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1186/1741-7015-11-179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020503758
    235 https://doi.org/10.1186/1741-7015-11-179
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1186/1741-7015-12-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051770865
    238 https://doi.org/10.1186/1741-7015-12-37
    239 rdf:type schema:CreativeWork
    240 grid-institutes:grid.266102.1 schema:alternateName Department of Microbiology and Immunology, G.W. Hooper Foundation, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 USA
    241 schema:name Department of Microbiology and Immunology, G.W. Hooper Foundation, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 USA
    242 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...