Prenatal and post-natal cost of small for gestational age infants: a national study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-21

AUTHORS

Alicia Marzouk, Antoine Filipovic-Pierucci, Olivier Baud, Vassilis Tsatsaris, Anne Ego, Marie-Aline Charles, François Goffinet, Danièle Evain-Brion, Isabelle Durand-Zaleski

ABSTRACT

BackgroundSmall for gestational age (SGA) infants are at increased risk for preterm birth morbidities as well as a range of adverse perinatal outcomes that result in part from associated premature birth. We sought to evaluate the costs of SGA versus appropriate for gestational age (AGA) infants in France from pregnancy through the first year of life and separate the contributions of prematurity from the contribution of foetal growth on costs.MethodsThis is a cross-sectional population-based study using national hospital discharge data from French public and private hospitals. SGA infants were defined as newborns with a birth weight below the 10th percentile of French intrauterine growth curves adjusted for foetal sex. AGA infants were defined as newborns with a birth weight between the 25th and the 75th. All births were selected between January 1st, 2011 and December 31st, 2011. Costs were calculated from the hospital perspective for both mothers and children using their diagnostic related group and the French national cost study. Hospital outcomes were extracted from the database and compared by gestational age and mode of delivery.ResultsOf 777,720 total births in 2011, 84,688 SGA births (10.9%) and 395,760 AGA births (50.8%) were identified. After adjustment for gestational age, the cost for an SGA infant was €2,783 higher than for an AGA infant. The total maternal and infant hospital cost of SGA in France was estimated at 23% the total cost for deliveries. The high cost is explained by higher complication rates, more frequent hospital readmissions and longer lengths of stay.ConclusionsBeing small for gestational age is an independent contributor to 1-year hospital costs for both mothers and infants. More... »

PAGES

221

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12913-017-2155-x

DOI

http://dx.doi.org/10.1186/s12913-017-2155-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084251008

