Effectiveness and efficiency of teleimaging in the transplantation process: a mixed method protocol View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-09-18

AUTHORS

Kevin Zarca, Jean-Claude K. Dupont, Lorène Jacoud, Julie Bulsei, Olivier Huot, Hélène Logerot, Isabelle Durand-Zaleski

ABSTRACT

BackgroundThe transplantation process usually takes place without transplant teams being able to use imaging data to assess graft quality. The decision of whether to go get the graft or not is therefore limited and suboptimal. “Cristal images” is a teleimaging project allowing real-time visualization of images of the organs of the donor. The objective of our study is to assess whether the use of a secure teleimaging can improve the effectiveness and efficiency of the procurement and transplantation processes.MethodsWe will use the exhaustive national registry of organ allocation and transplantation, and compare outcomes before the deployment of “Cristal images” (years 2015–2016) and after it becomes operational (years 2018–2019) for heart, lung, liver and kidney transplant in a before-after study, combined with a preference elicitation study. The primary endpoint will be the number of successful organ transplantations. Secondary endpoints will be related to the efficiency of the transplant process (decision making, transportation, cost) and a preference elicitation study will determine the relative preferences of transplant teams towards few “Cristal images”’ components or potential developments, which are yet to be determined through a qualitative analysis based on interviews with professionals.DiscussionThis study will provide stakeholders data on the efficiency of real-time visualization for transplant teams and identify the levers likely to influence the technology use among these teams.Trial registrationclinicaltrials.gov: NCT03201224, 13 June 2017, retrospectively registered. More... »

PAGES

672

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12913-019-4488-0

DOI

http://dx.doi.org/10.1186/s12913-019-4488-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121097016

