Timeline representation of clinical data: usability and added value for pharmacovigilance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-19

AUTHORS

Thibault Ledieu, Guillaume Bouzillé, Frantz Thiessard, Karine Berquet, Pascal Van Hille, Eric Renault, Elisabeth Polard, Marc Cuggia

ABSTRACT

BACKGROUND: Pharmacovigilance consists in monitoring and preventing the occurrence of adverse drug reactions (ADR). This activity requires the collection and analysis of data from the patient record or any other sources to find clues of a causality link between the drug and the ADR. This can be time-consuming because often patient data are heterogeneous and scattered in several files. To facilitate this task, we developed a timeline prototype to gather and classify patient data according to their chronology. Here, we evaluated its usability and quantified its contribution to routine pharmacovigilance using real ADR cases. METHODS: The timeline prototype was assessed using the biomedical data warehouse eHOP (from entrepôt de données biomédicales de l'HOPital) of the Rennes University Hospital Centre. First, the prototype usability was tested by six experts of the Regional Pharmacovigilance Centre of Rennes. Their experience was assessed with the MORAE software and a System and Usability Scale (SUS) questionnaire. Then, to quantify the timeline contribution to pharmacovigilance routine practice, three of them were asked to investigate possible ADR cases with the "Usual method" (analysis of electronic health record data with the DxCare software) or the "Timeline method". The time to complete the task and the data quality in their reports (using the vigiGrade Completeness score) were recorded and compared between methods. RESULTS: All participants completed their tasks. The usability could be considered almost excellent with an average SUS score of 82.5/100. The time to complete the assessment was comparable between methods (P = 0.38) as well as the average vigiGrade Completeness of the data collected with the two methods (P = 0.49). CONCLUSIONS: The results showed a good general level of usability for the timeline prototype. Conversely, no difference in terms of the time spent on each ADR case and data quality was found compared with the usual method. However, this absence of difference between the timeline and the usual tools that have been in use for several years suggests a potential use in pharmacovigilance especially because the testers asked to continue using the timeline after the evaluation. More... »

PAGES

86

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12911-018-0667-x

DOI

http://dx.doi.org/10.1186/s12911-018-0667-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107723165

