Pharmacological risk factors associated with hospital readmission rates in a psychiatric cohort identified using prescriptome data mining View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09-14

AUTHORS

Khader Shameer, M. Mercedes Perez-Rodriguez, Roy Bachar, Li Li, Amy Johnson, Kipp W. Johnson, Benjamin S. Glicksberg, Milo R. Smith, Ben Readhead, Joseph Scarpa, Jebakumar Jebakaran, Patricia Kovatch, Sabina Lim, Wayne Goodman, David L. Reich, Andrew Kasarskis, Nicholas P. Tatonetti, Joel T. Dudley

ABSTRACT

BACKGROUND: Worldwide, over 14% of individuals hospitalized for psychiatric reasons have readmissions to hospitals within 30 days after discharge. Predicting patients at risk and leveraging accelerated interventions can reduce the rates of early readmission, a negative clinical outcome (i.e., a treatment failure) that affects the quality of life of patient. To implement individualized interventions, it is necessary to predict those individuals at highest risk for 30-day readmission. In this study, our aim was to conduct a data-driven investigation to find the pharmacological factors influencing 30-day all-cause, intra- and interdepartmental readmissions after an index psychiatric admission, using the compendium of prescription data (prescriptome) from electronic medical records (EMR). METHODS: The data scientists in the project received a deidentified database from the Mount Sinai Data Warehouse, which was used to perform all analyses. Data was stored in a secured MySQL database, normalized and indexed using a unique hexadecimal identifier associated with the data for psychiatric illness visits. We used Bayesian logistic regression models to evaluate the association of prescription data with 30-day readmission risk. We constructed individual models and compiled results after adjusting for covariates, including drug exposure, age, and gender. We also performed digital comorbidity survey using EMR data combined with the estimation of shared genetic architecture using genomic annotations to disease phenotypes. RESULTS: Using an automated, data-driven approach, we identified prescription medications, side effects (primary side effects), and drug-drug interaction-induced side effects (secondary side effects) associated with readmission risk in a cohort of 1275 patients using prescriptome analytics. In our study, we identified 28 drugs associated with risk for readmission among psychiatric patients. Based on prescription data, Pravastatin had the highest risk of readmission (OR = 13.10; 95% CI (2.82, 60.8)). We also identified enrichment of primary side effects (n = 4006) and secondary side effects (n = 36) induced by prescription drugs in the subset of readmitted patients (n = 89) compared to the non-readmitted subgroup (n = 1186). Digital comorbidity analyses and shared genetic analyses further reveals that cardiovascular disease and psychiatric conditions are comorbid and share functional gene modules (cardiomyopathy and anxiety disorder: shared genes (n = 37; P = 1.06815E-06)). CONCLUSIONS: Large scale prescriptome data is now available from EMRs and accessible for analytics that could improve healthcare outcomes. Such analyses could also drive hypothesis and data-driven research. In this study, we explored the utility of prescriptome data to identify factors driving readmission in a psychiatric cohort. Converging digital health data from EMRs and systems biology investigations reveal a subset of patient populations that have significant comorbidities with cardiovascular diseases are more likely to be readmitted. Further, the genetic architecture of psychiatric illness also suggests overlap with cardiovascular diseases. In summary, assessment of medications, side effects, and drug-drug interactions in a clinical setting as well as genomic information using a data mining approach could help to find factors that could help to lower readmission rates in patients with mental illness. More... »

PAGES

79

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12911-018-0653-3

DOI

http://dx.doi.org/10.1186/s12911-018-0653-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106989844

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30255805


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Mining", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Warehousing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Interactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug-Related Side Effects and Adverse Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electronic Health Records", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mental Disorders", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Readmission", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality of Life", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY USA", 
            "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shameer", 
        "givenName": "Khader", 
        "id": "sg:person.0772175107.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772175107.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychiatry, Mount Sinai Health System, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.425214.4", 
          "name": [
            "Department of Psychiatry, Mount Sinai Health System, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perez-Rodriguez", 
        "givenName": "M. Mercedes", 
        "id": "sg:person.01004331265.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004331265.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hackensack Meridian Health Hackensack University Medical Center, Hackensack, NJ USA", 
          "id": "http://www.grid.ac/institutes/grid.239835.6", 
          "name": [
            "Department of Psychiatry, Mount Sinai Health System, New York, NY USA", 
            "Hackensack Meridian Health Hackensack University Medical Center, Hackensack, NJ USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bachar", 
        "givenName": "Roy", 
        "id": "sg:person.07553556121.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07553556121.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY USA", 
            "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Li", 
        "id": "sg:person.0750160141.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750160141.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychiatry, Mount Sinai Health System, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.425214.4", 
          "name": [
            "Department of Psychiatry, Mount Sinai Health System, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnson", 
        "givenName": "Amy", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY USA", 
            "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnson", 
        "givenName": "Kipp W.", 
        "id": "sg:person.01303304232.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303304232.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY USA", 
