A novel data-driven workflow combining literature and electronic health records to estimate comorbidities burden for a specific disease: a case ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-29

AUTHORS

Jean-Baptiste Escudié, Bastien Rance, Georgia Malamut, Sherine Khater, Anita Burgun, Christophe Cellier, Anne-Sophie Jannot

ABSTRACT

BACKGROUND: Data collected in EHRs have been widely used to identifying specific conditions; however there is still a need for methods to define comorbidities and sources to identify comorbidities burden. We propose an approach to assess comorbidities burden for a specific disease using the literature and EHR data sources in the case of autoimmune diseases in celiac disease (CD). METHODS: We generated a restricted set of comorbidities using the literature (via the MeSH® co-occurrence file). We extracted the 15 most co-occurring autoimmune diseases of the CD. We used mappings of the comorbidities to EHR terminologies: ICD-10 (billing codes), ATC (drugs) and UMLS (clinical reports). Finally, we extracted the concepts from the different data sources. We evaluated our approach using the correlation between prevalence estimates in our cohort and co-occurrence ranking in the literature. RESULTS: We retrieved the comorbidities for 741 patients with CD. 18.1% of patients had at least one of the 15 studied autoimmune disorders. Overall, 79.3% of the mapped concepts were detected only in text, 5.3% only in ICD codes and/or drugs prescriptions, and 15.4% could be found in both sources. Prevalence in our cohort were correlated with literature (Spearman's coefficient 0.789, p = 0.0005). The three most prevalent comorbidities were thyroiditis 12.6% (95% CI 10.1-14.9), type 1 diabetes 2.3% (95% CI 1.2-3.4) and dermatitis herpetiformis 2.0% (95% CI 1.0-3.0). CONCLUSION: We introduced a process that leveraged the MeSH terminology to identify relevant autoimmune comorbidities of the CD and several data sources from EHRs to phenotype a large population of CD patients. We achieved prevalence estimates comparable to the literature. More... »

PAGES

140

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12911-017-0537-y

DOI

http://dx.doi.org/10.1186/s12911-017-0537-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091997904