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30340483


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adverse Drug Reaction Reporting Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Accuracy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Warehousing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug-Related Side Effects and Adverse Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electronic Health Records", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmacovigilance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Rennes 1, LTSI, F-35000 Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.463996.7", 
          "name": [
            "INSERM, U1099, F-35000 Rennes, France", 
            "Universit\u00e9 de Rennes 1, LTSI, F-35000 Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ledieu", 
        "givenName": "Thibault", 
        "id": "sg:person.01305626417.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305626417.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CHU Rennes, F-35000 Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "INSERM, U1099, F-35000 Rennes, France", 
            "Universit\u00e9 de Rennes 1, LTSI, F-35000 Rennes, France", 
            "CHU Rennes, F-35000 Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouzill\u00e9", 
        "givenName": "Guillaume", 
        "id": "sg:person.0664003152.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664003152.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ERIAS, INSERM U897, ISPED, Universit\u00e9 Bordeaux, Bordeaux, France", 
          "id": "http://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "ERIAS, INSERM U897, ISPED, Universit\u00e9 Bordeaux, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thiessard", 
        "givenName": "Frantz", 
        "id": "sg:person.01364244501.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364244501.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre R\u00e9gional de Pharmacovigilance, CHU Pontchaillou, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Centre R\u00e9gional de Pharmacovigilance, CHU Pontchaillou, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berquet", 
        "givenName": "Karine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CHU Rennes, F-35000 Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "INSERM, U1099, F-35000 Rennes, France", 
            "Universit\u00e9 de Rennes 1, LTSI, F-35000 Rennes, France", 
            "CHU Rennes, F-35000 Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Hille", 
        "givenName": "Pascal", 
        "id": "sg:person.01305120210.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305120210.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Rennes 1, LTSI, F-35000 Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.463996.7", 
          "name": [
            "INSERM, U1099, F-35000 Rennes, France", 
            "Universit\u00e9 de Rennes 1, LTSI, F-35000 Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Renault", 
        "givenName": "Eric", 
        "id": "sg:person.01237513217.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237513217.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre R\u00e9gional de Pharmacovigilance, CHU Pontchaillou, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Centre R\u00e9gional de Pharmacovigilance, CHU Pontchaillou, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Polard", 
        "givenName": "Elisabeth", 
        "id": "sg:person.01275357253.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275357253.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CHU Rennes, F-35000 Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "INSERM, U1099, F-35000 Rennes, France", 
            "Universit\u00e9 de Rennes 1, LTSI, F-35000 Rennes, France", 
            "CHU Rennes, F-35000 Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cuggia", 
        "givenName": "Marc", 
        "id": "sg:person.0756754433.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756754433.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-02806-9_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028486836", 
          "https://doi.org/10.1007/978-3-642-02806-9_12"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-19", 
    "datePublishedReg": "2018-10-19", 
    "description": "BACKGROUND: Pharmacovigilance consists in monitoring and preventing the occurrence of adverse drug reactions (ADR). This activity requires the collection and analysis of data from the patient record or any other sources to find clues of a causality link between the drug and the ADR. This can be time-consuming because often patient data are heterogeneous and scattered in several files. To facilitate this task, we developed a timeline prototype to gather and classify patient data according to their chronology. Here, we evaluated its usability and quantified its contribution to routine pharmacovigilance using real ADR cases.\nMETHODS: The timeline prototype was assessed using the biomedical data warehouse eHOP (from entrep\u00f4t\u2002de\u2002donn\u00e9es\u2002biom\u00e9dicales\u2002de\u2002l'HOPital) of the Rennes University Hospital Centre. First, the prototype usability was tested by six experts of the Regional Pharmacovigilance Centre of Rennes. Their experience was assessed with the MORAE software and a System and Usability Scale (SUS) questionnaire. Then, to quantify the timeline contribution to pharmacovigilance routine practice, three of them were asked to investigate possible ADR cases with the \"Usual method\" (analysis of electronic health record data with the DxCare software) or the \"Timeline method\". The time to complete the task and the data quality in their reports (using the vigiGrade Completeness score) were recorded and compared between methods.