Importance of medical data preprocessing in predictive modeling and risk factor discovery for the frailty syndrome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Andreas Philipp Hassler, Ernestina Menasalvas, Francisco José García-García, Leocadio Rodríguez-Mañas, Andreas Holzinger

ABSTRACT

BACKGROUND: Increasing life expectancy results in more elderly people struggling with age related diseases and functional conditions. This poses huge challenges towards establishing new approaches for maintaining health at a higher age. An important aspect for age related deterioration of the general patient condition is frailty. The frailty syndrome is associated with a high risk for falls, hospitalization, disability, and finally increased mortality. Using predictive data mining enables the discovery of potential risk factors and can be used as clinical decision support system, which provides the medical doctor with information on the probable clinical patient outcome. This enables the professional to react promptly and to avert likely adverse events in advance. METHODS: Medical data of 474 study participants containing 284 health related parameters, including questionnaire answers, blood parameters and vital parameters from the Toledo Study for Healthy Aging (TSHA) was used. Binary classification models were built in order to distinguish between frail and non-frail study subjects. RESULTS: Using the available TSHA data and the discovered potential predictors, it was possible to design, develop and evaluate a variety of different predictive models for the frailty syndrome. The best performing model was the support vector machine (SVM, 78.31%). Moreover, a methodology was developed, making it possible to explore and to use incomplete medical data and further identify potential predictors and enable interpretability. CONCLUSIONS: This work demonstrates that it is feasible to use incomplete, imbalanced medical data for the development of a predictive model for the frailty syndrome. Moreover, potential predictive factors have been discovered, which were clinically approved by the clinicians. Future work will improve prediction accuracy, especially with regard to separating the group of frail patients into frail and pre-frail ones and analyze the differences among them. More... »

PAGES

33

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12911-019-0747-6

DOI

http://dx.doi.org/10.1186/s12911-019-0747-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112218987