            "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glicksberg", 
        "givenName": "Benjamin S.", 
        "id": "sg:person.0703600615.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703600615.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY USA", 
            "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Milo R.", 
        "id": "sg:person.016076011433.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076011433.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY USA", 
            "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Readhead", 
        "givenName": "Ben", 
        "id": "sg:person.0703132554.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703132554.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scarpa", 
        "givenName": "Joseph", 
        "id": "sg:person.01320746141.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320746141.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mount Sinai Data Warehouse, Mount Sinai Health System, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.425214.4", 
          "name": [
            "Mount Sinai Data Warehouse, Mount Sinai Health System, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jebakaran", 
        "givenName": "Jebakumar", 
        "id": "sg:person.07765302041.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07765302041.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mount Sinai Data Warehouse, Mount Sinai Health System, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.425214.4", 
          "name": [
            "Mount Sinai Data Warehouse, Mount Sinai Health System, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kovatch", 
        "givenName": "Patricia", 
        "id": "sg:person.0713551214.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713551214.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychiatry, Mount Sinai Health System, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.425214.4", 
          "name": [
            "Department of Psychiatry, Mount Sinai Health System, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Sabina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychiatry, Mount Sinai Health System, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.425214.4", 
          "name": [
            "Department of Psychiatry, Mount Sinai Health System, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goodman", 
        "givenName": "Wayne", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anesthesiology, Mount Sinai Health System, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.425214.4", 
          "name": [
            "Department of Anesthesiology, Mount Sinai Health System, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reich", 
        "givenName": "David L.", 
        "id": "sg:person.01211400344.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211400344.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kasarskis", 
        "givenName": "Andrew", 
        "id": "sg:person.01144023266.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144023266.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Biomedical Informatics, Systems Biology and Medicine, Columbia University, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Departments of Biomedical Informatics, Systems Biology and Medicine, Columbia University, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tatonetti", 
        "givenName": "Nicholas P.", 
        "id": "sg:person.0651210417.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Population Health Science and Policy; Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.59734.3c", 
          "name": [
            "Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY USA", 
            "Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA", 
            "Department of Population Health Science and Policy; Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dudley", 
        "givenName": "Joel T.", 
        "id": "sg:person.01031010371.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031010371.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00880773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039422917", 
          "https://doi.org/10.1007/bf00880773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npjschz.2015.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004358475", 
          "https://doi.org/10.1038/npjschz.2015.30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-0709-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003093236", 
          "https://doi.org/10.1007/978-1-4939-0709-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022389078", 
          "https://doi.org/10.1038/ncomms10905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.4238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017675402", 
          "https://doi.org/10.1038/nn.4238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/mp.2015.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022183694", 
          "https://doi.org/10.1038/mp.2015.198"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-14", 
    "datePublishedReg": "2018-09-14", 
    "description": "BACKGROUND: Worldwide, over 14% of individuals hospitalized for psychiatric reasons have readmissions to hospitals within 30\u00a0days after discharge. Predicting patients at risk and leveraging accelerated interventions can reduce the rates of early readmission, a negative clinical outcome (i.e., a treatment failure) that affects the quality of life of patient. To implement individualized interventions, it is necessary to predict those individuals at highest risk for 30-day readmission. In this study, our aim was to conduct a data-driven investigation to find the pharmacological factors influencing 30-day all-cause, intra- and interdepartmental readmissions after an index psychiatric admission, using the compendium of prescription data (prescriptome) from electronic medical records (EMR).\nMETHODS: The data scientists in the project received a deidentified database from the Mount Sinai Data Warehouse, which was used to perform all analyses. Data was stored in a secured MySQL database, normalized and indexed using a unique hexadecimal identifier associated with the data for psychiatric illness visits. We used Bayesian logistic regression models to evaluate the association of prescription data with 30-day readmission risk. We constructed individual models and compiled results after adjusting for covariates, including drug exposure, age, and gender. We also performed digital comorbidity survey using EMR data combined with the estimation of shared genetic architecture using genomic annotations to disease phenotypes.