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31533713


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnostic Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "France", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organ Transplantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Registries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Teleradiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tissue Donors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tissue and Organ Procurement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INSERM UMR 1153 CRESS, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "AP-HP, DRCI-URC ECO, Paris, France", 
            "AP-HP Hospital Henri Mondor, Creteil, France", 
            "INSERM UMR 1153 CRESS, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zarca", 
        "givenName": "Kevin", 
        "id": "sg:person.01033615220.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033615220.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de Recherche des Cordeliers, INSERM, Sorbonne Universit\u00e9, USPC, Universit\u00e9 Paris Descartes, Universit\u00e9 Paris Diderot, Equipe d\u2019accueil ETRES, F-75006, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.417925.c", 
          "name": [
            "AP HP and Paris School of Economics, Paris, France", 
            "Centre de Recherche des Cordeliers, INSERM, Sorbonne Universit\u00e9, USPC, Universit\u00e9 Paris Descartes, Universit\u00e9 Paris Diderot, Equipe d\u2019accueil ETRES, F-75006, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dupont", 
        "givenName": "Jean-Claude K.", 
        "id": "sg:person.01354750657.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354750657.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AP HP and Paris School of Economics, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.424431.4", 
          "name": [
            "AP HP and Paris School of Economics, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacoud", 
        "givenName": "Lor\u00e8ne", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INSERM UMR 1153 CRESS, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "AP-HP, DRCI-URC ECO, Paris, France", 
            "INSERM UMR 1153 CRESS, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bulsei", 
        "givenName": "Julie", 
        "id": "sg:person.01007044455.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007044455.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedicine Agency, Saint Denis, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biomedicine Agency, Saint Denis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huot", 
        "givenName": "Olivier", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedicine Agency, Saint Denis, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biomedicine Agency, Saint Denis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Logerot", 
        "givenName": "H\u00e9l\u00e8ne", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UPEC, Creteil, France", 
          "id": "http://www.grid.ac/institutes/grid.410511.0", 
          "name": [
            "AP-HP, DRCI-URC ECO, Paris, France", 
            "AP-HP Hospital Henri Mondor, Creteil, France", 
            "INSERM UMR 1153 CRESS, Paris, France", 
            "UPEC, Creteil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durand-Zaleski", 
        "givenName": "Isabelle", 
        "id": "sg:person.01327533357.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327533357.46"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-09-18", 
    "datePublishedReg": "2019-09-18", 
    "description": "BackgroundThe transplantation process usually takes place without transplant teams being able to use imaging data to assess graft quality. The decision of whether to go get the graft or not is therefore limited and suboptimal. \u201cCristal images\u201d is a teleimaging project allowing real-time visualization of images of the organs of the donor. The objective of our study is to assess whether the use of a secure teleimaging can improve the effectiveness and efficiency of the procurement and transplantation processes.MethodsWe will use the exhaustive national registry of organ allocation and transplantation, and compare outcomes before the deployment of \u201cCristal images\u201d (years 2015\u20132016) and after it becomes operational (years 2018\u20132019) for heart, lung, liver and kidney transplant in a before-after study, combined with a preference elicitation study. The primary endpoint will be the number of successful organ transplantations. Secondary endpoints will be related to the efficiency of the transplant process (decision making, transportation, cost) and a preference elicitation study will determine the relative preferences of transplant teams towards few \u201cCristal images\u201d\u2019 components or potential developments, which are yet to be determined through a qualitative analysis based on interviews with professionals.DiscussionThis study will provide stakeholders data on the efficiency of real-time visualization for transplant teams and identify the levers likely to influence the technology use among these teams.Trial registrationclinicaltrials.gov: NCT03201224, 13 June 2017, retrospectively registered.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12913-019-4488-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327417", 
        "issn": [
          "1472-6963"
        ], 
        "name": "BMC Health Services Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "transplant team", 
      "preference elicitation studies", 
      "transplantation process", 
      "successful organ transplantation", 
      "primary endpoint", 
      "secondary endpoints", 
      "kidney transplant", 
      "mixed methods protocol", 
      "graft quality", 
      "national registry", 
      "organ transplantation", 
      "transplant process", 
      "organ allocation", 
      "DiscussionThis study", 
      "transplantation", 
      "endpoint", 
      "real-time visualization", 
      "method protocol", 
      "transplant", 
      "registry", 
      "graft", 
      "lung", 
      "study", 