\nRESULTS: All participants completed their tasks. The usability could be considered almost excellent with an average SUS score of 82.5/100. The time to complete the assessment was comparable between methods (P\u2009=\u20090.38) as well as the average vigiGrade Completeness of the data collected with the two methods (P\u2009=\u20090.49).\nCONCLUSIONS: The results showed a good general level of usability for the timeline prototype. Conversely, no difference in terms of the time spent on each ADR case and data quality was found compared with the usual method. However, this absence of difference between the timeline and the usual tools that have been in use for several years suggests a potential use in pharmacovigilance especially because the testers asked to continue using the timeline after the evaluation.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12911-018-0667-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4524650", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028432", 
        "issn": [
          "1472-6947"
        ], 
        "name": "BMC Medical Informatics and Decision Making", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "data quality", 
      "average SUS score", 
      "prototype usability", 
      "timeline representation", 
      "patient data", 
      "SUS score", 
      "usability", 
      "task", 
      "prototype", 
      "routine pharmacovigilance", 
      "usual tools", 
      "patient records", 
      "good general level", 
      "eHOP", 
      "timeline method", 
      "software", 
      "files", 
      "timeline", 
      "data", 
      "method", 
      "representation", 
      "analysis of data", 
      "pharmacovigilance", 
      "experts", 
      "quality", 
      "tool", 
      "completeness", 
      "collection", 
      "usual method", 
      "system", 
      "time", 
      "monitoring", 
      "use", 
      "link", 
      "Rennes", 
      "tester", 
      "evaluation", 
      "contribution", 
      "terms", 
      "ADR cases", 
      "experience", 
      "records", 
      "results", 
      "cases", 
      "clinical data", 
      "center", 
      "general level", 
      "source", 
      "practice", 
      "adverse drug reactions", 
      "scale questionnaire", 
      "analysis", 
      "clues", 
      "causality link", 
      "potential use", 
      "assessment", 
      "values", 
      "participants", 
      "Hospital Center", 
      "levels", 
      "scores", 
      "years", 
      "drug reactions", 
      "routine practice", 
      "activity", 
      "Pharmacovigilance Centre", 
      "University Hospital Center", 
      "report", 
      "occurrence", 
      "differences", 
      "questionnaire", 
      "regional pharmacovigilance centres", 
      "absence", 
      "absence of differences", 
      "drugs", 
      "chronology", 
      "reaction", 
      "timeline prototype", 
      "real ADR cases", 
      "biomedical data warehouse eHOP", 
      "data warehouse eHOP", 
      "warehouse eHOP", 
      "Rennes University Hospital Centre", 
      "MORAE software", 
      "Usability Scale (SUS) questionnaire", 
      "timeline contribution", 
      "pharmacovigilance routine practice", 
      "possible ADR cases", 
      "average vigiGrade Completeness", 
      "vigiGrade Completeness"
    ], 
    "name": "Timeline representation of clinical data: usability and added value for pharmacovigilance", 
    "pagination": "86", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107723165"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12911-018-0667-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30340483"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12911-018-0667-x", 
      "https://app.dimensions.ai/details/publication/pub.1107723165"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_764.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12911-018-0667-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12911-018-0667-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12911-018-0667-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12911-018-0667-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12911-018-0667-x'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      22 PREDICATES      128 URIs      117 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12911-018-0667-x schema:about N1dee62badd964e45aee7416e1eb8108f
2 N39ab27ddb8f1403a922d32337966f113
3 N6e690a8c63e941dab30bb1d0ecca3024
4 N856fa7ddc4044a4794dcda8bbf1352de
5 N8cde956f25aa460890f093cf3eb92db4
6 Nd04ee3d251634763818419d7f2046676
7 Nd91b3102ab664bc49266bd011253f0a9
8 Nd961727270914c7aacde4c0cdbe9696f
9 Necf29d41896047d786509f7505a538a7
10 anzsrc-for:08
11 anzsrc-for:0806
12 anzsrc-for:11
13 anzsrc-for:1117
14 schema:author Nc3315e077485447db6cc62772fd4e4ed
15 schema:citation sg:pub.10.1007/978-3-642-02806-9_12
16 schema:datePublished 2018-10-19
17 schema:datePublishedReg 2018-10-19
