How driving endonuclease genes can be used to combat pests and disease vectors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-11

AUTHORS

H. Charles J. Godfray, Ace North, Austin Burt

ABSTRACT

Driving endonuclease genes (DEGs) spread through a population by a non-Mendelian mechanism. In a heterozygote, the protein encoded by a DEG causes a double-strand break in the homologous chromosome opposite to where its gene is inserted and when the break is repaired using the homologue as a template the DEG heterozygote is converted to a homozygote. Some DEGs occur naturally while several classes of endonucleases can be engineered to spread in this way, with CRISPR-Cas9 based systems being particularly flexible. There is great interest in using driving endonuclease genes to impose a genetic load on insects that vector diseases or are economic pests to reduce their population density, or to introduce a beneficial gene such as one that might interrupt disease transmission. This paper reviews both the population genetics and population dynamics of DEGs. It summarises the theory that guides the design of DEG constructs intended to perform different functions. It also reviews the studies that have explored the likelihood of resistance to DEG phenotypes arising, and how this risk may be reduced. The review is intended for a general audience and mathematical details are kept to a minimum. More... »

PAGES

81

References to SciGraph publications

  • 2011-04-20. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito in NATURE
  • 2016-02-05. Cas9-triggered chain ablation of cas9 as a gene drive brake in NATURE BIOTECHNOLOGY
  • 2014-06-10. A synthetic sex ratio distortion system for the control of the human malaria mosquito in NATURE COMMUNICATIONS
  • 2016-06-08. Gene editing can drive science to openness in NATURE
  • 2008-01-01. The endless tale of non-homologous end-joining in CELL RESEARCH
  • 2016-08-03. A CRISPR-Cas9 sex-ratio distortion system for genetic control in SCIENTIFIC REPORTS
  • 2017-06-19. Overcoming evolved resistance to population-suppressing homing-based gene drives in SCIENTIFIC REPORTS
  • 2016-02-05. Can CRISPR-Cas9 gene drives curb malaria? in NATURE BIOTECHNOLOGY
  • 2016-02-15. Cheating evolution: engineering gene drives to manipulate the fate of wild populations in NATURE REVIEWS GENETICS
  • 1990. Population Dynamics in Variable Environments in NONE
  • 2006-05-09. Gene drive systems for insect disease vectors in NATURE REVIEWS GENETICS
  • 2016-01-01. A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito vector Anopheles gambiae in NATURE BIOTECHNOLOGY
  • 1979-12. The dynamics of hybrid zones in HEREDITY
  • 1968-04. Possible Use of Translocations to fix Desirable Genes in Insect Pest Populations in NATURE
  • 2008. Modifying Insect Population Age Structure to Control Vector-Borne Disease in TRANSGENESIS AND THE MANAGEMENT OF VECTOR-BORNE DISEASE
  • 2011-07-28. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics in PARASITES & VECTORS
  • 2004-06-04. Statics and dynamics of malaria infection in Anopheles mosquitoes in MALARIA JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12915-017-0420-4

    DOI

    http://dx.doi.org/10.1186/s12915-017-0420-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091568342