\nRESULTS: Using an automated, data-driven approach, we identified prescription medications, side effects (primary side effects), and drug-drug interaction-induced side effects (secondary side effects) associated with readmission risk in a cohort of 1275 patients using prescriptome analytics. In our study, we identified 28 drugs associated with risk for readmission among psychiatric patients. Based on prescription data, Pravastatin had the highest risk of readmission (OR\u2009=\u200913.10; 95% CI (2.82, 60.8)). We also identified enrichment of primary side effects (n\u2009=\u20094006) and secondary side effects (n\u2009=\u200936) induced by prescription drugs in the subset of readmitted patients (n\u2009=\u200989) compared to the non-readmitted subgroup (n\u2009=\u20091186). Digital comorbidity analyses and shared genetic analyses further reveals that cardiovascular disease and psychiatric conditions are comorbid and share functional gene modules (cardiomyopathy and anxiety disorder: shared genes (n\u2009=\u200937; P\u2009=\u20091.06815E-06)).\nCONCLUSIONS: Large scale prescriptome data is now available from EMRs and accessible for analytics that could improve healthcare outcomes. Such analyses could also drive hypothesis and data-driven research. In this study, we explored the utility of prescriptome data to identify factors driving readmission in a psychiatric cohort. Converging digital health data from EMRs and systems biology investigations reveal a subset of patient populations that have significant comorbidities with cardiovascular diseases are more likely to be readmitted. Further, the genetic architecture of psychiatric illness also suggests overlap with cardiovascular diseases. In summary, assessment of medications, side effects, and drug-drug interactions in a clinical setting as well as genomic information using a data mining approach could help to find factors that could help to lower readmission rates in patients with mental illness.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12911-018-0653-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3623864", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028432", 
        "issn": [
          "1472-6947"
        ], 
        "name": "BMC Medical Informatics and Decision Making", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "electronic medical records", 
      "side effects", 
      "prescription data", 
      "cardiovascular disease", 
      "readmission rates", 
      "readmission risk", 
      "psychiatric cohort", 
      "high risk", 
      "Mount Sinai Data Warehouse", 
      "pharmacological risk factors", 
      "hospital readmission rates", 
      "negative clinical outcomes", 
      "assessment of medications", 
      "primary side effect", 
      "drug-drug interactions", 
      "quality of life", 
      "logistic regression models", 
      "secondary side effects", 
      "significant comorbidities", 
      "early readmission", 
      "clinical outcomes", 
      "illness visits", 
      "psychiatric reasons", 
      "prescription medications", 
      "patient population", 
      "psychiatric admissions", 
      "medical records", 
      "risk factors", 
      "drug exposure", 
      "deidentified database", 
      "psychiatric illness", 
      "readmission", 
      "pharmacological factors", 
      "patients", 
      "psychiatric patients", 
      "comorbidity analysis", 
      "psychiatric conditions", 
      "mental illness", 
      "clinical setting", 
      "prescription drugs", 
      "healthcare outcomes", 
      "cohort", 
      "individualized interventions", 
      "disease", 
      "EMR data", 
      "medications", 
      "Bayesian logistic regression model", 
      "risk", 
      "illness", 
      "health data", 
      "regression models", 
      "drugs", 
      "intervention", 
      "outcomes", 
      "comorbidities", 
      "factors", 
      "admission", 
      "hospital", 
      "pravastatin", 
      "individuals", 
      "visits", 
      "subset", 
      "study", 
      "effect", 
      "age", 
      "rate", 
      "gene modules", 
      "subgroups", 
      "digital health data", 
      "cause", 
      "database", 
      "association", 
      "exposure", 
      "covariates", 
      "days", 
      "functional gene modules", 
      "genetic analysis", 
      "biology investigations", 
      "phenotype", 
      "gender", 
      "data", 
      "aim", 
      "population", 
      "systems biology investigations", 
      "setting", 
      "assessment", 
      "discharge", 
      "analysis", 
      "intra", 
      "records", 
      "summary", 
      "life", 
      "investigation", 
      "utility", 
      "survey", 
      "hypothesis", 
      "genetic architecture", 
      "quality", 
      "genomic information", 
      "reasons", 
      "data-driven investigation", 
      "data warehouse", 
      "results", 
      "model", 
      "approach", 
      "compendium", 
      "information", 
      "research", 
      "conditions", 
      "identifiers", 
      "interaction", 
      "data-driven approach", 
      "enrichment", 
      "such analyses", 
      "data mining approach", 
      "project", 
      "scientists", 
      "mining approach", 
      "individual models", 
      "estimation", 
      "genomic annotations", 
      "warehouse", 
      "data-driven research", 
      "analytics", 
      "module", 
      "annotation", 
      "architecture", 
      "data mining", 
      "data scientists", 
      "MySQL database", 
      "mining", 
      "accelerated interventions", 
      "interdepartmental readmissions", 
      "index psychiatric admission", 
      "Sinai Data Warehouse", 
      "secured MySQL database", 
      "unique hexadecimal identifier", 
      "hexadecimal identifier", 
      "psychiatric illness visits", 
      "digital comorbidity survey", 
      "comorbidity survey", 
      "drug-drug interaction-induced side effects", 
      "interaction-induced side effects", 
      "prescriptome analytics", 
      "non-readmitted subgroup", 
      "Digital comorbidity analyses", 
      "Large scale prescriptome data", 
      "scale prescriptome data", 
      "prescriptome data", 
      "prescriptome data mining"
    ], 
    "name": "Pharmacological risk factors associated with hospital readmission rates in a psychiatric cohort identified using prescriptome data mining", 
    "pagination": "79", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106989844"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12911-018-0653-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30255805"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12911-018-0653-3", 
      "https://app.dimensions.ai/details/publication/pub.1106989844"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_786.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12911-018-0653-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12911-018-0653-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12911-018-0653-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12911-018-0653-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12911-018-0653-3'


 

This table displays all metadata directly associated to this object as RDF triples.