18 schema:description BACKGROUND: Pharmacovigilance consists in monitoring and preventing the occurrence of adverse drug reactions (ADR). This activity requires the collection and analysis of data from the patient record or any other sources to find clues of a causality link between the drug and the ADR. This can be time-consuming because often patient data are heterogeneous and scattered in several files. To facilitate this task, we developed a timeline prototype to gather and classify patient data according to their chronology. Here, we evaluated its usability and quantified its contribution to routine pharmacovigilance using real ADR cases. METHODS: The timeline prototype was assessed using the biomedical data warehouse eHOP (from entrepôt de données biomédicales de l'HOPital) of the Rennes University Hospital Centre. First, the prototype usability was tested by six experts of the Regional Pharmacovigilance Centre of Rennes. Their experience was assessed with the MORAE software and a System and Usability Scale (SUS) questionnaire. Then, to quantify the timeline contribution to pharmacovigilance routine practice, three of them were asked to investigate possible ADR cases with the "Usual method" (analysis of electronic health record data with the DxCare software) or the "Timeline method". The time to complete the task and the data quality in their reports (using the vigiGrade Completeness score) were recorded and compared between methods. RESULTS: All participants completed their tasks. The usability could be considered almost excellent with an average SUS score of 82.5/100. The time to complete the assessment was comparable between methods (P = 0.38) as well as the average vigiGrade Completeness of the data collected with the two methods (P = 0.49). CONCLUSIONS: The results showed a good general level of usability for the timeline prototype. Conversely, no difference in terms of the time spent on each ADR case and data quality was found compared with the usual method. However, this absence of difference between the timeline and the usual tools that have been in use for several years suggests a potential use in pharmacovigilance especially because the testers asked to continue using the timeline after the evaluation.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N192747fa0baf4b85b8df5e04775e4963
23 N72a58917631a4d7789334673cd4d1dc4
24 sg:journal.1028432
25 schema:keywords ADR cases
26 Hospital Center
27 MORAE software
28 Pharmacovigilance Centre
29 Rennes
30 Rennes University Hospital Centre
31 SUS score
32 University Hospital Center
33 Usability Scale (SUS) questionnaire
34 absence
35 absence of differences
36 activity
37 adverse drug reactions
38 analysis
39 analysis of data
40 assessment
41 average SUS score
42 average vigiGrade Completeness
43 biomedical data warehouse eHOP
44 cases
45 causality link
46 center
47 chronology
48 clinical data
49 clues
50 collection
51 completeness
52 contribution
53 data
54 data quality
55 data warehouse eHOP
56 differences
57 drug reactions
58 drugs
59 eHOP
60 evaluation
61 experience
62 experts
63 files
64 general level
65 good general level
66 levels
67 link
68 method
69 monitoring
70 occurrence
71 participants
72 patient data
73 patient records
74 pharmacovigilance
75 pharmacovigilance routine practice
76 possible ADR cases
77 potential use
78 practice
79 prototype
80 prototype usability
81 quality
82 questionnaire
83 reaction
84 real ADR cases
85 records
86 regional pharmacovigilance centres
87 report
88 representation
89 results
90 routine pharmacovigilance
91 routine practice
92 scale questionnaire
93 scores
94 software
95 source
96 system
97 task
98 terms
99 tester
100 time
101 timeline
102 timeline contribution
103 timeline method
104 timeline prototype
105 timeline representation
106 tool
107 usability
108 use
109 usual method
110 usual tools
111 values
112 vigiGrade Completeness
113 warehouse eHOP
114 years
115 schema:name Timeline representation of clinical data: usability and added value for pharmacovigilance
116 schema:pagination 86
117 schema:productId N2ca89c8ad5694d0ebd69fe660aa9a899
118 N5ad61c6e9d37481492a9d9cbcd5a11ef
119 N754cf0c370ef410392618ae164d03a2d
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107723165
121 https://doi.org/10.1186/s12911-018-0667-x
122 schema:sdDatePublished 2021-12-01T19:39
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher N386923a6f1684bb1b72fab4c78f73a2a
125 schema:url https://doi.org/10.1186/s12911-018-0667-x
126 sgo:license sg:explorer/license/
127 sgo:sdDataset articles
128 rdf:type schema:ScholarlyArticle
129 N192747fa0baf4b85b8df5e04775e4963 schema:issueNumber 1
130 rdf:type schema:PublicationIssue
131 N1dee62badd964e45aee7416e1eb8108f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Surveys and Questionnaires
133 rdf:type schema:DefinedTerm
134 N2ca89c8ad5694d0ebd69fe660aa9a899 schema:name doi
135 schema:value 10.1186/s12911-018-0667-x
136 rdf:type schema:PropertyValue
137 N386923a6f1684bb1b72fab4c78f73a2a schema:name Springer Nature - SN SciGraph project
138 rdf:type schema:Organization
139 N3919e4f5ff4244768a6468f1054659e7 rdf:first N66e5796b18174ad5a11192ec4a7ebf61
140 rdf:rest N9d7a33b6d88540afabe364926233cbaf
141 N39ab27ddb8f1403a922d32337966f113 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Pharmacovigilance
143 rdf:type schema:DefinedTerm
144 N5ad61c6e9d37481492a9d9cbcd5a11ef schema:name dimensions_id
145 schema:value pub.1107723165
146 rdf:type schema:PropertyValue
147 N66e5796b18174ad5a11192ec4a7ebf61 schema:affiliation grid-institutes:grid.414271.5
148 schema:familyName Berquet
149 schema:givenName Karine
150 rdf:type schema:Person
151 N6e690a8c63e941dab30bb1d0ecca3024 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Data Warehousing
153 rdf:type schema:DefinedTerm