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28893259


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Cas Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Communicable Disease Control", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Vectors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Endonucleases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Targeting", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pest Control", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Godfray", 
            "givenName": "H. Charles J.", 
            "id": "sg:person.011640134634.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011640134634.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "North", 
            "givenName": "Ace", 
            "id": "sg:person.0702016165.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702016165.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burt", 
            "givenName": "Austin", 
            "id": "sg:person.01142167260.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167260.64"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1756-3305-4-153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041352938", 
              "https://doi.org/10.1186/1756-3305-4-153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep31139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051593162", 
              "https://doi.org/10.1038/srep31139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-02744-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086000686", 
              "https://doi.org/10.1038/s41598-017-02744-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/534153a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024437957", 
              "https://doi.org/10.1038/534153a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-51652-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049490040", 
              "https://doi.org/10.1007/978-3-642-51652-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/218368a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008225604", 
              "https://doi.org/10.1038/218368a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-78225-6_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033462010", 
              "https://doi.org/10.1007/978-0-387-78225-6_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-3-13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022899740", 
              "https://doi.org/10.1186/1475-2875-3-13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038664304", 
              "https://doi.org/10.1038/nbt.3444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031506350", 
              "https://doi.org/10.1038/ncomms4977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1979.87", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045624000", 
              "https://doi.org/10.1038/hdy.1979.87"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020125616", 
              "https://doi.org/10.1038/nature09937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cr.2008.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015186979", 
              "https://doi.org/10.1038/cr.2008.3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021882586", 
              "https://doi.org/10.1038/nbt.3473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005461495", 
              "https://doi.org/10.1038/nrg1870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2015.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013347649", 
              "https://doi.org/10.1038/nrg.2015.34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012287729", 
              "https://doi.org/10.1038/nbt.3439"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09-11", 
        "datePublishedReg": "2017-09-11", 
        "description": "Driving endonuclease genes (DEGs) spread through a population by a non-Mendelian mechanism. In a heterozygote, the protein encoded by a DEG causes a double-strand break in the homologous chromosome opposite to where its gene is inserted and when the break is repaired using the homologue as a template the DEG heterozygote is converted to a homozygote. Some DEGs occur naturally while several classes of endonucleases can be engineered to spread in this way, with CRISPR-Cas9 based systems being particularly flexible. There is great interest in using driving endonuclease genes to impose a genetic load on insects that vector diseases or are economic pests to reduce their population density, or to introduce a beneficial gene such as one that might interrupt disease transmission. This paper reviews both the population genetics and population dynamics of DEGs. It summarises the theory that guides the design of DEG constructs intended to perform different functions. It also reviews the studies that have explored the likelihood of resistance to DEG phenotypes arising, and how this risk may be reduced. The review is intended for a general audience and mathematical details are kept to a minimum.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12915-017-0420-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1032884", 
            "issn": [
              "1478-5854", 
              "1741-7007"
            ], 
            "name": "BMC Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "endonuclease gene", 
          "non-Mendelian mechanisms", 
          "class of endonucleases", 
          "double-strand breaks", 
          "deg phenotypes", 
          "homologous chromosomes", 
          "beneficial genes", 
          "population genetics", 
          "genetic load", 
          "economic pest", 
          "population dynamics", 
          "disease vectors", 
          "genes", 
          "vector diseases", 
          "pests", 
          "different functions", 
          "population density", 
          "deg", 
          "heterozygotes", 
          "DEGs", 
          "insects", 
          "chromosomes", 
          "CRISPR", 
          "disease transmission", 
          "homologues", 
          "likelihood of resistance", 
          "endonuclease", 
          "genetics", 
          "protein", 
          "phenotype", 
          "breaks", 
          "homozygotes", 
          "great interest", 
          "mechanism", 
          "population", 
          "constructs", 