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30777059


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Holzinger Group, HCI-KDD, Institute for Medical Informatics/Statistics, Medical University Graz, 8036, Graz, Austria", 
            "Center for Biomedical Technology, Universidad Politecnica de Madrid, 28000, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hassler", 
        "givenName": "Andreas Philipp", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Center for Biomedical Technology, Universidad Politecnica de Madrid, 28000, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Menasalvas", 
        "givenName": "Ernestina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Geriatric Medicine, Virgen del Valle Geriatric Hospital, 45000, Toledo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Garc\u00eda", 
        "givenName": "Francisco Jos\u00e9", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital de Getafe", 
          "id": "https://www.grid.ac/institutes/grid.411244.6", 
          "name": [
            "Division of Geriatric Medicine, University Hospital of Getafe, 28905, Getafe, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodr\u00edguez-Ma\u00f1as", 
        "givenName": "Leocadio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Holzinger Group, HCI-KDD, Institute for Medical Informatics/Statistics, Medical University Graz, 8036, Graz, Austria", 
            "Institute of Interactive Systems and Data Science, Graz University of Technology, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holzinger", 
        "givenName": "Andreas", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12603-011-0075-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002155909", 
          "https://doi.org/10.1007/s12603-011-0075-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0895-4356(93)90053-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004154063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-43949-5_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004378218", 
          "https://doi.org/10.1007/978-3-319-43949-5_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.162.20.2333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005901788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gerona/59.3.m255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006531374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/amiajnl-2011-000094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007242111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamasurg.2014.241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009030165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11357-012-9396-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011615958", 
          "https://doi.org/10.1007/s11357-012-9396-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipm.2009.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012321154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwt312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012859116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2014.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013219854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3956(82)90033-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016320669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1532-5415.1983.tb03391.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017891718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40708-016-0042-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018492967", 
          "https://doi.org/10.1007/s40708-016-0042-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40708-016-0042-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018492967", 
          "https://doi.org/10.1007/s40708-016-0042-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gerona/56.3.m146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019653483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gerona/gls161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019687572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-78189-1_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020733783", 
          "https://doi.org/10.1007/978-0-387-78189-1_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jamda.2013.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021918250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/widm.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022616007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199406233302501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023874352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73281-5_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024145426", 
          "https://doi.org/10.1007/978-3-540-73281-5_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73281-5_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024145426", 
          "https://doi.org/10.1007/978-3-540-73281-5_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(14)61595-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026032194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1300/j018v05n01_09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026087002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/cclm-2015-0147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026500835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3956(75)90026-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027523106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jamcollsurg.2010.01.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030832769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1532-5415.1996.tb01432.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031935972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)61689-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037992837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/gfm517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039817252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinternmed.2007.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040296410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m2273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043512327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(96)00142-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044522995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470846410.ch27(ii)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046403300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmedinf.2006.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047293305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gerona/61.3.