Leveraging machine learning-based approaches to assess human papillomavirus vaccination sentiment trends with Twitter data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07

AUTHORS

Jingcheng Du, Jun Xu, Hsing-Yi Song, Cui Tao

ABSTRACT

BACKGROUND: As one of the serious public health issues, vaccination refusal has been attracting more and more attention, especially for newly approved human papillomavirus (HPV) vaccines. Understanding public opinion towards HPV vaccines, especially concerns on social media, is of significant importance for HPV vaccination promotion. METHODS: In this study, we leveraged a hierarchical machine learning based sentiment analysis system to extract public opinions towards HPV vaccines from Twitter. English tweets containing HPV vaccines-related keywords were collected from November 2, 2015 to March 28, 2016. Manual annotation was done to evaluate the performance of the system on the unannotated tweets corpus. Followed time series analysis was applied to this corpus to track the trends of machine-deduced sentiments and their associations with different days of the week. RESULTS: The evaluation of the unannotated tweets corpus showed that the micro-averaging F scores have reached 0.786. The learning system deduced the sentiment labels for 184,214 tweets in the collected unannotated tweets corpus. Time series analysis identified a coincidence between mainstream outcome and Twitter contents. A weak trend was found for "Negative" tweets that decreased firstly and began to increase later; an opposite trend was identified for "Positive" tweets. Tweets that contain the worries on efficacy for HPV vaccines showed a relative significant decreasing trend. Strong associations were found between some sentiments ("Positive", "Negative", "Negative-Safety" and "Negative-Others") with different days of the week. CONCLUSIONS: Our efforts on sentiment analysis for newly approved HPV vaccines provide us an automatic and instant way to extract public opinion and understand the concerns on Twitter. Our approaches can provide a feedback to public health professionals to monitor online public response, examine the effectiveness of their HPV vaccination promotion strategies and adjust their promotion plans. More... »

PAGES

69

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12911-017-0469-6

DOI

http://dx.doi.org/10.1186/s12911-017-0469-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090368918