453 TRIPLES      22 PREDICATES      202 URIs      188 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12911-018-0653-3 schema:about N135cab8b7d6746c3b72e4fbe15d752e0
2 N23045c183d2c4d3fb1d83ddaae8c911b
3 N48291b5a1c134ca3b5912d929210291c
4 N4a28fc6f6f9f4c90a2df5cd6860c502b
5 N4f5a665e3c8745af93651ffe8ee8089d
6 N5015bfa7c5b54aa7934a149b9e1d9b16
7 N612222a544d8435abcfdd12cf4141fdd
8 N67e13880c00c4cd48aeb24d51d1de19d
9 N72af3ce26eaa4e0b9de0627058053710
10 N74575527e47e4af695db1f10795f3f0c
11 N7a71164282eb4b03a646ae5509d6315c
12 N86348e559f394636947ffc84924af862
13 N8aadf7d07e794dce98c4c74a09f3a007
14 N905934082589491d978d2474cbf090f8
15 Nb335cc01db1a4475b701b19cf324b569
16 Nb7a1823f3b4f4829b08094eebc754feb
17 Nb99e5320497d46b489c39ebc9de1e0df
18 Nc231861ea9154c2491fbe31ce8efdcf4
19 Nd05b3688377748b58229db1763802878
20 Nea94c20ecfe1457588a29fd60229f30f
21 anzsrc-for:11
22 anzsrc-for:1117
23 schema:author N8e8be485c58842cd8061fbfd13bb9939
24 schema:citation sg:pub.10.1007/978-1-4939-0709-0_4
25 sg:pub.10.1007/bf00880773
26 sg:pub.10.1038/mp.2015.198
27 sg:pub.10.1038/ncomms10905
28 sg:pub.10.1038/nn.4238
29 sg:pub.10.1038/npjschz.2015.30
30 schema:datePublished 2018-09-14
31 schema:datePublishedReg 2018-09-14
32 schema:description BACKGROUND: Worldwide, over 14% of individuals hospitalized for psychiatric reasons have readmissions to hospitals within 30 days after discharge. Predicting patients at risk and leveraging accelerated interventions can reduce the rates of early readmission, a negative clinical outcome (i.e., a treatment failure) that affects the quality of life of patient. To implement individualized interventions, it is necessary to predict those individuals at highest risk for 30-day readmission. In this study, our aim was to conduct a data-driven investigation to find the pharmacological factors influencing 30-day all-cause, intra- and interdepartmental readmissions after an index psychiatric admission, using the compendium of prescription data (prescriptome) from electronic medical records (EMR). METHODS: The data scientists in the project received a deidentified database from the Mount Sinai Data Warehouse, which was used to perform all analyses. Data was stored in a secured MySQL database, normalized and indexed using a unique hexadecimal identifier associated with the data for psychiatric illness visits. We used Bayesian logistic regression models to evaluate the association of prescription data with 30-day readmission risk. We constructed individual models and compiled results after adjusting for covariates, including drug exposure, age, and gender. We also performed digital comorbidity survey using EMR data combined with the estimation of shared genetic architecture using genomic annotations to disease phenotypes. RESULTS: Using an automated, data-driven approach, we identified prescription medications, side effects (primary side effects), and drug-drug interaction-induced side effects (secondary side effects) associated with readmission risk in a cohort of 1275 patients using prescriptome analytics. In our study, we identified 28 drugs associated with risk for readmission among psychiatric patients. Based on prescription data, Pravastatin had the highest risk of readmission (OR = 13.10; 95% CI (2.82, 60.8)). We also identified enrichment of primary side effects (n = 4006) and secondary side effects (n = 36) induced by prescription drugs in the subset of readmitted patients (n = 89) compared to the non-readmitted subgroup (n = 1186). Digital comorbidity analyses and shared genetic analyses further reveals that cardiovascular disease and psychiatric conditions are comorbid and share functional gene modules (cardiomyopathy and anxiety disorder: shared genes (n = 37; P = 1.06815E-06)). CONCLUSIONS: Large scale prescriptome data is now available from EMRs and accessible for analytics that could improve healthcare outcomes. Such analyses could also drive hypothesis and data-driven research. In this study, we explored the utility of prescriptome data to identify factors driving readmission in a psychiatric cohort. Converging digital health data from EMRs and systems biology investigations reveal a subset of patient populations that have significant comorbidities with cardiovascular diseases are more likely to be readmitted. Further, the genetic architecture of psychiatric illness also suggests overlap with cardiovascular diseases. In summary, assessment of medications, side effects, and drug-drug interactions in a clinical setting as well as genomic information using a data mining approach could help to find factors that could help to lower readmission rates in patients with mental illness.