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048362164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006199-197005000-00029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052200028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006199-197005000-00029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052200028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5254.708428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061186227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v036.i11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v045.i03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-157-1-201207030-00450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073712950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(06)72521-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077324412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/make1010001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090332736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108236251", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781315139470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108236251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781315139470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108236251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b11826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109727146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-018-1361-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110448716", 
          "https://doi.org/10.1007/s10489-018-1361-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-018-1361-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110448716", 
          "https://doi.org/10.1007/s10489-018-1361-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/jos-2018-0048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110735705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/jos-2018-0048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110735705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/jos-2018-0048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110735705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/jos-2018-0048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110735705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/jos-2018-0048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110735705"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Increasing life expectancy results in more elderly people struggling with age related diseases and functional conditions. This poses huge challenges towards establishing new approaches for maintaining health at a higher age. An important aspect for age related deterioration of the general patient condition is frailty. The frailty syndrome is associated with a high risk for falls, hospitalization, disability, and finally increased mortality. Using predictive data mining enables the discovery of potential risk factors and can be used as clinical decision support system, which provides the medical doctor with information on the probable clinical patient outcome. This enables the professional to react promptly and to avert likely adverse events in advance.\nMETHODS: Medical data of 474 study participants containing 284 health related parameters, including questionnaire answers, blood parameters and vital parameters from the Toledo Study for Healthy Aging (TSHA) was used. Binary classification models were built in order to distinguish between frail and non-frail study subjects.\nRESULTS: Using the available TSHA data and the discovered potential predictors, it was possible to design, develop and evaluate a variety of different predictive models for the frailty syndrome. The best performing model was the support vector machine (SVM, 78.31%). Moreover, a methodology was developed, making it possible to explore and to use incomplete medical data and further identify potential predictors and enable interpretability.\nCONCLUSIONS: This work demonstrates that it is feasible to use incomplete, imbalanced medical data for the development of a predictive model for the frailty syndrome. Moreover, potential predictive factors have been discovered, which were clinically approved by the clinicians. Future work will improve prediction accuracy, especially with regard to separating the group of frail patients into frail and pre-frail ones and analyze the differences among them.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12911-019-0747-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1028432", 
        "issn": [
          "1472-6947"
        ], 
        "name": "BMC Medical Informatics and Decision Making", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Importance of medical data preprocessing in predictive modeling and risk factor discovery for the frailty syndrome", 
    "pagination": "33", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "baeca351c92a599024c882a34b73793b825b6f92985414de34fe3eef9c8777ea"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30777059"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101088682"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12911-019-0747-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112218987"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12911-019-0747-6", 
      "https://app.dimensions.ai/details/publication/pub.1112218987"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12911-019-0747-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12911-019-0747-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12911-019-0747-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12911-019-0747-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12911-019-0747-6'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      21 PREDICATES      76 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12911-019-0747-6 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N90461c8fd37249dca4399a2c819b250e
4 schema:citation sg:pub.10.1007/978-0-387-78189-1_8
5 sg:pub.10.1007/978-3-319-43949-5_2
6 sg:pub.10.1007/978-3-540-73281-5_11
7 sg:pub.10.1007/s10489-018-1361-5
8 sg:pub.10.1007/s11357-012-9396-8
9 sg:pub.10.1007/s12603-011-0075-8
10 sg:pub.10.1007/s40708-016-0042-6
11 https://app.dimensions.ai/details/publication/pub.1108236251
12 https://doi.org/10.1001/archinte.162.20.2333
13 https://doi.org/10.1001/archinternmed.2007.113
14 https://doi.org/10.1001/jamasurg.2014.241
15 https://doi.org/10.1002/0470846410.ch27(ii)
16 https://doi.org/10.1002/widm.23
17 https://doi.org/10.1016/0022-3956(75)90026-6
18 https://doi.org/10.1016/0022-3956(82)90033-4
19 https://doi.org/10.1016/0895-4356(93)90053-4
20 https://doi.org/10.1016/j.ijmedinf.2006.11.006
21 https://doi.org/10.1016/j.ipm.2009.03.002
22 https://doi.org/10.1016/j.jamcollsurg.2010.01.028
23 https://doi.org/10.1016/j.jamda.2013.08.016
24 https://doi.org/10.1016/j.neunet.2014.09.003
25 https://doi.org/10.1016/s0031-3203(96)00142-2
26 https://doi.org/10.1016/s0140-6736(12)61689-4
27 https://doi.org/10.1016/s0140-6736(14)61595-6
28 https://doi.org/10.1056/nejm199406233302501
29 https://doi.org/10.1093/aje/kwt312
30 https://doi.org/10.1093/gerona/56.3.m146
31 https://doi.org/10.1093/gerona/59.3.m255
32 https://doi.org/10.1093/gerona/61.3.262
33 https://doi.org/10.1093/gerona/gls161
34 https://doi.org/10.1093/ndt/gfm517