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28320392


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1114", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Paediatrics and Reproductive Medicine", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Birth Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Costs and Cost Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Delivery, Obstetric", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "France", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gestational Age", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Newborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Premature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Premature, Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Small for Gestational Age", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Length of Stay", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Morbidity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mothers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Perinatal Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pregnancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "PREMUP Foundation, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "URC ECO, H\u00f4tel Dieu 1 Place du Parvis de Notre Dame, 75004, Paris, France", 
            "PREMUP Foundation, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marzouk", 
        "givenName": "Alicia", 
        "id": "sg:person.015074516143.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074516143.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "URC ECO, H\u00f4tel Dieu 1 Place du Parvis de Notre Dame, 75004, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "URC ECO, H\u00f4tel Dieu 1 Place du Parvis de Notre Dame, 75004, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filipovic-Pierucci", 
        "givenName": "Antoine", 
        "id": "sg:person.01001023617.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001023617.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Robert Debr\u00e9 hospital, Paris, France, Inserm U1141, Paris Diderot University, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413235.2", 
          "name": [
            "PREMUP Foundation, Paris, France", 
            "Robert Debr\u00e9 hospital, Paris, France, Inserm U1141, Paris Diderot University, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baud", 
        "givenName": "Olivier", 
        "id": "sg:person.0640535361.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640535361.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Port-Royal maternity, DHU Risk in Pregnancy, Cochin Broca H\u00f4tel-Dieu hospital, INSERM Unit\u00e9 1139, Paris-Descartes University, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.508487.6", 
          "name": [
            "PREMUP Foundation, Paris, France", 
            "Port-Royal maternity, DHU Risk in Pregnancy, Cochin Broca H\u00f4tel-Dieu hospital, INSERM Unit\u00e9 1139, Paris-Descartes University, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsatsaris", 
        "givenName": "Vassilis", 
        "id": "sg:person.01302040723.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302040723.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Grenoble Alpes University, TIMC-IMAG, CNRS, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.463716.1", 
          "name": [
            "Grenoble Alpes University, TIMC-IMAG, CNRS, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ego", 
        "givenName": "Anne", 
        "id": "sg:person.0632375557.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632375557.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INSERM U1153, Early origin of the child\u2019s health and development team (ORCHAD), Research Center for Epidemiology and Biostatistics Sorbonne Paris Cit\u00e9 (CRESS), Paris Descartes University, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.508487.6", 
          "name": [
            "PREMUP Foundation, Paris, France", 
            "INSERM U1153, Early origin of the child\u2019s health and development team (ORCHAD), Research Center for Epidemiology and Biostatistics Sorbonne Paris Cit\u00e9 (CRESS), Paris Descartes University, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charles", 
        "givenName": "Marie-Aline", 
        "id": "sg:person.01234546413.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234546413.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOP\u00e9), Research Center for Epidemiology and Biostatistics Sorbonne Paris Cit\u00e9 (CRESS), Paris Descartes University, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.508487.6", 
          "name": [
            "PREMUP Foundation, Paris, France", 
            "Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOP\u00e9), Research Center for Epidemiology and Biostatistics Sorbonne Paris Cit\u00e9 (CRESS), Paris Descartes University, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goffinet", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.0765216745.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765216745.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "PREMUP Foundation, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "PREMUP Foundation, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evain-Brion", 