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28699569


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Knowledge, Attitudes, Practice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Papillomavirus Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Papillomavirus Vaccines", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Public Opinion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Social Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vaccination", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas Health Science Center at Houston", 
          "id": "https://www.grid.ac/institutes/grid.267308.8", 
          "name": [
            "University of Texas School of Biomedical Informatics, 7000 Fannin St Suite 600, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Jingcheng", 
        "id": "sg:person.01175226373.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175226373.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Health Science Center at Houston", 
          "id": "https://www.grid.ac/institutes/grid.267308.8", 
          "name": [
            "University of Texas School of Biomedical Informatics, 7000 Fannin St Suite 600, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Jun", 
        "id": "sg:person.0675066063.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675066063.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Health Science Center at Houston", 
          "id": "https://www.grid.ac/institutes/grid.267308.8", 
          "name": [
            "University of Texas School of Biomedical Informatics, 7000 Fannin St Suite 600, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Hsing-Yi", 
        "id": "sg:person.012623220563.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012623220563.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Health Science Center at Houston", 
          "id": "https://www.grid.ac/institutes/grid.267308.8", 
          "name": [
            "University of Texas School of Biomedical Informatics, 7000 Fannin St Suite 600, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tao", 
        "givenName": "Cui", 
        "id": "sg:person.01346746612.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346746612.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.4269/ajtmh.2012.11-0597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005940572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008472143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2013.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016748783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40264-014-0155-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019675599", 
          "https://doi.org/10.1007/s40264-014-0155-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40264-014-0155-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019675599", 
          "https://doi.org/10.1007/s40264-014-0155-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0014118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032837048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/473443a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043487017", 
          "https://doi.org/10.1038/473443a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2196/jmir.4343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069286291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079131764", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13326-017-0120-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252459", 
          "https://doi.org/10.1186/s13326-017-0120-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13326-017-0120-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252459", 
          "https://doi.org/10.1186/s13326-017-0120-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "BACKGROUND: As one of the serious public health issues, vaccination refusal has been attracting more and more attention, especially for newly approved human papillomavirus (HPV) vaccines. Understanding public opinion towards HPV vaccines, especially concerns on social media, is of significant importance for HPV vaccination promotion.\nMETHODS: In this study, we leveraged a hierarchical machine learning based sentiment analysis system to extract public opinions towards HPV vaccines from Twitter. English tweets containing HPV vaccines-related keywords were collected from November 2, 2015 to March 28, 2016. Manual annotation was done to evaluate the performance of the system on the unannotated tweets corpus. Followed time series analysis was applied to this corpus to track the trends of machine-deduced sentiments and their associations with different days of the week.\nRESULTS: The evaluation of the unannotated tweets corpus showed that the micro-averaging F scores have reached 0.786. The learning system deduced the sentiment labels for 184,214 tweets in the collected unannotated tweets corpus. Time series analysis identified a coincidence between mainstream outcome and Twitter contents. A weak trend was found for \"Negative\" tweets that decreased firstly and began to increase later; an opposite trend was identified for \"Positive\" tweets. Tweets that contain the worries on efficacy for HPV vaccines showed a relative significant decreasing trend. Strong associations were found between some sentiments (\"Positive\", \"Negative\", \"Negative-Safety\" and \"Negative-Others\") with different days of the week.\nCONCLUSIONS: Our efforts on sentiment analysis for newly approved HPV vaccines provide us an automatic and instant way to extract public opinion and understand the concerns on Twitter. Our approaches can provide a feedback to public health professionals to monitor online public response, examine the effectiveness of their HPV vaccination promotion strategies and adjust their promotion plans.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12911-017-0469-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7051672", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3801902", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6616727", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028432", 