154 N72a58917631a4d7789334673cd4d1dc4 schema:volumeNumber 18
155 rdf:type schema:PublicationVolume
156 N754cf0c370ef410392618ae164d03a2d schema:name pubmed_id
157 schema:value 30340483
158 rdf:type schema:PropertyValue
159 N7f5000b0273a47fb803545b58f3b5b90 rdf:first sg:person.0664003152.63
160 rdf:rest Nca571dacd8974c7c8837946ac4187f53
161 N856fa7ddc4044a4794dcda8bbf1352de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Data Accuracy
163 rdf:type schema:DefinedTerm
164 N8cde956f25aa460890f093cf3eb92db4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Adverse Drug Reaction Reporting Systems
166 rdf:type schema:DefinedTerm
167 N9d7a33b6d88540afabe364926233cbaf rdf:first sg:person.01305120210.23
168 rdf:rest Nc54d8fe9cfbc4f69a6db511417c99d4a
169 Nb3d0d72bf2a0460da9e9113dab8ef30e rdf:first sg:person.01275357253.74
170 rdf:rest Nb9a0e8abb4e14644ab2393008f97bbcd
171 Nb9a0e8abb4e14644ab2393008f97bbcd rdf:first sg:person.0756754433.90
172 rdf:rest rdf:nil
173 Nc3315e077485447db6cc62772fd4e4ed rdf:first sg:person.01305626417.19
174 rdf:rest N7f5000b0273a47fb803545b58f3b5b90
175 Nc54d8fe9cfbc4f69a6db511417c99d4a rdf:first sg:person.01237513217.03
176 rdf:rest Nb3d0d72bf2a0460da9e9113dab8ef30e
177 Nca571dacd8974c7c8837946ac4187f53 rdf:first sg:person.01364244501.47
178 rdf:rest N3919e4f5ff4244768a6468f1054659e7
179 Nd04ee3d251634763818419d7f2046676 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Humans
181 rdf:type schema:DefinedTerm
182 Nd91b3102ab664bc49266bd011253f0a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Software
184 rdf:type schema:DefinedTerm
185 Nd961727270914c7aacde4c0cdbe9696f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Drug-Related Side Effects and Adverse Reactions
187 rdf:type schema:DefinedTerm
188 Necf29d41896047d786509f7505a538a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Electronic Health Records
190 rdf:type schema:DefinedTerm
191 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
192 schema:name Information and Computing Sciences
193 rdf:type schema:DefinedTerm
194 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
195 schema:name Information Systems
196 rdf:type schema:DefinedTerm
197 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
198 schema:name Medical and Health Sciences
199 rdf:type schema:DefinedTerm
200 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
201 schema:name Public Health and Health Services
202 rdf:type schema:DefinedTerm
203 sg:grant.4524650 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-018-0667-x
204 rdf:type schema:MonetaryGrant
205 sg:journal.1028432 schema:issn 1472-6947
206 schema:name BMC Medical Informatics and Decision Making
207 schema:publisher Springer Nature
208 rdf:type schema:Periodical
209 sg:person.01237513217.03 schema:affiliation grid-institutes:grid.463996.7
210 schema:familyName Renault
211 schema:givenName Eric
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237513217.03
213 rdf:type schema:Person
214 sg:person.01275357253.74 schema:affiliation grid-institutes:grid.414271.5
215 schema:familyName Polard
216 schema:givenName Elisabeth
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275357253.74
218 rdf:type schema:Person
219 sg:person.01305120210.23 schema:affiliation grid-institutes:grid.411154.4
220 schema:familyName Van Hille
221 schema:givenName Pascal
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305120210.23
223 rdf:type schema:Person
224 sg:person.01305626417.19 schema:affiliation grid-institutes:grid.463996.7
225 schema:familyName Ledieu
226 schema:givenName Thibault
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305626417.19
228 rdf:type schema:Person
229 sg:person.01364244501.47 schema:affiliation grid-institutes:grid.412041.2
230 schema:familyName Thiessard
231 schema:givenName Frantz
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364244501.47
233 rdf:type schema:Person
234 sg:person.0664003152.63 schema:affiliation grid-institutes:grid.411154.4
235 schema:familyName Bouzillé
236 schema:givenName Guillaume
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664003152.63
238 rdf:type schema:Person
239 sg:person.0756754433.90 schema:affiliation grid-institutes:grid.411154.4
240 schema:familyName Cuggia
241 schema:givenName Marc
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756754433.90
243 rdf:type schema:Person
244 sg:pub.10.1007/978-3-642-02806-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028486836
245 https://doi.org/10.1007/978-3-642-02806-9_12
246 rdf:type schema:CreativeWork
247 grid-institutes:grid.411154.4 schema:alternateName CHU Rennes, F-35000 Rennes, France
248 schema:name CHU Rennes, F-35000 Rennes, France
249 INSERM, U1099, F-35000 Rennes, France
250 Université de Rennes 1, LTSI, F-35000 Rennes, France
251 rdf:type schema:Organization
252 grid-institutes:grid.412041.2 schema:alternateName ERIAS, INSERM U897, ISPED, Université Bordeaux, Bordeaux, France
253 schema:name ERIAS, INSERM U897, ISPED, Université Bordeaux, Bordeaux, France
254 rdf:type schema:Organization
255 grid-institutes:grid.414271.5 schema:alternateName Centre Régional de Pharmacovigilance, CHU Pontchaillou, Rennes, France
256 schema:name Centre Régional de Pharmacovigilance, CHU Pontchaillou, Rennes, France
257 rdf:type schema:Organization
258 grid-institutes:grid.463996.7 schema:alternateName Université de Rennes 1, LTSI, F-35000 Rennes, France
259 schema:name INSERM, U1099, F-35000 Rennes, France
260 Université de Rennes 1, LTSI, F-35000 Rennes, France
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...