        "givenName": "Dani\u00e8le", 
        "id": "sg:person.01271171771.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271171771.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Est university, Cr\u00e9teil, France", 
          "id": "http://www.grid.ac/institutes/grid.466400.0", 
          "name": [
            "URC ECO, H\u00f4tel Dieu 1 Place du Parvis de Notre Dame, 75004, Paris, France", 
            "PREMUP Foundation, Paris, France", 
            "AP HP Henri Mondor hospital, Cr\u00e9teil, France", 
            "INSERM UMRS 1123 (ECEVE), Paris, France", 
            "Paris Est university, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durand-Zaleski", 
        "givenName": "Isabelle", 
        "id": "sg:person.01327533357.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327533357.46"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-03-21", 
    "datePublishedReg": "2017-03-21", 
    "description": "BackgroundSmall for gestational age (SGA) infants are at increased risk for preterm birth morbidities as well as a range of adverse perinatal outcomes that result in part from associated premature birth. We sought to evaluate the costs of SGA versus appropriate for gestational age (AGA) infants in France from pregnancy through the first year of life and separate the contributions of prematurity from the contribution of foetal growth on costs.MethodsThis is a cross-sectional population-based study using national hospital discharge data from French public and private hospitals. SGA infants were defined as newborns with a birth weight below the 10th percentile of French intrauterine growth curves adjusted for foetal sex. AGA infants were defined as newborns with a birth weight between the 25th and the 75th. All births were selected between January 1st, 2011 and December 31st, 2011. Costs were calculated from the hospital perspective for both mothers and children using their diagnostic related group and the French national cost study. Hospital outcomes were extracted from the database and compared by gestational age and mode of delivery.ResultsOf 777,720 total births in 2011, 84,688 SGA births (10.9%) and 395,760 AGA births (50.8%) were identified. After adjustment for gestational age, the cost for an SGA infant was \u20ac2,783 higher than for an AGA infant. The total maternal and infant hospital cost of SGA in France was estimated at 23% the total cost for deliveries. The high cost is explained by higher complication rates, more frequent hospital readmissions and longer lengths of stay.ConclusionsBeing small for gestational age is an independent contributor to 1-year hospital costs for both mothers and infants.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12913-017-2155-x", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327417", 
        "issn": [
          "1472-6963"
        ], 
        "name": "BMC Health Services Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "gestational age infants", 
      "gestational age", 
      "age infants", 
      "SGA infants", 
      "AGA infants", 
      "birth weight", 
      "hospital costs", 
      "cross-sectional population-based study", 
      "national hospital discharge data", 
      "contribution of prematurity", 
      "national cost study", 
      "adverse perinatal outcomes", 
      "frequent hospital readmissions", 
      "population-based study", 
      "intrauterine growth curves", 
      "high complication rate", 
      "hospital discharge data", 
      "mode of delivery", 
      "perinatal outcomes", 
      "Diagnostic Related Groups", 
      "hospital outcomes", 
      "complication rate", 
      "hospital readmission", 
      "SGA birth", 
      "premature birth", 
      "total births", 
      "AGA births", 
      "hospital perspective", 
      "independent contributors", 
      "total maternal", 
      "foetal growth", 
      "infants", 
      "private hospitals", 
      "birth", 
      "longer length", 
      "SGA", 
      "newborns", 
      "age", 
      "national study", 
      "first year", 
      "foetal sex", 
      "outcomes", 
      "mothers", 
      "discharge data", 
      "delivery", 
      "MethodsThis", 
      "readmission", 
      "morbidity", 
      "prematurity", 
      "pregnancy", 
      "stay", 
      "cost studies", 
      "hospital", 
      "maternal", 
      "BackgroundSmall", 
      "related groups", 
      "study", 
      "sex", 
      "children", 
      "risk", 
      "weight", 
      "percentile", 
      "growth curves", 
      "total cost", 
      "group", 
      "years", 
      "high cost", 
      "adjustment", 
      "database", 
      "life", 
      "rate", 
      "contributor", 
      "data", 
      "France", 
      "curves", 
      "cost", 
      "length", 
      "growth", 
      "part", 
      "contribution", 
      "perspective", 
      "range", 
      "mode"
    ], 