      "MethodsWe", 
      "liver", 
      "team", 
      "outcomes", 
      "heart", 
      "organs", 
      "potential development", 
      "before", 
      "professionals", 
      "donors", 
      "use", 
      "elicitation study", 
      "qualitative analysis", 
      "data", 
      "protocol", 
      "effectiveness", 
      "interviews", 
      "visualization", 
      "objective", 
      "relative preference", 
      "quality", 
      "development", 
      "number", 
      "lever", 
      "analysis", 
      "technology use", 
      "images", 
      "preferences", 
      "procurement", 
      "decisions", 
      "components", 
      "stakeholder data", 
      "process", 
      "place", 
      "project", 
      "allocation", 
      "deployment", 
      "efficiency"
    ], 
    "name": "Effectiveness and efficiency of teleimaging in the transplantation process: a mixed method protocol", 
    "pagination": "672", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121097016"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12913-019-4488-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31533713"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12913-019-4488-0", 
      "https://app.dimensions.ai/details/publication/pub.1121097016"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_818.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12913-019-4488-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12913-019-4488-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12913-019-4488-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12913-019-4488-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12913-019-4488-0'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      20 PREDICATES      100 URIs      92 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12913-019-4488-0 schema:about N018d70ea89bc46e2baed4675747010a2
2 N079e3440563c41238791e1da9b544f46
3 N10a129dcb48540a38902c8818f1fe2a9
4 N1fa7284b15ab49e98efd3ad3c35542d3
5 N7ac4de6c2a5446aaa92e69d17c348068
6 N85e60aa2eba74820878da25168a33e08
7 N89e59f0c60384c879ad5d82992c7a383
8 N8a636c87dd7348b0a269f9a216c3a390
9 N98621a786f9a42c7bf83fe84a8bf96f4
10 N9efcb6d0c2c544ff9eba253bc71f3913
11 Nbb61c04bff6f4e959ecafb16fb52f7d2
12 Nc2dd62797852438383186fbf0ede410f
13 Ndd312fc593d749aba2ac465739478e6c
14 Nfa4657101d4247ce93299dbeecb4f401
15 anzsrc-for:11
16 anzsrc-for:1117
17 schema:author N8f4436ce9b26406ba0edb5a34b579359
18 schema:datePublished 2019-09-18
19 schema:datePublishedReg 2019-09-18
20 schema:description BackgroundThe transplantation process usually takes place without transplant teams being able to use imaging data to assess graft quality. The decision of whether to go get the graft or not is therefore limited and suboptimal. “Cristal images” is a teleimaging project allowing real-time visualization of images of the organs of the donor. The objective of our study is to assess whether the use of a secure teleimaging can improve the effectiveness and efficiency of the procurement and transplantation processes.MethodsWe will use the exhaustive national registry of organ allocation and transplantation, and compare outcomes before the deployment of “Cristal images” (years 2015–2016) and after it becomes operational (years 2018–2019) for heart, lung, liver and kidney transplant in a before-after study, combined with a preference elicitation study. The primary endpoint will be the number of successful organ transplantations. Secondary endpoints will be related to the efficiency of the transplant process (decision making, transportation, cost) and a preference elicitation study will determine the relative preferences of transplant teams towards few “Cristal images”’ components or potential developments, which are yet to be determined through a qualitative analysis based on interviews with professionals.DiscussionThis study will provide stakeholders data on the efficiency of real-time visualization for transplant teams and identify the levers likely to influence the technology use among these teams.Trial registrationclinicaltrials.gov: NCT03201224, 13 June 2017, retrospectively registered.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N062b40cb4e5141ebb2299167b232d6e7
24 N24b2c9c229a04735bdf219a08be5c314
25 sg:journal.1327417
26 schema:keywords DiscussionThis study
27 MethodsWe
28 allocation
29 analysis
30 before
31 components
32 data
33 decisions
34 deployment
35 development
36 donors
37 effectiveness
38 efficiency
39 elicitation study
40 endpoint
41 graft
42 graft quality
43 heart
44 images
45 interviews
46 kidney transplant
47 lever
48 liver
49 lung
50 method protocol
51 mixed methods protocol
52 national registry
53 number
54 objective
55 organ allocation
56 organ transplantation
57 organs
58 outcomes
59 place
60 potential development
61 preference elicitation studies
62 preferences
63 primary endpoint
64 process
65 procurement
66 professionals
67 project
68 protocol
69 qualitative analysis
70 quality
71 real-time visualization
72 registry
73 relative preference
74 secondary endpoints
75 stakeholder data
76 study
77 successful organ transplantation
78 team
79 technology use
80 transplant
81 transplant process
82 transplant team
83 transplantation
84 transplantation process
85 use
86 visualization
87 schema:name Effectiveness and efficiency of teleimaging in the transplantation process: a mixed method protocol
88 schema:pagination 672
89 schema:productId N23226d9c2c514ee4ba6941c5b01d0a90
90 N2a200b702c724c68a10d24d74f5ae15a
91 Nc5e65f1424d64eabaf35b995f8cf4c61
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121097016
93 https://doi.org/10.1186/s12913-019-4488-0
94 schema:sdDatePublished 2022-10-01T06:46
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N2750bec4b307487e935b2e9fd6318a61
97 schema:url https://doi.org/10.1186/s12913-019-4488-0
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N018d70ea89bc46e2baed4675747010a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Tissue and Organ Procurement
103 rdf:type schema:DefinedTerm
104 N062b40cb4e5141ebb2299167b232d6e7 schema:volumeNumber 19
105 rdf:type schema:PublicationVolume
106 N0741f5b2f5c6435187a863e54bf0786e schema:affiliation grid-institutes:None
107 schema:familyName Huot