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28962565


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Autoimmune Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Celiac Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Comorbidity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cost of Illness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Mining", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electronic Health Records", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Workflow", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "P\u00f4le Informatique M\u00e9dicale et Sant\u00e9 Publique, H\u00f4pital Europ\u00e9en Georges Pompidou, 20 rue Leblanc, 75015 Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414093.b", 
          "name": [
            "Georges Pompidou European Hospital (HEGP), AP-HP, Paris, France", 
            "INSERM UMRS 1138, Paris Descartes University, Paris, France", 
            "P\u00f4le Informatique M\u00e9dicale et Sant\u00e9 Publique, H\u00f4pital Europ\u00e9en Georges Pompidou, 20 rue Leblanc, 75015 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Escudi\u00e9", 
        "givenName": "Jean-Baptiste", 
        "id": "sg:person.015520713207.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520713207.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INSERM UMRS 1138, Paris Descartes University, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.508487.6", 
          "name": [
            "Georges Pompidou European Hospital (HEGP), AP-HP, Paris, France", 
            "INSERM UMRS 1138, Paris Descartes University, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rance", 
        "givenName": "Bastien", 
        "id": "sg:person.0612167654.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612167654.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georges Pompidou European Hospital (HEGP), AP-HP, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414093.b", 
          "name": [
            "Georges Pompidou European Hospital (HEGP), AP-HP, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malamut", 
        "givenName": "Georgia", 
        "id": "sg:person.01212443645.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212443645.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georges Pompidou European Hospital (HEGP), AP-HP, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414093.b", 
          "name": [
            "Georges Pompidou European Hospital (HEGP), AP-HP, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khater", 
        "givenName": "Sherine", 
        "id": "sg:person.012705054417.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012705054417.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INSERM UMRS 1138, Paris Descartes University, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.508487.6", 
          "name": [
            "Georges Pompidou European Hospital (HEGP), AP-HP, Paris, France", 
            "INSERM UMRS 1138, Paris Descartes University, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgun", 
        "givenName": "Anita", 
        "id": "sg:person.01177515106.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177515106.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georges Pompidou European Hospital (HEGP), AP-HP, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414093.b", 
          "name": [
            "Georges Pompidou European Hospital (HEGP), AP-HP, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cellier", 
        "givenName": "Christophe", 
        "id": "sg:person.0646114471.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646114471.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INSERM UMRS 1138, Paris Descartes University, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.508487.6", 
          "name": [
            "Georges Pompidou European Hospital (HEGP), AP-HP, Paris, France", 
            "INSERM UMRS 1138, Paris Descartes University, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jannot", 
        "givenName": "Anne-Sophie", 
        "id": "sg:person.01041303174.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041303174.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12876-014-0194-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005640332", 
          "https://doi.org/10.1186/s12876-014-0194-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-230x-12-180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039552143", 
          "https://doi.org/10.1186/1471-230x-12-180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2001.03617.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014411841", 
          "https://doi.org/10.1111/j.1572-0241.2001.03617.x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-29", 
    "datePublishedReg": "2017-09-29", 