    "name": "Prenatal and post-natal cost of small for gestational age infants: a national study", 
    "pagination": "221", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084251008"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12913-017-2155-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28320392"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12913-017-2155-x", 
      "https://app.dimensions.ai/details/publication/pub.1084251008"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_743.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12913-017-2155-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12913-017-2155-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12913-017-2155-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12913-017-2155-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12913-017-2155-x'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      20 PREDICATES      130 URIs      121 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12913-017-2155-x schema:about N06c1a3f4093f43bc802f40617b7472bf
2 N187cf35aba074b4ca49a7f9c11bc2fde
3 N26a6396fb2c74261a8fa0242ac2411c5
4 N34c95c91aff848d6a8aa4eb140d46cb2
5 N40ae2089080c45c9a4cb1dfd9a476827
6 N4d788dac7bc04df99df2295065da4df7
7 N548eb010124d4e2e85922c20ecb15ffe
8 N553ead912aa34ce0a000cad09cff5a10
9 N6121afea0ecc47c1b79f30dc2b21b11c
10 N651e134ed1a847e9bb5e6f12edb2fa54
11 N8c88c84007ab40ca8a7834d8f88ce077
12 N90e860dc6b95446f8d573bc61624d10e
13 N9af62d80bdf04d29928446edc3f28f72
14 Na8d0f490a92e4c89b25dcd5e15b32968
15 Na95ed357ff474f3999811d2e4e78971a
16 Nb6341bbd257244de8141dd8896091d21
17 Nbc5b42d75df04a85a0a1765079aac971
18 Nc7cac7bd010c46e780429532f6bd010c
19 Nd57b97519a29411e85dddaa4c970684b
20 Ne4f68edc50a140ccb7379778e53b43c0
21 Nec992d781db846ab939d75d6aad12494
22 anzsrc-for:11
23 anzsrc-for:1114
24 anzsrc-for:1117
25 schema:author Nd666e8489a9e4e24b871562ac97bdfa1
26 schema:datePublished 2017-03-21
27 schema:datePublishedReg 2017-03-21
28 schema:description BackgroundSmall for gestational age (SGA) infants are at increased risk for preterm birth morbidities as well as a range of adverse perinatal outcomes that result in part from associated premature birth. We sought to evaluate the costs of SGA versus appropriate for gestational age (AGA) infants in France from pregnancy through the first year of life and separate the contributions of prematurity from the contribution of foetal growth on costs.MethodsThis is a cross-sectional population-based study using national hospital discharge data from French public and private hospitals. SGA infants were defined as newborns with a birth weight below the 10th percentile of French intrauterine growth curves adjusted for foetal sex. AGA infants were defined as newborns with a birth weight between the 25th and the 75th. All births were selected between January 1st, 2011 and December 31st, 2011. Costs were calculated from the hospital perspective for both mothers and children using their diagnostic related group and the French national cost study. Hospital outcomes were extracted from the database and compared by gestational age and mode of delivery.ResultsOf 777,720 total births in 2011, 84,688 SGA births (10.9%) and 395,760 AGA births (50.8%) were identified. After adjustment for gestational age, the cost for an SGA infant was €2,783 higher than for an AGA infant. The total maternal and infant hospital cost of SGA in France was estimated at 23% the total cost for deliveries. The high cost is explained by higher complication rates, more frequent hospital readmissions and longer lengths of stay.ConclusionsBeing small for gestational age is an independent contributor to 1-year hospital costs for both mothers and infants.
29 schema:genre article
30 schema:isAccessibleForFree true
31 schema:isPartOf N1c3917be3a5c4fd78ae19f642f1dbe53
32 N1e114a7225f1487498dd210b0496aa36
33 sg:journal.1327417
34 schema:keywords AGA births
35 AGA infants
36 BackgroundSmall
37 Diagnostic Related Groups
38 France
39 MethodsThis
40 SGA
41 SGA birth
42 SGA infants
43 adjustment
44 adverse perinatal outcomes
45 age
46 age infants
47 birth
48 birth weight
49 children
50 complication rate
51 contribution
52 contribution of prematurity
53 contributor
54 cost
55 cost studies
56 cross-sectional population-based study
57 curves
58 data
59 database
60 delivery
61 discharge data
62 first year
63 foetal growth
64 foetal sex
65 frequent hospital readmissions
66 gestational age
67 gestational age infants
68 group
69 growth
70 growth curves
71 high complication rate
72 high cost
73 hospital
74 hospital costs
75 hospital discharge data
76 hospital outcomes
77 hospital perspective
78 hospital readmission
79 independent contributors
80 infants
81 intrauterine growth curves
82 length
83 life
84 longer length
85 maternal
86 mode
87 mode of delivery
88 morbidity
89 mothers
90 national cost study
91 national hospital discharge data
92 national study
93 newborns
94 outcomes
95 part
96 percentile
97 perinatal outcomes
98 perspective
99 population-based study
100 pregnancy
101 premature birth
102 prematurity
103 private hospitals
104 range
105 rate
106 readmission
107 related groups
108 risk