35 https://doi.org/10.1097/00006199-197005000-00029
36 https://doi.org/10.1109/5254.708428
37 https://doi.org/10.1111/j.1532-5415.1983.tb03391.x
38 https://doi.org/10.1111/j.1532-5415.1996.tb01432.x
39 https://doi.org/10.1136/amiajnl-2011-000094
40 https://doi.org/10.1197/jamia.m2273
41 https://doi.org/10.1201/9781315139470
42 https://doi.org/10.1201/b11826
43 https://doi.org/10.1300/j018v05n01_09
44 https://doi.org/10.1515/cclm-2015-0147
45 https://doi.org/10.18637/jss.v036.i11
46 https://doi.org/10.18637/jss.v045.i03
47 https://doi.org/10.2478/jos-2018-0048
48 https://doi.org/10.3168/jds.s0022-0302(06)72521-8
49 https://doi.org/10.3390/make1010001
50 https://doi.org/10.7326/0003-4819-157-1-201207030-00450
51 schema:datePublished 2019-12
52 schema:datePublishedReg 2019-12-01
53 schema:description BACKGROUND: Increasing life expectancy results in more elderly people struggling with age related diseases and functional conditions. This poses huge challenges towards establishing new approaches for maintaining health at a higher age. An important aspect for age related deterioration of the general patient condition is frailty. The frailty syndrome is associated with a high risk for falls, hospitalization, disability, and finally increased mortality. Using predictive data mining enables the discovery of potential risk factors and can be used as clinical decision support system, which provides the medical doctor with information on the probable clinical patient outcome. This enables the professional to react promptly and to avert likely adverse events in advance. METHODS: Medical data of 474 study participants containing 284 health related parameters, including questionnaire answers, blood parameters and vital parameters from the Toledo Study for Healthy Aging (TSHA) was used. Binary classification models were built in order to distinguish between frail and non-frail study subjects. RESULTS: Using the available TSHA data and the discovered potential predictors, it was possible to design, develop and evaluate a variety of different predictive models for the frailty syndrome. The best performing model was the support vector machine (SVM, 78.31%). Moreover, a methodology was developed, making it possible to explore and to use incomplete medical data and further identify potential predictors and enable interpretability. CONCLUSIONS: This work demonstrates that it is feasible to use incomplete, imbalanced medical data for the development of a predictive model for the frailty syndrome. Moreover, potential predictive factors have been discovered, which were clinically approved by the clinicians. Future work will improve prediction accuracy, especially with regard to separating the group of frail patients into frail and pre-frail ones and analyze the differences among them.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf Na4eb68abc49b49a595d0b431434dc697
58 Nd43ce0688ba447e4a00442537e460356
59 sg:journal.1028432
60 schema:name Importance of medical data preprocessing in predictive modeling and risk factor discovery for the frailty syndrome
61 schema:pagination 33
62 schema:productId N079a5ac9113449b0881e7729f2258e28
63 N50cdc96ca447499693d68cbd3a1de831
64 N599adb6887bb4e77a64b240bd599fc77
65 N9a7002a8f7b84de68aeb4bdeb1a65b02
66 Ndbc4c0ff559f40b6b1decf2e33f53afd
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112218987
68 https://doi.org/10.1186/s12911-019-0747-6
69 schema:sdDatePublished 2019-04-11T13:49
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N711dfd3c66d0408092a69b4193689707
72 schema:url https://link.springer.com/10.1186%2Fs12911-019-0747-6
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N079a5ac9113449b0881e7729f2258e28 schema:name dimensions_id
77 schema:value pub.1112218987
78 rdf:type schema:PropertyValue
79 N0f22d7166a6f4817b308a8e907d0665b schema:affiliation https://www.grid.ac/institutes/grid.411244.6
80 schema:familyName Rodríguez-Mañas
81 schema:givenName Leocadio
82 rdf:type schema:Person
83 N2869c85a816c4f39914f560b3141e33a schema:name Division of Geriatric Medicine, Virgen del Valle Geriatric Hospital, 45000, Toledo, Spain
84 rdf:type schema:Organization
85 N50cdc96ca447499693d68cbd3a1de831 schema:name pubmed_id
86 schema:value 30777059
87 rdf:type schema:PropertyValue
88 N51347696f0e447e497e33456d0656712 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
89 schema:familyName Holzinger
90 schema:givenName Andreas
91 rdf:type schema:Person
92 N599adb6887bb4e77a64b240bd599fc77 schema:name readcube_id
93 schema:value baeca351c92a599024c882a34b73793b825b6f92985414de34fe3eef9c8777ea
94 rdf:type schema:PropertyValue
95 N711dfd3c66d0408092a69b4193689707 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N90461c8fd37249dca4399a2c819b250e rdf:first N9e1ee7ad49ed4e6ea681b93e64b4af76
98 rdf:rest Nafcc064ce50842a99b7ac49a39bd6a62
99 N964469e8c36a4deda24bff9045c770d7 rdf:first N51347696f0e447e497e33456d0656712
100 rdf:rest rdf:nil
101 N9a7002a8f7b84de68aeb4bdeb1a65b02 schema:name nlm_unique_id
102 schema:value 101088682
103 rdf:type schema:PropertyValue
104 N9e1ee7ad49ed4e6ea681b93e64b4af76 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
105 schema:familyName Hassler
106 schema:givenName Andreas Philipp
107 rdf:type schema:Person
108 Na12cb6aff74a45069ce1f60718e696d0 schema:affiliation N2869c85a816c4f39914f560b3141e33a
109 schema:familyName García-García
110 schema:givenName Francisco José
111 rdf:type schema:Person
112 Na395165bbe724df59836737a6aa02466 rdf:first Na12cb6aff74a45069ce1f60718e696d0
113 rdf:rest Nc0ea157976ca428595bb4055f1179fc2
114 Na4eb68abc49b49a595d0b431434dc697 schema:volumeNumber 19
115 rdf:type schema:PublicationVolume
116 Nafcc064ce50842a99b7ac49a39bd6a62 rdf:first Nfa5e757ac4ad47479eb7ccf7046978e7
117 rdf:rest Na395165bbe724df59836737a6aa02466
118 Nc0ea157976ca428595bb4055f1179fc2 rdf:first N0f22d7166a6f4817b308a8e907d0665b
119 rdf:rest N964469e8c36a4deda24bff9045c770d7
120 Nd43ce0688ba447e4a00442537e460356 schema:issueNumber 1
121 rdf:type schema:PublicationIssue
122 Ndbc4c0ff559f40b6b1decf2e33f53afd schema:name doi
123 schema:value 10.1186/s12911-019-0747-6
124 rdf:type schema:PropertyValue
125 Nfa5e757ac4ad47479eb7ccf7046978e7 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
126 schema:familyName Menasalvas
127 schema:givenName Ernestina
128 rdf:type schema:Person
129 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
130 schema:name Medical and Health Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
133 schema:name Public Health and Health Services
134 rdf:type schema:DefinedTerm
135 sg:journal.1028432 schema:issn 1472-6947
136 schema:name BMC Medical Informatics and Decision Making
137 rdf:type schema:Periodical
138 sg:pub.10.1007/978-0-387-78189-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020733783
139 https://doi.org/10.1007/978-0-387-78189-1_8
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-319-43949-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004378218
142 https://doi.org/10.1007/978-3-319-43949-5_2