    "description": "BACKGROUND: Data collected in EHRs have been widely used to identifying specific conditions; however there is still a need for methods to define comorbidities and sources to identify comorbidities burden. We propose an approach to assess comorbidities burden for a specific disease using the literature and EHR data sources in the case of autoimmune diseases in celiac disease (CD).\nMETHODS: We generated a restricted set of comorbidities using the literature (via the MeSH\u00ae co-occurrence file). We extracted the 15 most co-occurring autoimmune diseases of the CD. We used mappings of the comorbidities to EHR terminologies: ICD-10 (billing codes), ATC (drugs) and UMLS (clinical reports). Finally, we extracted the concepts from the different data sources. We evaluated our approach using the correlation between prevalence estimates in our cohort and co-occurrence ranking in the literature.\nRESULTS: We retrieved the comorbidities for 741 patients with CD. 18.1% of patients had at least one of the 15 studied autoimmune disorders. Overall, 79.3% of the mapped concepts were detected only in text, 5.3% only in ICD codes and/or drugs prescriptions, and 15.4% could be found in both sources. Prevalence in our cohort were correlated with literature (Spearman's coefficient 0.789, p\u00a0=\u00a00.0005). The three most prevalent comorbidities were thyroiditis 12.6% (95% CI 10.1-14.9), type 1 diabetes 2.3% (95% CI 1.2-3.4) and dermatitis herpetiformis 2.0% (95% CI 1.0-3.0).\nCONCLUSION: We introduced a process that leveraged the MeSH terminology to identify relevant autoimmune comorbidities of the CD and several data sources from EHRs to phenotype a large population of CD patients. We achieved prevalence estimates comparable to the literature.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12911-017-0537-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1028432", 
        "issn": [
          "1472-6947"
        ], 
        "name": "BMC Medical Informatics and Decision Making", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "celiac disease", 
      "autoimmune comorbidities", 
      "autoimmune diseases", 
      "prevalence estimates", 
      "specific diseases", 
      "EHR data sources", 
      "electronic health records", 
      "prevalent comorbidities", 
      "set of comorbidities", 
      "CD patients", 
      "autoimmune disorders", 
      "drug prescriptions", 
      "comorbidities", 
      "ICD codes", 
      "patients", 
      "ICD-10", 
      "type 1", 
      "disease", 
      "health records", 
      "MeSH terminology", 
      "cohort", 
      "large population", 
      "EHR", 
      "prevalence", 
      "disorders", 
      "prescription", 
      "data sources", 
      "literature", 
      "population", 
      "records", 
      "cases", 
      "study", 
      "correlation", 
      "specific conditions", 
      "need", 
      "terminology", 
      "data", 
      "ATC", 
      "estimates", 
      "source", 
      "approach", 
      "conditions", 
      "method", 
      "different data sources", 
      "workflow", 
      "concept", 
      "mapping", 
      "process", 
      "UMLS", 
      "ranking", 
      "case study", 
      "data-driven workflow", 
      "set", 
      "code", 
      "text", 
      "co-occurring autoimmune diseases", 
      "EHR terminologies", 
      "co-occurrence ranking", 
      "thyroiditis 12.6", 
      "herpetiformis 2.0", 
      "relevant autoimmune comorbidities", 
      "novel data-driven workflow"
    ], 
    "name": "A novel data-driven workflow combining literature and electronic health records to estimate comorbidities burden for a specific disease: a case study on autoimmune comorbidities in patients with celiac disease", 
    "pagination": "140", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091997904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12911-017-0537-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28962565"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12911-017-0537-y", 
      "https://app.dimensions.ai/details/publication/pub.1091997904"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_734.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12911-017-0537-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12911-017-0537-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12911-017-0537-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12911-017-0537-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12911-017-0537-y'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      22 PREDICATES      104 URIs      93 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12911-017-0537-y schema:about N182ffcc4898d47c3beb5de135326b7b0
2 N598ef6376e0c4e73b0c2d4805986e28e
3 N887ac4dc4b9940c6b0b50d747cc717d2
4 N8da162f25c4044c69e96c326e3a31e46
5 N9d39de70ae754c27b1ed12bbd334f872
6 Na9bfb46635c6443a8e4c30f8e47c7033
7 Na9d9227d804045e6a00b20f830e9129b
8 Nb1aa9cacb2d6429685b6b59b678a8b47
9 Nb756bcef0d8c4668bed9842b0a9f4a9a
10 Nbb491e4f872344af9801d9ab845802cc
11 Nce6a8310f35f414d8149f3ae961e558e
12 Neaf4b613b86740eabbaf4c918ee27513
13 Nfd7a597241974c6aaa0ed70e4e9d6d63
14 anzsrc-for:11
15 anzsrc-for:1117
16 schema:author Na02f47ccef0544d4a098d5b901ac4937
17 schema:citation sg:pub.10.1111/j.1572-0241.2001.03617.x
18 sg:pub.10.1186/1471-230x-12-180
19 sg:pub.10.1186/s12876-014-0194-x
20 schema:datePublished 2017-09-29
21 schema:datePublishedReg 2017-09-29