109 sex
110 stay
111 study
112 total births
113 total cost
114 total maternal
115 weight
116 years
117 schema:name Prenatal and post-natal cost of small for gestational age infants: a national study
118 schema:pagination 221
119 schema:productId N363dfc5a9c9a445285c49119efd49a33
120 N69a36da588424247837bdf2e4225b43b
121 N909e4c8b770b4186914d2dd9b9638d9a
122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084251008
123 https://doi.org/10.1186/s12913-017-2155-x
124 schema:sdDatePublished 2022-09-02T16:00
125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
126 schema:sdPublisher N046b8ac151bd4647b43a9fb8bc33fad0
127 schema:url https://doi.org/10.1186/s12913-017-2155-x
128 sgo:license sg:explorer/license/
129 sgo:sdDataset articles
130 rdf:type schema:ScholarlyArticle
131 N046b8ac151bd4647b43a9fb8bc33fad0 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 N06c1a3f4093f43bc802f40617b7472bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Perinatal Care
135 rdf:type schema:DefinedTerm
136 N187cf35aba074b4ca49a7f9c11bc2fde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Birth Weight
138 rdf:type schema:DefinedTerm
139 N1c3917be3a5c4fd78ae19f642f1dbe53 schema:issueNumber 1
140 rdf:type schema:PublicationIssue
141 N1e114a7225f1487498dd210b0496aa36 schema:volumeNumber 17
142 rdf:type schema:PublicationVolume
143 N1eaa7f64d1d74376803272054592c68f rdf:first sg:person.01327533357.46
144 rdf:rest rdf:nil
145 N26a6396fb2c74261a8fa0242ac2411c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Sex Factors
147 rdf:type schema:DefinedTerm
148 N27f77373cf0a4413bc77d4d17c8c21af rdf:first sg:person.01302040723.01
149 rdf:rest Na82c61b197624d85aed8a05bbe259d14
150 N34c95c91aff848d6a8aa4eb140d46cb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Gestational Age
152 rdf:type schema:DefinedTerm
153 N363dfc5a9c9a445285c49119efd49a33 schema:name dimensions_id
154 schema:value pub.1084251008
155 rdf:type schema:PropertyValue
156 N40ae2089080c45c9a4cb1dfd9a476827 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Infant, Newborn
158 rdf:type schema:DefinedTerm
159 N4d788dac7bc04df99df2295065da4df7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Delivery, Obstetric
161 rdf:type schema:DefinedTerm
162 N548eb010124d4e2e85922c20ecb15ffe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Length of Stay
164 rdf:type schema:DefinedTerm
165 N553ead912aa34ce0a000cad09cff5a10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Humans
167 rdf:type schema:DefinedTerm
168 N5fb244141e7f4f8f99542bd408d45d36 rdf:first sg:person.01001023617.22
169 rdf:rest Nfb2120be3f984eabbc330159a6013395
170 N6121afea0ecc47c1b79f30dc2b21b11c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Male
172 rdf:type schema:DefinedTerm
173 N651e134ed1a847e9bb5e6f12edb2fa54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Morbidity
175 rdf:type schema:DefinedTerm
176 N69a36da588424247837bdf2e4225b43b schema:name doi
177 schema:value 10.1186/s12913-017-2155-x
178 rdf:type schema:PropertyValue
179 N8492b5d3d25d490a8a3996b07b0ac25a rdf:first sg:person.0765216745.93
180 rdf:rest Ne65895699ca848cbb46e277f3d7a8d75
181 N87b18ed8c5cd4b2c8a0598975e110b91 rdf:first sg:person.01234546413.45
182 rdf:rest N8492b5d3d25d490a8a3996b07b0ac25a
183 N8c88c84007ab40ca8a7834d8f88ce077 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Mothers
185 rdf:type schema:DefinedTerm
186 N909e4c8b770b4186914d2dd9b9638d9a schema:name pubmed_id
187 schema:value 28320392
188 rdf:type schema:PropertyValue
189 N90e860dc6b95446f8d573bc61624d10e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Pregnancy
191 rdf:type schema:DefinedTerm
192 N9af62d80bdf04d29928446edc3f28f72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name France
194 rdf:type schema:DefinedTerm
195 Na82c61b197624d85aed8a05bbe259d14 rdf:first sg:person.0632375557.00
196 rdf:rest N87b18ed8c5cd4b2c8a0598975e110b91
197 Na8d0f490a92e4c89b25dcd5e15b32968 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Adult
199 rdf:type schema:DefinedTerm
200 Na95ed357ff474f3999811d2e4e78971a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Cross-Sectional Studies
202 rdf:type schema:DefinedTerm
203 Nb6341bbd257244de8141dd8896091d21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Infant
205 rdf:type schema:DefinedTerm
206 Nbc5b42d75df04a85a0a1765079aac971 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Costs and Cost Analysis
208 rdf:type schema:DefinedTerm
209 Nc7cac7bd010c46e780429532f6bd010c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Infant, Premature, Diseases
211 rdf:type schema:DefinedTerm
212 Nd57b97519a29411e85dddaa4c970684b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Infant, Premature
214 rdf:type schema:DefinedTerm
215 Nd666e8489a9e4e24b871562ac97bdfa1 rdf:first sg:person.015074516143.85
216 rdf:rest N5fb244141e7f4f8f99542bd408d45d36
217 Ne4f68edc50a140ccb7379778e53b43c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Female
219 rdf:type schema:DefinedTerm
220 Ne65895699ca848cbb46e277f3d7a8d75 rdf:first sg:person.01271171771.44
221 rdf:rest N1eaa7f64d1d74376803272054592c68f