33 schema:genre article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N5dd2c52bcbe343beaef0746212213355
37 Nf652079ef8664b059329813b5411044a
38 sg:journal.1028432
39 schema:keywords Bayesian logistic regression model
40 Digital comorbidity analyses
41 EMR data
42 Large scale prescriptome data
43 Mount Sinai Data Warehouse
44 MySQL database
45 Sinai Data Warehouse
46 accelerated interventions
47 admission
48 age
49 aim
50 analysis
51 analytics
52 annotation
53 approach
54 architecture
55 assessment
56 assessment of medications
57 association
58 biology investigations
59 cardiovascular disease
60 cause
61 clinical outcomes
62 clinical setting
63 cohort
64 comorbidities
65 comorbidity analysis
66 comorbidity survey
67 compendium
68 conditions
69 covariates
70 data
71 data mining
72 data mining approach
73 data scientists
74 data warehouse
75 data-driven approach
76 data-driven investigation
77 data-driven research
78 database
79 days
80 deidentified database
81 digital comorbidity survey
82 digital health data
83 discharge
84 disease
85 drug exposure
86 drug-drug interaction-induced side effects
87 drug-drug interactions
88 drugs
89 early readmission
90 effect
91 electronic medical records
92 enrichment
93 estimation
94 exposure
95 factors
96 functional gene modules
97 gender
98 gene modules
99 genetic analysis
100 genetic architecture
101 genomic annotations
102 genomic information
103 health data
104 healthcare outcomes
105 hexadecimal identifier
106 high risk
107 hospital
108 hospital readmission rates
109 hypothesis
110 identifiers
111 illness
112 illness visits
113 index psychiatric admission
114 individual models
115 individualized interventions
116 individuals
117 information
118 interaction
119 interaction-induced side effects
120 interdepartmental readmissions
121 intervention
122 intra
123 investigation
124 life
125 logistic regression models
126 medical records
127 medications
128 mental illness
129 mining
130 mining approach
131 model
132 module
133 negative clinical outcomes
134 non-readmitted subgroup
135 outcomes
136 patient population
137 patients
138 pharmacological factors
139 pharmacological risk factors
140 phenotype
141 population
142 pravastatin
143 prescription data
144 prescription drugs
145 prescription medications
146 prescriptome analytics
147 prescriptome data
148 prescriptome data mining
149 primary side effect
150 project
151 psychiatric admissions
152 psychiatric cohort
153 psychiatric conditions
154 psychiatric illness
155 psychiatric illness visits
156 psychiatric patients
157 psychiatric reasons
158 quality
159 quality of life
160 rate
161 readmission
162 readmission rates
163 readmission risk
164 reasons
165 records
166 regression models
167 research
168 results
169 risk
170 risk factors
171 scale prescriptome data
172 scientists
173 secondary side effects
174 secured MySQL database
175 setting
176 side effects
177 significant comorbidities
178 study
179 subgroups
180 subset
181 such analyses
182 summary
183 survey
184 systems biology investigations
185 unique hexadecimal identifier
186 utility
187 visits
188 warehouse
189 schema:name Pharmacological risk factors associated with hospital readmission rates in a psychiatric cohort identified using prescriptome data mining
190 schema:pagination 79
191 schema:productId N67a77c7792b9481f833ae9ae88077b9e
192 N6eb74ee312b541468b90d1500030956d
193 N713339e100e04e14be705cce909f08c6
194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106989844
195 https://doi.org/10.1186/s12911-018-0653-3
196 schema:sdDatePublished 2021-11-01T18:32
197 schema:sdLicense https://scigraph.springernature.com/explorer/license/
198 schema:sdPublisher N1df6439093324081a160e525e903112d
199 schema:url https://doi.org/10.1186/s12911-018-0653-3
200 sgo:license sg:explorer/license/
201 sgo:sdDataset articles
202 rdf:type schema:ScholarlyArticle
203 N048bcf361fb24586875e2069e16349a7 schema:affiliation grid-institutes:grid.425214.4
204 schema:familyName Lim