          "vector", 
          "function", 
          "resistance", 
          "dynamics", 
          "template", 
          "disease", 
          "review", 
          "class", 
          "study", 
          "transmission", 
          "density", 
          "interest", 
          "detail", 
          "system", 
          "likelihood", 
          "one", 
          "way", 
          "minimum", 
          "risk", 
          "mathematical details", 
          "design", 
          "general audience", 
          "load", 
          "theory", 
          "paper", 
          "audience", 
          "DEG heterozygote", 
          "DEG constructs"
        ], 
        "name": "How driving endonuclease genes can be used to combat pests and disease vectors", 
        "pagination": "81", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091568342"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12915-017-0420-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28893259"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12915-017-0420-4", 
          "https://app.dimensions.ai/details/publication/pub.1091568342"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_743.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12915-017-0420-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12915-017-0420-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12915-017-0420-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12915-017-0420-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12915-017-0420-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    239 TRIPLES      22 PREDICATES      114 URIs      89 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12915-017-0420-4 schema:about N1493d564742d449393b88d4600f879cc
    2 N1d43cea0ca954b7683a4f62263abb23f
    3 N302dea198c8649c6aa29f980e97d841f
    4 N88a26eb353c44baab758d8c0e45b42b6
    5 N9ad30078662d4853a46896036376ca0f
    6 Nef1172ca6e4f4211af2bbc6704902e18
    7 Nf292057b3e9d4645a2d5aa3d084991d3
    8 anzsrc-for:06
    9 anzsrc-for:0604
    10 schema:author N4008d779a1c040b08595152d332504c7
    11 schema:citation sg:pub.10.1007/978-0-387-78225-6_11
    12 sg:pub.10.1007/978-3-642-51652-8
    13 sg:pub.10.1038/218368a0
    14 sg:pub.10.1038/534153a
    15 sg:pub.10.1038/cr.2008.3
    16 sg:pub.10.1038/hdy.1979.87
    17 sg:pub.10.1038/nature09937
    18 sg:pub.10.1038/nbt.3439
    19 sg:pub.10.1038/nbt.3444
    20 sg:pub.10.1038/nbt.3473
    21 sg:pub.10.1038/ncomms4977
    22 sg:pub.10.1038/nrg.2015.34
    23 sg:pub.10.1038/nrg1870
    24 sg:pub.10.1038/s41598-017-02744-7
    25 sg:pub.10.1038/srep31139
    26 sg:pub.10.1186/1475-2875-3-13
    27 sg:pub.10.1186/1756-3305-4-153
    28 schema:datePublished 2017-09-11
    29 schema:datePublishedReg 2017-09-11
    30 schema:description Driving endonuclease genes (DEGs) spread through a population by a non-Mendelian mechanism. In a heterozygote, the protein encoded by a DEG causes a double-strand break in the homologous chromosome opposite to where its gene is inserted and when the break is repaired using the homologue as a template the DEG heterozygote is converted to a homozygote. Some DEGs occur naturally while several classes of endonucleases can be engineered to spread in this way, with CRISPR-Cas9 based systems being particularly flexible. There is great interest in using driving endonuclease genes to impose a genetic load on insects that vector diseases or are economic pests to reduce their population density, or to introduce a beneficial gene such as one that might interrupt disease transmission. This paper reviews both the population genetics and population dynamics of DEGs. It summarises the theory that guides the design of DEG constructs intended to perform different functions. It also reviews the studies that have explored the likelihood of resistance to DEG phenotypes arising, and how this risk may be reduced. The review is intended for a general audience and mathematical details are kept to a minimum.
    31 schema:genre article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N81c25c1a55ce40a6967f0802634ce565
    35 N87f603c174fb43aaae5f3430d65a9dd0
    36 sg:journal.1032884
    37 schema:keywords CRISPR
    38 DEG constructs
    39 DEG heterozygote
    40 DEGs
    41 audience
    42 beneficial genes
    43 breaks
    44 chromosomes
    45 class
    46 class of endonucleases
    47 constructs
    48 deg
    49 deg phenotypes
    50 density
    51 design
    52 detail
    53 different functions
    54 disease
    55 disease transmission
    56 disease vectors
    57 double-strand breaks
    58 dynamics
    59 economic pest
    60 endonuclease
    61 endonuclease gene
    62 function
    63 general audience
    64 genes
    65 genetic load
    66 genetics
    67 great interest
    68 heterozygotes
    69 homologous chromosomes
    70 homologues
    71 homozygotes
    72 insects
    73 interest
    74 likelihood
    75 likelihood of resistance
    76 load
    77 mathematical details
    78 mechanism
    79 minimum
    80 non-Mendelian mechanisms
    81 one
    82 paper
    83 pests
    84 phenotype
    85 population
    86 population density
    87 population dynamics
    88 population genetics
    89 protein
    90 resistance
    91 review
    92 risk
    93 study
    94 system
    95 template
    96 theory
    97 transmission
    98 vector
    99 vector diseases
    100 way
    101 schema:name How driving endonuclease genes can be used to combat pests and disease vectors
    102 schema:pagination 81
    103 schema:productId N1014a3e2b0034d3f9e0b038348d5902d
    104 N5ac68604b6554ce294286889423cfae2
    105 Nb94455f6ce834f9c9716569eb87de74d
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091568342
    107 https://doi.org/10.1186/s12915-017-0420-4
    108 schema:sdDatePublished 2021-11-01T18:31
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher N2f6b7d15d00e43f89f0c16aa72f9eaa5
    111 schema:url https://doi.org/10.1186/s12915-017-0420-4
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N1014a3e2b0034d3f9e0b038348d5902d schema:name dimensions_id
    116 schema:value pub.1091568342
    117 rdf:type schema:PropertyValue
    118 N1493d564742d449393b88d4600f879cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Pest Control
    120 rdf:type schema:DefinedTerm