        "issn": [
          "1472-6947"
        ], 
        "name": "BMC Medical Informatics and Decision Making", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Leveraging machine learning-based approaches to assess human papillomavirus vaccination sentiment trends with Twitter data", 
    "pagination": "69", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "96b9189ce6c9e475b39cd601dab1b5f3da52afca5f44ea43ce2c503c09f4cfe7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28699569"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101088682"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12911-017-0469-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090368918"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12911-017-0469-6", 
      "https://app.dimensions.ai/details/publication/pub.1090368918"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54334_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12911-017-0469-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12911-017-0469-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12911-017-0469-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12911-017-0469-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12911-017-0469-6'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      46 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12911-017-0469-6 schema:about N00e49d8b3ff84d368e43088fb106f330
2 N1d501c07a4a44cda8f2c084e1c522ecd
3 N24d6c915ed164f71b30337b74a622d71
4 N6a15a3dbf8554c4c88dc7df991f32799
5 N929eebc312c247c9982b05d4b5056a54
6 Nbb1dcadf95d6442fa91c5c99ef8b6d9b
7 Nd0f0e95a0684416cbf1d1ec8a706bca8
8 Nf9a61d0eb0fc44e8afb71ba576ebbf8e
9 anzsrc-for:11
10 anzsrc-for:1117
11 schema:author N421df523e8c647949020831d6e309a0d
12 schema:citation sg:pub.10.1007/s40264-014-0155-x
13 sg:pub.10.1038/473443a
14 sg:pub.10.1186/s13326-017-0120-6
15 https://app.dimensions.ai/details/publication/pub.1079131764
16 https://doi.org/10.1016/j.eswa.2013.01.001
17 https://doi.org/10.1371/journal.pcbi.1002199
18 https://doi.org/10.1371/journal.pone.0014118
19 https://doi.org/10.2196/jmir.4343
20 https://doi.org/10.4269/ajtmh.2012.11-0597
21 schema:datePublished 2017-07
22 schema:datePublishedReg 2017-07-01
23 schema:description BACKGROUND: As one of the serious public health issues, vaccination refusal has been attracting more and more attention, especially for newly approved human papillomavirus (HPV) vaccines. Understanding public opinion towards HPV vaccines, especially concerns on social media, is of significant importance for HPV vaccination promotion. METHODS: In this study, we leveraged a hierarchical machine learning based sentiment analysis system to extract public opinions towards HPV vaccines from Twitter. English tweets containing HPV vaccines-related keywords were collected from November 2, 2015 to March 28, 2016. Manual annotation was done to evaluate the performance of the system on the unannotated tweets corpus. Followed time series analysis was applied to this corpus to track the trends of machine-deduced sentiments and their associations with different days of the week. RESULTS: The evaluation of the unannotated tweets corpus showed that the micro-averaging F scores have reached 0.786. The learning system deduced the sentiment labels for 184,214 tweets in the collected unannotated tweets corpus. Time series analysis identified a coincidence between mainstream outcome and Twitter contents. A weak trend was found for "Negative" tweets that decreased firstly and began to increase later; an opposite trend was identified for "Positive" tweets. Tweets that contain the worries on efficacy for HPV vaccines showed a relative significant decreasing trend. Strong associations were found between some sentiments ("Positive", "Negative", "Negative-Safety" and "Negative-Others") with different days of the week. CONCLUSIONS: Our efforts on sentiment analysis for newly approved HPV vaccines provide us an automatic and instant way to extract public opinion and understand the concerns on Twitter. Our approaches can provide a feedback to public health professionals to monitor online public response, examine the effectiveness of their HPV vaccination promotion strategies and adjust their promotion plans.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N50095bf537324c6fa9544ff931aa62f6
28 Nda49599aa4964896a1131371f764411e
29 sg:journal.1028432
30 schema:name Leveraging machine learning-based approaches to assess human papillomavirus vaccination sentiment trends with Twitter data
31 schema:pagination 69
32 schema:productId N16c576233271462b9092a414f7f68bf9
33 N25041546719f4cef9b5a59bf348050fb
34 N6f1ac2bb85764301b72c0b3b55aa1efd
35 Na548158df8ac4208bc1ccbe8bbd82959
36 Nbea7000a43014a8fb566d461c966d975
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090368918
38 https://doi.org/10.1186/s12911-017-0469-6
39 schema:sdDatePublished 2019-04-11T10:21
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nfa9d4d22d3e54585adddb1961edfdae5
42 schema:url https://link.springer.com/10.1186%2Fs12911-017-0469-6
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N00e49d8b3ff84d368e43088fb106f330 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