205 schema:givenName Sabina
206 rdf:type schema:Person
207 N0dd3f7c81b944d7085c3fd595f39b0f9 rdf:first sg:person.016076011433.35
208 rdf:rest N3cf46b2d738546a3856c999b2f3c274d
209 N135cab8b7d6746c3b72e4fbe15d752e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Male
211 rdf:type schema:DefinedTerm
212 N1ad5a6b8bd6b43e6bd058978b7c35fe6 rdf:first sg:person.0713551214.87
213 rdf:rest N91b34e4ba124492a86e1ddec885302e8
214 N1df6439093324081a160e525e903112d schema:name Springer Nature - SN SciGraph project
215 rdf:type schema:Organization
216 N23045c183d2c4d3fb1d83ddaae8c911b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
217 schema:name Data Warehousing
218 rdf:type schema:DefinedTerm
219 N2ff0cea3d2b7404c9f5ed655da5c706c rdf:first sg:person.01144023266.54
220 rdf:rest N3692d269d8a64aaf8f71e1e838cd7efd
221 N3092028edbed4a9b891a75e234c0ab66 schema:affiliation grid-institutes:grid.425214.4
222 schema:familyName Johnson
223 schema:givenName Amy
224 rdf:type schema:Person
225 N3692d269d8a64aaf8f71e1e838cd7efd rdf:first sg:person.0651210417.29
226 rdf:rest N4ac8f1bc46ef42e8afe96accbcfa6fef
227 N3cf46b2d738546a3856c999b2f3c274d rdf:first sg:person.0703132554.40
228 rdf:rest Nf34c3425b6c849ccbb87dc07470a5bec
229 N3f80c68c20294be9802a40c19171bf8e rdf:first sg:person.0703600615.42
230 rdf:rest N0dd3f7c81b944d7085c3fd595f39b0f9
231 N48291b5a1c134ca3b5912d929210291c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
232 schema:name Drug Interactions
233 rdf:type schema:DefinedTerm
234 N4a28fc6f6f9f4c90a2df5cd6860c502b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
235 schema:name Databases, Factual
236 rdf:type schema:DefinedTerm
237 N4ac8f1bc46ef42e8afe96accbcfa6fef rdf:first sg:person.01031010371.28
238 rdf:rest rdf:nil
239 N4c8fd56e23794b8aa09b010627f70bd8 rdf:first sg:person.01303304232.39
240 rdf:rest N3f80c68c20294be9802a40c19171bf8e
241 N4f5a665e3c8745af93651ffe8ee8089d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
242 schema:name Quality of Life
243 rdf:type schema:DefinedTerm
244 N5015bfa7c5b54aa7934a149b9e1d9b16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
245 schema:name Middle Aged
246 rdf:type schema:DefinedTerm
247 N5dd2c52bcbe343beaef0746212213355 schema:volumeNumber 18
248 rdf:type schema:PublicationVolume
249 N60bc9a59381f496094f3302d562430dc rdf:first sg:person.01004331265.39
250 rdf:rest Nf98c19b279134590a3c549709925b9a0
251 N612222a544d8435abcfdd12cf4141fdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
252 schema:name Data Mining
253 rdf:type schema:DefinedTerm
254 N67a77c7792b9481f833ae9ae88077b9e schema:name pubmed_id
255 schema:value 30255805
256 rdf:type schema:PropertyValue
257 N67e13880c00c4cd48aeb24d51d1de19d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
258 schema:name Bayes Theorem
259 rdf:type schema:DefinedTerm
260 N6eb74ee312b541468b90d1500030956d schema:name dimensions_id
261 schema:value pub.1106989844
262 rdf:type schema:PropertyValue
263 N713339e100e04e14be705cce909f08c6 schema:name doi
264 schema:value 10.1186/s12911-018-0653-3
265 rdf:type schema:PropertyValue
266 N72af3ce26eaa4e0b9de0627058053710 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
267 schema:name Aged
268 rdf:type schema:DefinedTerm
269 N74575527e47e4af695db1f10795f3f0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
270 schema:name Cohort Studies
271 rdf:type schema:DefinedTerm
272 N7a71164282eb4b03a646ae5509d6315c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
273 schema:name Mental Disorders
274 rdf:type schema:DefinedTerm
275 N86348e559f394636947ffc84924af862 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
276 schema:name Logistic Models
277 rdf:type schema:DefinedTerm
278 N8a0964ec47df4ec89b80a7fecd9481a8 schema:affiliation grid-institutes:grid.425214.4
279 schema:familyName Goodman
280 schema:givenName Wayne
281 rdf:type schema:Person
282 N8aadf7d07e794dce98c4c74a09f3a007 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
283 schema:name Electronic Health Records