108 schema:givenName Olivier
109 rdf:type schema:Person
110 N079e3440563c41238791e1da9b544f46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Humans
112 rdf:type schema:DefinedTerm
113 N10a129dcb48540a38902c8818f1fe2a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Retrospective Studies
115 rdf:type schema:DefinedTerm
116 N1d2efd290c9c445485c748bd7f350f16 schema:affiliation grid-institutes:grid.424431.4
117 schema:familyName Jacoud
118 schema:givenName Lorène
119 rdf:type schema:Person
120 N1fa7284b15ab49e98efd3ad3c35542d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Tissue Donors
122 rdf:type schema:DefinedTerm
123 N23226d9c2c514ee4ba6941c5b01d0a90 schema:name dimensions_id
124 schema:value pub.1121097016
125 rdf:type schema:PropertyValue
126 N24b2c9c229a04735bdf219a08be5c314 schema:issueNumber 1
127 rdf:type schema:PublicationIssue
128 N2750bec4b307487e935b2e9fd6318a61 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 N2a200b702c724c68a10d24d74f5ae15a schema:name doi
131 schema:value 10.1186/s12913-019-4488-0
132 rdf:type schema:PropertyValue
133 N3f8fa12a32674ae4bfa8f77d7048a219 rdf:first N9a49dfce5f7a48af95cd33bc7fbd611b
134 rdf:rest Nf33262e8611a4cbebb6a32244410f2a0
135 N405720d27c674c3fa8073e39a3144f41 rdf:first N1d2efd290c9c445485c748bd7f350f16
136 rdf:rest Nc2ac728b1a0d43749ab16148b0bd579e
137 N675679694856427bae7fe76a6e430ac2 rdf:first N0741f5b2f5c6435187a863e54bf0786e
138 rdf:rest N3f8fa12a32674ae4bfa8f77d7048a219
139 N7ac4de6c2a5446aaa92e69d17c348068 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Organ Transplantation
141 rdf:type schema:DefinedTerm
142 N82189e1c55284afab5849c252d39c04e rdf:first sg:person.01354750657.55
143 rdf:rest N405720d27c674c3fa8073e39a3144f41
144 N85e60aa2eba74820878da25168a33e08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Research Design
146 rdf:type schema:DefinedTerm
147 N89e59f0c60384c879ad5d82992c7a383 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Young Adult
149 rdf:type schema:DefinedTerm
150 N8a636c87dd7348b0a269f9a216c3a390 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Diagnostic Imaging
152 rdf:type schema:DefinedTerm
153 N8f4436ce9b26406ba0edb5a34b579359 rdf:first sg:person.01033615220.30
154 rdf:rest N82189e1c55284afab5849c252d39c04e
155 N98621a786f9a42c7bf83fe84a8bf96f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Registries
157 rdf:type schema:DefinedTerm
158 N9a49dfce5f7a48af95cd33bc7fbd611b schema:affiliation grid-institutes:None
159 schema:familyName Logerot
160 schema:givenName Hélène
161 rdf:type schema:Person
162 N9efcb6d0c2c544ff9eba253bc71f3913 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name France
164 rdf:type schema:DefinedTerm
165 Nbb61c04bff6f4e959ecafb16fb52f7d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Teleradiology
167 rdf:type schema:DefinedTerm
168 Nc2ac728b1a0d43749ab16148b0bd579e rdf:first sg:person.01007044455.38
169 rdf:rest N675679694856427bae7fe76a6e430ac2
170 Nc2dd62797852438383186fbf0ede410f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Middle Aged
172 rdf:type schema:DefinedTerm
173 Nc5e65f1424d64eabaf35b995f8cf4c61 schema:name pubmed_id
174 schema:value 31533713
175 rdf:type schema:PropertyValue
176 Ndd312fc593d749aba2ac465739478e6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Adult
178 rdf:type schema:DefinedTerm
179 Nf33262e8611a4cbebb6a32244410f2a0 rdf:first sg:person.01327533357.46
180 rdf:rest rdf:nil
181 Nfa4657101d4247ce93299dbeecb4f401 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Aged
183 rdf:type schema:DefinedTerm
184 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
185 schema:name Medical and Health Sciences
186 rdf:type schema:DefinedTerm
187 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
188 schema:name Public Health and Health Services
189 rdf:type schema:DefinedTerm
190 sg:journal.1327417 schema:issn 1472-6963
191 schema:name BMC Health Services Research
192 schema:publisher Springer Nature
193 rdf:type schema:Periodical
194 sg:person.01007044455.38 schema:affiliation grid-institutes:grid.7429.8
195 schema:familyName Bulsei
196 schema:givenName Julie
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007044455.38
198 rdf:type schema:Person
199 sg:person.01033615220.30 schema:affiliation grid-institutes:grid.7429.8
200 schema:familyName Zarca
201 schema:givenName Kevin
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033615220.30
203 rdf:type schema:Person
204 sg:person.01327533357.46 schema:affiliation grid-institutes:grid.410511.0
205 schema:familyName Durand-Zaleski
206 schema:givenName Isabelle
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327533357.46
208 rdf:type schema:Person
209 sg:person.01354750657.55 schema:affiliation grid-institutes:grid.417925.c
210 schema:familyName Dupont
211 schema:givenName Jean-Claude K.
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354750657.55
213 rdf:type schema:Person
214 grid-institutes:None schema:alternateName Biomedicine Agency, Saint Denis, France
215 schema:name Biomedicine Agency, Saint Denis, France
216 rdf:type schema:Organization
217 grid-institutes:grid.410511.0 schema:alternateName UPEC, Creteil, France
218 schema:name AP-HP Hospital Henri Mondor, Creteil, France
219 AP-HP, DRCI-URC ECO, Paris, France
220 INSERM UMR 1153 CRESS, Paris, France
221 UPEC, Creteil, France
222 rdf:type schema:Organization
223 grid-institutes:grid.417925.c schema:alternateName Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Equipe d’accueil ETRES, F-75006, Paris, France
224 schema:name AP HP and Paris School of Economics, Paris, France
225 Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Equipe d’accueil ETRES, F-75006, Paris, France
226 rdf:type schema:Organization
227 grid-institutes:grid.424431.4 schema:alternateName AP HP and Paris School of Economics, Paris, France
228 schema:name AP HP and Paris School of Economics, Paris, France
229 rdf:type schema:Organization
230 grid-institutes:grid.7429.8 schema:alternateName INSERM UMR 1153 CRESS, Paris, France
231 schema:name AP-HP Hospital Henri Mondor, Creteil, France
232 AP-HP, DRCI-URC ECO, Paris, France
233 INSERM UMR 1153 CRESS, Paris, France
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...