47 schema:name Health Knowledge, Attitudes, Practice
48 rdf:type schema:DefinedTerm
49 N16c576233271462b9092a414f7f68bf9 schema:name nlm_unique_id
50 schema:value 101088682
51 rdf:type schema:PropertyValue
52 N1d501c07a4a44cda8f2c084e1c522ecd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Social Media
54 rdf:type schema:DefinedTerm
55 N24d6c915ed164f71b30337b74a622d71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Papillomavirus Infections
57 rdf:type schema:DefinedTerm
58 N25041546719f4cef9b5a59bf348050fb schema:name doi
59 schema:value 10.1186/s12911-017-0469-6
60 rdf:type schema:PropertyValue
61 N421df523e8c647949020831d6e309a0d rdf:first sg:person.01175226373.06
62 rdf:rest N9ce2aaf34ecd4f65869520bde24208fb
63 N50095bf537324c6fa9544ff931aa62f6 schema:issueNumber Suppl 2
64 rdf:type schema:PublicationIssue
65 N6a15a3dbf8554c4c88dc7df991f32799 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Humans
67 rdf:type schema:DefinedTerm
68 N6f1ac2bb85764301b72c0b3b55aa1efd schema:name readcube_id
69 schema:value 96b9189ce6c9e475b39cd601dab1b5f3da52afca5f44ea43ce2c503c09f4cfe7
70 rdf:type schema:PropertyValue
71 N929eebc312c247c9982b05d4b5056a54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Machine Learning
73 rdf:type schema:DefinedTerm
74 N9ce2aaf34ecd4f65869520bde24208fb rdf:first sg:person.0675066063.53
75 rdf:rest Nd86fb726a31546e38e71a3c8aab82933
76 Na548158df8ac4208bc1ccbe8bbd82959 schema:name dimensions_id
77 schema:value pub.1090368918
78 rdf:type schema:PropertyValue
79 Na9edad5fbe3643aabcf2eb94b1a8e4f7 rdf:first sg:person.01346746612.98
80 rdf:rest rdf:nil
81 Nbb1dcadf95d6442fa91c5c99ef8b6d9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Vaccination
83 rdf:type schema:DefinedTerm
84 Nbea7000a43014a8fb566d461c966d975 schema:name pubmed_id
85 schema:value 28699569
86 rdf:type schema:PropertyValue
87 Nd0f0e95a0684416cbf1d1ec8a706bca8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Papillomavirus Vaccines
89 rdf:type schema:DefinedTerm
90 Nd86fb726a31546e38e71a3c8aab82933 rdf:first sg:person.012623220563.45
91 rdf:rest Na9edad5fbe3643aabcf2eb94b1a8e4f7
92 Nda49599aa4964896a1131371f764411e schema:volumeNumber 17
93 rdf:type schema:PublicationVolume
94 Nf9a61d0eb0fc44e8afb71ba576ebbf8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Public Opinion
96 rdf:type schema:DefinedTerm
97 Nfa9d4d22d3e54585adddb1961edfdae5 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
100 schema:name Medical and Health Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
103 schema:name Public Health and Health Services
104 rdf:type schema:DefinedTerm
105 sg:grant.3801902 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-017-0469-6
106 rdf:type schema:MonetaryGrant
107 sg:grant.6616727 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-017-0469-6
108 rdf:type schema:MonetaryGrant
109 sg:grant.7051672 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-017-0469-6
110 rdf:type schema:MonetaryGrant
111 sg:journal.1028432 schema:issn 1472-6947
112 schema:name BMC Medical Informatics and Decision Making
113 rdf:type schema:Periodical
114 sg:person.01175226373.06 schema:affiliation https://www.grid.ac/institutes/grid.267308.8
115 schema:familyName Du
116 schema:givenName Jingcheng
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175226373.06
118 rdf:type schema:Person
119 sg:person.012623220563.45 schema:affiliation https://www.grid.ac/institutes/grid.267308.8
120 schema:familyName Song
121 schema:givenName Hsing-Yi
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012623220563.45
123 rdf:type schema:Person
124 sg:person.01346746612.98 schema:affiliation https://www.grid.ac/institutes/grid.267308.8
125 schema:familyName Tao
126 schema:givenName Cui
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346746612.98
128 rdf:type schema:Person
129 sg:person.0675066063.53 schema:affiliation https://www.grid.ac/institutes/grid.267308.8
130 schema:familyName Xu
131 schema:givenName Jun
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675066063.53
133 rdf:type schema:Person
134 sg:pub.10.1007/s40264-014-0155-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019675599
135 https://doi.org/10.1007/s40264-014-0155-x
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/473443a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043487017
138 https://doi.org/10.1038/473443a
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/s13326-017-0120-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252459
141 https://doi.org/10.1186/s13326-017-0120-6
142 rdf:type schema:CreativeWork
143 https://app.dimensions.ai/details/publication/pub.1079131764 schema:CreativeWork
144 https://doi.org/10.1016/j.eswa.2013.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016748783
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1371/journal.pcbi.1002199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008472143
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1371/journal.pone.0014118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032837048
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2196/jmir.4343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069286291
151 rdf:type schema:CreativeWork
152 https://doi.org/10.4269/ajtmh.2012.11-0597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005940572
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.267308.8 schema:alternateName The University of Texas Health Science Center at Houston
155 schema:name University of Texas School of Biomedical Informatics, 7000 Fannin St Suite 600, 77030, Houston, TX, USA
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...