284 rdf:type schema:DefinedTerm
285 N8e8be485c58842cd8061fbfd13bb9939 rdf:first sg:person.0772175107.44
286 rdf:rest N60bc9a59381f496094f3302d562430dc
287 N905934082589491d978d2474cbf090f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
288 schema:name Adult
289 rdf:type schema:DefinedTerm
290 N91b34e4ba124492a86e1ddec885302e8 rdf:first N048bcf361fb24586875e2069e16349a7
291 rdf:rest Nb49c349ca2014f889f28d5590f50c392
292 N93eb371442b347db88c62370c8f96559 rdf:first N3092028edbed4a9b891a75e234c0ab66
293 rdf:rest N4c8fd56e23794b8aa09b010627f70bd8
294 Na2665727ef95429daa40159e3e6293d8 rdf:first sg:person.07765302041.92
295 rdf:rest N1ad5a6b8bd6b43e6bd058978b7c35fe6
296 Nb335cc01db1a4475b701b19cf324b569 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
297 schema:name Patient Readmission
298 rdf:type schema:DefinedTerm
299 Nb49c349ca2014f889f28d5590f50c392 rdf:first N8a0964ec47df4ec89b80a7fecd9481a8
300 rdf:rest Nede956306a0546f4a0cb754b31637ef1
301 Nb7a1823f3b4f4829b08094eebc754feb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
302 schema:name Drug-Related Side Effects and Adverse Reactions
303 rdf:type schema:DefinedTerm
304 Nb99e5320497d46b489c39ebc9de1e0df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
305 schema:name Female
306 rdf:type schema:DefinedTerm
307 Nb9a3cd4fc7dd4b79a20ca8a232f62f91 rdf:first sg:person.0750160141.46
308 rdf:rest N93eb371442b347db88c62370c8f96559
309 Nc231861ea9154c2491fbe31ce8efdcf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
310 schema:name Humans
311 rdf:type schema:DefinedTerm
312 Nd05b3688377748b58229db1763802878 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
313 schema:name Time Factors
314 rdf:type schema:DefinedTerm
315 Nea94c20ecfe1457588a29fd60229f30f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
316 schema:name Risk Factors
317 rdf:type schema:DefinedTerm
318 Nede956306a0546f4a0cb754b31637ef1 rdf:first sg:person.01211400344.32
319 rdf:rest N2ff0cea3d2b7404c9f5ed655da5c706c
320 Nf34c3425b6c849ccbb87dc07470a5bec rdf:first sg:person.01320746141.68
321 rdf:rest Na2665727ef95429daa40159e3e6293d8
322 Nf652079ef8664b059329813b5411044a schema:issueNumber Suppl 3
323 rdf:type schema:PublicationIssue
324 Nf98c19b279134590a3c549709925b9a0 rdf:first sg:person.07553556121.52
325 rdf:rest Nb9a3cd4fc7dd4b79a20ca8a232f62f91
326 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
327 schema:name Medical and Health Sciences
328 rdf:type schema:DefinedTerm
329 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
330 schema:name Public Health and Health Services
331 rdf:type schema:DefinedTerm
332 sg:grant.3623864 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-018-0653-3
333 rdf:type schema:MonetaryGrant
334 sg:journal.1028432 schema:issn 1472-6947
335 schema:name BMC Medical Informatics and Decision Making
336 schema:publisher Springer Nature
337 rdf:type schema:Periodical
338 sg:person.01004331265.39 schema:affiliation grid-institutes:grid.425214.4
339 schema:familyName Perez-Rodriguez
340 schema:givenName M. Mercedes
341 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004331265.39
342 rdf:type schema:Person
343 sg:person.01031010371.28 schema:affiliation grid-institutes:grid.59734.3c
344 schema:familyName Dudley
345 schema:givenName Joel T.
346 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031010371.28
347 rdf:type schema:Person
348 sg:person.01144023266.54 schema:affiliation grid-institutes:None
349 schema:familyName Kasarskis
350 schema:givenName Andrew
351 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144023266.54
352 rdf:type schema:Person
353 sg:person.01211400344.32 schema:affiliation grid-institutes:grid.425214.4
354 schema:familyName Reich
355 schema:givenName David L.
356 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211400344.32
357 rdf:type schema:Person
358 sg:person.01303304232.39 schema:affiliation grid-institutes:None
359 schema:familyName Johnson
360 schema:givenName Kipp W.