222 Nec992d781db846ab939d75d6aad12494 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
223 schema:name Infant, Small for Gestational Age
224 rdf:type schema:DefinedTerm
225 Nfb2120be3f984eabbc330159a6013395 rdf:first sg:person.0640535361.49
226 rdf:rest N27f77373cf0a4413bc77d4d17c8c21af
227 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
228 schema:name Medical and Health Sciences
229 rdf:type schema:DefinedTerm
230 anzsrc-for:1114 schema:inDefinedTermSet anzsrc-for:
231 schema:name Paediatrics and Reproductive Medicine
232 rdf:type schema:DefinedTerm
233 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
234 schema:name Public Health and Health Services
235 rdf:type schema:DefinedTerm
236 sg:journal.1327417 schema:issn 1472-6963
237 schema:name BMC Health Services Research
238 schema:publisher Springer Nature
239 rdf:type schema:Periodical
240 sg:person.01001023617.22 schema:affiliation grid-institutes:None
241 schema:familyName Filipovic-Pierucci
242 schema:givenName Antoine
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001023617.22
244 rdf:type schema:Person
245 sg:person.01234546413.45 schema:affiliation grid-institutes:grid.508487.6
246 schema:familyName Charles
247 schema:givenName Marie-Aline
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234546413.45
249 rdf:type schema:Person
250 sg:person.01271171771.44 schema:affiliation grid-institutes:None
251 schema:familyName Evain-Brion
252 schema:givenName Danièle
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271171771.44
254 rdf:type schema:Person
255 sg:person.01302040723.01 schema:affiliation grid-institutes:grid.508487.6
256 schema:familyName Tsatsaris
257 schema:givenName Vassilis
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302040723.01
259 rdf:type schema:Person
260 sg:person.01327533357.46 schema:affiliation grid-institutes:grid.466400.0
261 schema:familyName Durand-Zaleski
262 schema:givenName Isabelle
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327533357.46
264 rdf:type schema:Person
265 sg:person.015074516143.85 schema:affiliation grid-institutes:None
266 schema:familyName Marzouk
267 schema:givenName Alicia
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074516143.85
269 rdf:type schema:Person
270 sg:person.0632375557.00 schema:affiliation grid-institutes:grid.463716.1
271 schema:familyName Ego
272 schema:givenName Anne
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632375557.00
274 rdf:type schema:Person
275 sg:person.0640535361.49 schema:affiliation grid-institutes:grid.413235.2
276 schema:familyName Baud
277 schema:givenName Olivier
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640535361.49
279 rdf:type schema:Person
280 sg:person.0765216745.93 schema:affiliation grid-institutes:grid.508487.6
281 schema:familyName Goffinet
282 schema:givenName François
283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765216745.93
284 rdf:type schema:Person
285 grid-institutes:None schema:alternateName PREMUP Foundation, Paris, France
286 URC ECO, Hôtel Dieu 1 Place du Parvis de Notre Dame, 75004, Paris, France
287 schema:name PREMUP Foundation, Paris, France
288 URC ECO, Hôtel Dieu 1 Place du Parvis de Notre Dame, 75004, Paris, France
289 rdf:type schema:Organization
290 grid-institutes:grid.413235.2 schema:alternateName Robert Debré hospital, Paris, France, Inserm U1141, Paris Diderot University, Paris, France
291 schema:name PREMUP Foundation, Paris, France
292 Robert Debré hospital, Paris, France, Inserm U1141, Paris Diderot University, Paris, France
293 rdf:type schema:Organization
294 grid-institutes:grid.463716.1 schema:alternateName Grenoble Alpes University, TIMC-IMAG, CNRS, Grenoble, France
295 schema:name Grenoble Alpes University, TIMC-IMAG, CNRS, Grenoble, France
296 rdf:type schema:Organization
297 grid-institutes:grid.466400.0 schema:alternateName Paris Est university, Créteil, France
298 schema:name AP HP Henri Mondor hospital, Créteil, France
299 INSERM UMRS 1123 (ECEVE), Paris, France
300 PREMUP Foundation, Paris, France
301 Paris Est university, Créteil, France
302 URC ECO, Hôtel Dieu 1 Place du Parvis de Notre Dame, 75004, Paris, France
303 rdf:type schema:Organization
304 grid-institutes:grid.508487.6 schema:alternateName INSERM U1153, Early origin of the child’s health and development team (ORCHAD), Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Paris, France
305 Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé), Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Paris, France
306 Port-Royal maternity, DHU Risk in Pregnancy, Cochin Broca Hôtel-Dieu hospital, INSERM Unité 1139, Paris-Descartes University, Paris, France
307 schema:name INSERM U1153, Early origin of the child’s health and development team (ORCHAD), Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Paris, France
308 Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé), Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Paris, France
309 PREMUP Foundation, Paris, France
310 Port-Royal maternity, DHU Risk in Pregnancy, Cochin Broca Hôtel-Dieu hospital, INSERM Unité 1139, Paris-Descartes University, Paris, France
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...