22 schema:description BACKGROUND: Data collected in EHRs have been widely used to identifying specific conditions; however there is still a need for methods to define comorbidities and sources to identify comorbidities burden. We propose an approach to assess comorbidities burden for a specific disease using the literature and EHR data sources in the case of autoimmune diseases in celiac disease (CD). METHODS: We generated a restricted set of comorbidities using the literature (via the MeSH® co-occurrence file). We extracted the 15 most co-occurring autoimmune diseases of the CD. We used mappings of the comorbidities to EHR terminologies: ICD-10 (billing codes), ATC (drugs) and UMLS (clinical reports). Finally, we extracted the concepts from the different data sources. We evaluated our approach using the correlation between prevalence estimates in our cohort and co-occurrence ranking in the literature. RESULTS: We retrieved the comorbidities for 741 patients with CD. 18.1% of patients had at least one of the 15 studied autoimmune disorders. Overall, 79.3% of the mapped concepts were detected only in text, 5.3% only in ICD codes and/or drugs prescriptions, and 15.4% could be found in both sources. Prevalence in our cohort were correlated with literature (Spearman's coefficient 0.789, p = 0.0005). The three most prevalent comorbidities were thyroiditis 12.6% (95% CI 10.1-14.9), type 1 diabetes 2.3% (95% CI 1.2-3.4) and dermatitis herpetiformis 2.0% (95% CI 1.0-3.0). CONCLUSION: We introduced a process that leveraged the MeSH terminology to identify relevant autoimmune comorbidities of the CD and several data sources from EHRs to phenotype a large population of CD patients. We achieved prevalence estimates comparable to the literature.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N1ea85a7c32ef4d26aa0a96b4bb5cb406
27 N3b46004a41d040e9a5c4b915e2c1ac9d
28 sg:journal.1028432
29 schema:keywords ATC
30 CD patients
31 EHR
32 EHR data sources
33 EHR terminologies
34 ICD codes
35 ICD-10
36 MeSH terminology
37 UMLS
38 approach
39 autoimmune comorbidities
40 autoimmune diseases
41 autoimmune disorders
42 case study
43 cases
44 celiac disease
45 co-occurrence ranking
46 co-occurring autoimmune diseases
47 code
48 cohort
49 comorbidities
50 concept
51 conditions
52 correlation
53 data
54 data sources
55 data-driven workflow
56 different data sources
57 disease
58 disorders
59 drug prescriptions
60 electronic health records
61 estimates
62 health records
63 herpetiformis 2.0
64 large population
65 literature
66 mapping
67 method
68 need
69 novel data-driven workflow
70 patients
71 population
72 prescription
73 prevalence
74 prevalence estimates
75 prevalent comorbidities
76 process
77 ranking
78 records
79 relevant autoimmune comorbidities
80 set
81 set of comorbidities
82 source
83 specific conditions
84 specific diseases
85 study
86 terminology
87 text
88 thyroiditis 12.6
89 type 1
90 workflow
91 schema:name A novel data-driven workflow combining literature and electronic health records to estimate comorbidities burden for a specific disease: a case study on autoimmune comorbidities in patients with celiac disease
92 schema:pagination 140
93 schema:productId N715e3d7adc404af49b030b0ca6ecefb6
94 N82de2d0c443a488c8e6ee10a8b7a2330
95 N9cc099006cbc455abeab0e6c959f2861
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091997904
97 https://doi.org/10.1186/s12911-017-0537-y
98 schema:sdDatePublished 2021-12-01T19:38
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N184dfb4ff3f54d02bcdcd9e17fec2a8e
101 schema:url https://doi.org/10.1186/s12911-017-0537-y
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N1246d9ad40fc45d3ac7dff27034f5465 rdf:first sg:person.01177515106.75
106 rdf:rest N939e8e1a996948fbac1bd5c05db11b0a
107 N182ffcc4898d47c3beb5de135326b7b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Cost of Illness
109 rdf:type schema:DefinedTerm
110 N184dfb4ff3f54d02bcdcd9e17fec2a8e schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N1ea85a7c32ef4d26aa0a96b4bb5cb406 schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 N2e17243b49cd4118a33c3205452bc3cf rdf:first sg:person.01041303174.31
115 rdf:rest rdf:nil
116 N3b46004a41d040e9a5c4b915e2c1ac9d schema:volumeNumber 17
117 rdf:type schema:PublicationVolume
118 N4833b11a8fc346bbb4d5cbe4a213db4c rdf:first sg:person.0612167654.50
119 rdf:rest N7c2be10f209c4530a5d6e2ed3d0703df
120 N598ef6376e0c4e73b0c2d4805986e28e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Autoimmune Diseases
122 rdf:type schema:DefinedTerm
123 N715e3d7adc404af49b030b0ca6ecefb6 schema:name pubmed_id
124 schema:value 28962565
125 rdf:type schema:PropertyValue
126 N78ae28ff7a6a429cbdf5f47621d76e02 rdf:first sg:person.012705054417.48
127 rdf:rest N1246d9ad40fc45d3ac7dff27034f5465
128 N7c2be10f209c4530a5d6e2ed3d0703df rdf:first sg:person.01212443645.32
129 rdf:rest N78ae28ff7a6a429cbdf5f47621d76e02
130 N82de2d0c443a488c8e6ee10a8b7a2330 schema:name doi
131 schema:value 10.1186/s12911-017-0537-y
132 rdf:type schema:PropertyValue
133 N887ac4dc4b9940c6b0b50d747cc717d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Adult
135 rdf:type schema:DefinedTerm