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-3-540-73281-5_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024145426
145 https://doi.org/10.1007/978-3-540-73281-5_11
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10489-018-1361-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110448716
148 https://doi.org/10.1007/s10489-018-1361-5
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s11357-012-9396-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011615958
151 https://doi.org/10.1007/s11357-012-9396-8
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s12603-011-0075-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002155909
154 https://doi.org/10.1007/s12603-011-0075-8
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s40708-016-0042-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018492967
157 https://doi.org/10.1007/s40708-016-0042-6
158 rdf:type schema:CreativeWork
159 https://app.dimensions.ai/details/publication/pub.1108236251 schema:CreativeWork
160 https://doi.org/10.1001/archinte.162.20.2333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005901788
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1001/archinternmed.2007.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040296410
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1001/jamasurg.2014.241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009030165
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/0470846410.ch27(ii) schema:sameAs https://app.dimensions.ai/details/publication/pub.1046403300
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/widm.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022616007
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0022-3956(75)90026-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027523106
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/0022-3956(82)90033-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016320669
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0895-4356(93)90053-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004154063
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.ijmedinf.2006.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047293305
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.ipm.2009.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012321154
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.jamcollsurg.2010.01.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030832769
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jamda.2013.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021918250
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.neunet.2014.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013219854
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0031-3203(96)00142-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044522995
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0140-6736(12)61689-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037992837
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0140-6736(14)61595-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026032194
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1056/nejm199406233302501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023874352
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/aje/kwt312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012859116
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/gerona/56.3.m146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019653483
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/gerona/59.3.m255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006531374
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/gerona/61.3.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048362164
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/gerona/gls161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019687572
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/ndt/gfm517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039817252
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1097/00006199-197005000-00029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052200028
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/5254.708428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061186227
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/j.1532-5415.1983.tb03391.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017891718
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1111/j.1532-5415.1996.tb01432.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031935972
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1136/amiajnl-2011-000094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007242111
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1197/jamia.m2273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043512327
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1201/9781315139470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108236251
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1201/b11826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109727146
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1300/j018v05n01_09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026087002
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1515/cclm-2015-0147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026500835
225 rdf:type schema:CreativeWork
226 https://doi.org/10.18637/jss.v036.i11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672554
227 rdf:type schema:CreativeWork
228 https://doi.org/10.18637/jss.v045.i03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672674
229 rdf:type schema:CreativeWork
230 https://doi.org/10.2478/jos-2018-0048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110735705
231 rdf:type schema:CreativeWork
232 https://doi.org/10.3168/jds.s0022-0302(06)72521-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077324412
233 rdf:type schema:CreativeWork
234 https://doi.org/10.3390/make1010001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090332736
235 rdf:type schema:CreativeWork
236 https://doi.org/10.7326/0003-4819-157-1-201207030-00450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073712950
237 rdf:type schema:CreativeWork
238 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
239 schema:name Holzinger Group, HCI-KDD, Institute for Medical Informatics/Statistics, Medical University Graz, 8036, Graz, Austria
240 Institute of Interactive Systems and Data Science, Graz University of Technology, 8010, Graz, Austria
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.411244.6 schema:alternateName Hospital de Getafe
243 schema:name Division of Geriatric Medicine, University Hospital of Getafe, 28905, Getafe, Spain
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
246 schema:name Center for Biomedical Technology, Universidad Politecnica de Madrid, 28000, Madrid, Spain
247 Holzinger Group, HCI-KDD, Institute for Medical Informatics/Statistics, Medical University Graz, 8036, Graz, Austria
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...