361 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303304232.39
362 rdf:type schema:Person
363 sg:person.01320746141.68 schema:affiliation grid-institutes:None
364 schema:familyName Scarpa
365 schema:givenName Joseph
366 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320746141.68
367 rdf:type schema:Person
368 sg:person.016076011433.35 schema:affiliation grid-institutes:None
369 schema:familyName Smith
370 schema:givenName Milo R.
371 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076011433.35
372 rdf:type schema:Person
373 sg:person.0651210417.29 schema:affiliation grid-institutes:grid.21729.3f
374 schema:familyName Tatonetti
375 schema:givenName Nicholas P.
376 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29
377 rdf:type schema:Person
378 sg:person.0703132554.40 schema:affiliation grid-institutes:None
379 schema:familyName Readhead
380 schema:givenName Ben
381 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703132554.40
382 rdf:type schema:Person
383 sg:person.0703600615.42 schema:affiliation grid-institutes:None
384 schema:familyName Glicksberg
385 schema:givenName Benjamin S.
386 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703600615.42
387 rdf:type schema:Person
388 sg:person.0713551214.87 schema:affiliation grid-institutes:grid.425214.4
389 schema:familyName Kovatch
390 schema:givenName Patricia
391 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713551214.87
392 rdf:type schema:Person
393 sg:person.0750160141.46 schema:affiliation grid-institutes:None
394 schema:familyName Li
395 schema:givenName Li
396 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750160141.46
397 rdf:type schema:Person
398 sg:person.07553556121.52 schema:affiliation grid-institutes:grid.239835.6
399 schema:familyName Bachar
400 schema:givenName Roy
401 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07553556121.52
402 rdf:type schema:Person
403 sg:person.0772175107.44 schema:affiliation grid-institutes:None
404 schema:familyName Shameer
405 schema:givenName Khader
406 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772175107.44
407 rdf:type schema:Person
408 sg:person.07765302041.92 schema:affiliation grid-institutes:grid.425214.4
409 schema:familyName Jebakaran
410 schema:givenName Jebakumar
411 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07765302041.92
412 rdf:type schema:Person
413 sg:pub.10.1007/978-1-4939-0709-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003093236
414 https://doi.org/10.1007/978-1-4939-0709-0_4
415 rdf:type schema:CreativeWork
416 sg:pub.10.1007/bf00880773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039422917
417 https://doi.org/10.1007/bf00880773
418 rdf:type schema:CreativeWork
419 sg:pub.10.1038/mp.2015.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022183694
420 https://doi.org/10.1038/mp.2015.198
421 rdf:type schema:CreativeWork
422 sg:pub.10.1038/ncomms10905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022389078
423 https://doi.org/10.1038/ncomms10905
424 rdf:type schema:CreativeWork
425 sg:pub.10.1038/nn.4238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017675402
426 https://doi.org/10.1038/nn.4238
427 rdf:type schema:CreativeWork
428 sg:pub.10.1038/npjschz.2015.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004358475
429 https://doi.org/10.1038/npjschz.2015.30
430 rdf:type schema:CreativeWork
431 grid-institutes:None schema:alternateName Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA
432 schema:name Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA
433 Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY USA
434 rdf:type schema:Organization
435 grid-institutes:grid.21729.3f schema:alternateName Departments of Biomedical Informatics, Systems Biology and Medicine, Columbia University, New York, NY USA
436 schema:name Departments of Biomedical Informatics, Systems Biology and Medicine, Columbia University, New York, NY USA
437 rdf:type schema:Organization
438 grid-institutes:grid.239835.6 schema:alternateName Hackensack Meridian Health Hackensack University Medical Center, Hackensack, NJ USA
439 schema:name Department of Psychiatry, Mount Sinai Health System, New York, NY USA
440 Hackensack Meridian Health Hackensack University Medical Center, Hackensack, NJ USA
441 rdf:type schema:Organization
442 grid-institutes:grid.425214.4 schema:alternateName Department of Anesthesiology, Mount Sinai Health System, New York, NY USA
443 Department of Psychiatry, Mount Sinai Health System, New York, NY USA
444 Mount Sinai Data Warehouse, Mount Sinai Health System, New York, NY USA
445 schema:name Department of Anesthesiology, Mount Sinai Health System, New York, NY USA
446 Department of Psychiatry, Mount Sinai Health System, New York, NY USA
447 Mount Sinai Data Warehouse, Mount Sinai Health System, New York, NY USA
448 rdf:type schema:Organization
449 grid-institutes:grid.59734.3c schema:alternateName Department of Population Health Science and Policy; Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY USA
450 schema:name Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, New York, NY USA
451 Department of Population Health Science and Policy; Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY USA
452 Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY USA
453 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...