136 N8da162f25c4044c69e96c326e3a31e46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Phenotype
138 rdf:type schema:DefinedTerm
139 N939e8e1a996948fbac1bd5c05db11b0a rdf:first sg:person.0646114471.00
140 rdf:rest N2e17243b49cd4118a33c3205452bc3cf
141 N9cc099006cbc455abeab0e6c959f2861 schema:name dimensions_id
142 schema:value pub.1091997904
143 rdf:type schema:PropertyValue
144 N9d39de70ae754c27b1ed12bbd334f872 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Female
146 rdf:type schema:DefinedTerm
147 Na02f47ccef0544d4a098d5b901ac4937 rdf:first sg:person.015520713207.43
148 rdf:rest N4833b11a8fc346bbb4d5cbe4a213db4c
149 Na9bfb46635c6443a8e4c30f8e47c7033 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Celiac Disease
151 rdf:type schema:DefinedTerm
152 Na9d9227d804045e6a00b20f830e9129b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Electronic Health Records
154 rdf:type schema:DefinedTerm
155 Nb1aa9cacb2d6429685b6b59b678a8b47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Middle Aged
157 rdf:type schema:DefinedTerm
158 Nb756bcef0d8c4668bed9842b0a9f4a9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Data Mining
160 rdf:type schema:DefinedTerm
161 Nbb491e4f872344af9801d9ab845802cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Humans
163 rdf:type schema:DefinedTerm
164 Nce6a8310f35f414d8149f3ae961e558e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Male
166 rdf:type schema:DefinedTerm
167 Neaf4b613b86740eabbaf4c918ee27513 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Workflow
169 rdf:type schema:DefinedTerm
170 Nfd7a597241974c6aaa0ed70e4e9d6d63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Comorbidity
172 rdf:type schema:DefinedTerm
173 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
174 schema:name Medical and Health Sciences
175 rdf:type schema:DefinedTerm
176 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
177 schema:name Public Health and Health Services
178 rdf:type schema:DefinedTerm
179 sg:journal.1028432 schema:issn 1472-6947
180 schema:name BMC Medical Informatics and Decision Making
181 schema:publisher Springer Nature
182 rdf:type schema:Periodical
183 sg:person.01041303174.31 schema:affiliation grid-institutes:grid.508487.6
184 schema:familyName Jannot
185 schema:givenName Anne-Sophie
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041303174.31
187 rdf:type schema:Person
188 sg:person.01177515106.75 schema:affiliation grid-institutes:grid.508487.6
189 schema:familyName Burgun
190 schema:givenName Anita
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177515106.75
192 rdf:type schema:Person
193 sg:person.01212443645.32 schema:affiliation grid-institutes:grid.414093.b
194 schema:familyName Malamut
195 schema:givenName Georgia
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212443645.32
197 rdf:type schema:Person
198 sg:person.012705054417.48 schema:affiliation grid-institutes:grid.414093.b
199 schema:familyName Khater
200 schema:givenName Sherine
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012705054417.48
202 rdf:type schema:Person
203 sg:person.015520713207.43 schema:affiliation grid-institutes:grid.414093.b
204 schema:familyName Escudié
205 schema:givenName Jean-Baptiste
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520713207.43
207 rdf:type schema:Person
208 sg:person.0612167654.50 schema:affiliation grid-institutes:grid.508487.6
209 schema:familyName Rance
210 schema:givenName Bastien
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612167654.50
212 rdf:type schema:Person
213 sg:person.0646114471.00 schema:affiliation grid-institutes:grid.414093.b
214 schema:familyName Cellier
215 schema:givenName Christophe
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646114471.00
217 rdf:type schema:Person
218 sg:pub.10.1111/j.1572-0241.2001.03617.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014411841
219 https://doi.org/10.1111/j.1572-0241.2001.03617.x
220 rdf:type schema:CreativeWork
221 sg:pub.10.1186/1471-230x-12-180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039552143
222 https://doi.org/10.1186/1471-230x-12-180
223 rdf:type schema:CreativeWork
224 sg:pub.10.1186/s12876-014-0194-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005640332
225 https://doi.org/10.1186/s12876-014-0194-x
226 rdf:type schema:CreativeWork
227 grid-institutes:grid.414093.b schema:alternateName Georges Pompidou European Hospital (HEGP), AP-HP, Paris, France
228 Pôle Informatique Médicale et Santé Publique, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015 Paris, France
229 schema:name Georges Pompidou European Hospital (HEGP), AP-HP, Paris, France
230 INSERM UMRS 1138, Paris Descartes University, Paris, France
231 Pôle Informatique Médicale et Santé Publique, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015 Paris, France
232 rdf:type schema:Organization
233 grid-institutes:grid.508487.6 schema:alternateName INSERM UMRS 1138, Paris Descartes University, Paris, France
234 schema:name Georges Pompidou European Hospital (HEGP), AP-HP, Paris, France
235 INSERM UMRS 1138, Paris Descartes University, Paris, France
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...