    121 N1d43cea0ca954b7683a4f62263abb23f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Endonucleases
    123 rdf:type schema:DefinedTerm
    124 N2f6b7d15d00e43f89f0c16aa72f9eaa5 schema:name Springer Nature - SN SciGraph project
    125 rdf:type schema:Organization
    126 N302dea198c8649c6aa29f980e97d841f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Animals
    128 rdf:type schema:DefinedTerm
    129 N4008d779a1c040b08595152d332504c7 rdf:first sg:person.011640134634.35
    130 rdf:rest N7b5f629fa346479282de24f6af7b759c
    131 N5ac68604b6554ce294286889423cfae2 schema:name doi
    132 schema:value 10.1186/s12915-017-0420-4
    133 rdf:type schema:PropertyValue
    134 N7b5f629fa346479282de24f6af7b759c rdf:first sg:person.0702016165.68
    135 rdf:rest Nf4d37958f0d4450dad149e7d14d2c2b7
    136 N81c25c1a55ce40a6967f0802634ce565 schema:volumeNumber 15
    137 rdf:type schema:PublicationVolume
    138 N87f603c174fb43aaae5f3430d65a9dd0 schema:issueNumber 1
    139 rdf:type schema:PublicationIssue
    140 N88a26eb353c44baab758d8c0e45b42b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Communicable Disease Control
    142 rdf:type schema:DefinedTerm
    143 N9ad30078662d4853a46896036376ca0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Gene Targeting
    145 rdf:type schema:DefinedTerm
    146 Nb94455f6ce834f9c9716569eb87de74d schema:name pubmed_id
    147 schema:value 28893259
    148 rdf:type schema:PropertyValue
    149 Nef1172ca6e4f4211af2bbc6704902e18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Disease Vectors
    151 rdf:type schema:DefinedTerm
    152 Nf292057b3e9d4645a2d5aa3d084991d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name CRISPR-Cas Systems
    154 rdf:type schema:DefinedTerm
    155 Nf4d37958f0d4450dad149e7d14d2c2b7 rdf:first sg:person.01142167260.64
    156 rdf:rest rdf:nil
    157 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Biological Sciences
    159 rdf:type schema:DefinedTerm
    160 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Genetics
    162 rdf:type schema:DefinedTerm
    163 sg:journal.1032884 schema:issn 1478-5854
    164 1741-7007
    165 schema:name BMC Biology
    166 schema:publisher Springer Nature
    167 rdf:type schema:Periodical
    168 sg:person.01142167260.64 schema:affiliation grid-institutes:grid.7445.2
    169 schema:familyName Burt
    170 schema:givenName Austin
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167260.64
    172 rdf:type schema:Person
    173 sg:person.011640134634.35 schema:affiliation grid-institutes:grid.4991.5
    174 schema:familyName Godfray
    175 schema:givenName H. Charles J.
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011640134634.35
    177 rdf:type schema:Person
    178 sg:person.0702016165.68 schema:affiliation grid-institutes:grid.4991.5
    179 schema:familyName North
    180 schema:givenName Ace
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702016165.68
    182 rdf:type schema:Person
    183 sg:pub.10.1007/978-0-387-78225-6_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033462010
    184 https://doi.org/10.1007/978-0-387-78225-6_11
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/978-3-642-51652-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049490040
    187 https://doi.org/10.1007/978-3-642-51652-8
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/218368a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008225604
    190 https://doi.org/10.1038/218368a0
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/534153a schema:sameAs https://app.dimensions.ai/details/publication/pub.1024437957
    193 https://doi.org/10.1038/534153a
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/cr.2008.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015186979
    196 https://doi.org/10.1038/cr.2008.3
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/hdy.1979.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045624000
    199 https://doi.org/10.1038/hdy.1979.87
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nature09937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020125616
    202 https://doi.org/10.1038/nature09937
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nbt.3439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012287729
    205 https://doi.org/10.1038/nbt.3439
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nbt.3444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038664304
    208 https://doi.org/10.1038/nbt.3444
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nbt.3473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021882586
    211 https://doi.org/10.1038/nbt.3473
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/ncomms4977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031506350
    214 https://doi.org/10.1038/ncomms4977
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nrg.2015.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013347649
    217 https://doi.org/10.1038/nrg.2015.34
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nrg1870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005461495
    220 https://doi.org/10.1038/nrg1870
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/s41598-017-02744-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086000686
    223 https://doi.org/10.1038/s41598-017-02744-7
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/srep31139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051593162
    226 https://doi.org/10.1038/srep31139
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1186/1475-2875-3-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022899740
    229 https://doi.org/10.1186/1475-2875-3-13
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1186/1756-3305-4-153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041352938
    232 https://doi.org/10.1186/1756-3305-4-153
    233 rdf:type schema:CreativeWork
    234 grid-institutes:grid.4991.5 schema:alternateName Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
    235 schema:name Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
    236 rdf:type schema:Organization
    237 grid-institutes:grid.7445.2 schema:alternateName Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY UK
    238 schema:name Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY UK
    239 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...