Quad-phased data mining modeling for dementia diagnosis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-18

AUTHORS

Sunjoo Bang, Sangjoon Son, Hyunwoong Roh, Jihye Lee, Sungyun Bae, Kyungwon Lee, Changhyung Hong, Hyunjung Shin

ABSTRACT

BACKGROUND: The number of people with dementia is increasing along with people's ageing trend worldwide. Therefore, there are various researches to improve a dementia diagnosis process in the field of computer-aided diagnosis (CAD) technology. The most significant issue is that the evaluation processes by physician which is based on medical information for patients and questionnaire from their guardians are time consuming, subjective and prone to error. This problem can be solved by an overall data mining modeling, which subsidizes an intuitive decision of clinicians. METHODS: Therefore, in this paper we propose a quad-phased data mining modeling consisting of 4 modules. In Proposer Module, significant diagnostic criteria are selected that are effective for diagnostics. Then in Predictor Module, a model is constructed to predict and diagnose dementia based on a machine learning algorism. To help clinical physicians understand results of the predictive model better, in Descriptor Module, we interpret causes of diagnostics by profiling patient groups. Lastly, in Visualization Module, we provide visualization to effectively explore characteristics of patient groups. RESULTS: The proposed model is applied for CREDOS study which contains clinical data collected from 37 university-affiliated hospitals in republic of Korea from year 2005 to 2013. CONCLUSIONS: This research is an intelligent system enabling intuitive collaboration between CAD system and physicians. And also, improved evaluation process is able to effectively reduce time and cost consuming for clinicians and patients. More... »

PAGES

60

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12911-017-0451-3

DOI

http://dx.doi.org/10.1186/s12911-017-0451-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085441038

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28539115


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Mining", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Trees", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dementia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks, Computer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Support Vector Machine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Industrial Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Industrial Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bang", 
        "givenName": "Sunjoo", 
        "id": "sg:person.010746545775.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010746545775.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychiatry, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Psychiatry, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Son", 
        "givenName": "Sangjoon", 
        "id": "sg:person.01172552522.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172552522.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychiatry, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Psychiatry, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roh", 
        "givenName": "Hyunwoong", 
        "id": "sg:person.01166711422.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166711422.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Digital Media, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Digital Media, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jihye", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Digital Media, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Digital Media, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bae", 
        "givenName": "Sungyun", 
        "id": "sg:person.012757433257.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757433257.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Digital Media, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Digital Media, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kyungwon", 
        "id": "sg:person.015112376731.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112376731.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychiatry, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Psychiatry, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Changhyung", 
        "id": "sg:person.01223317566.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223317566.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Industrial Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Industrial Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Hyunjung", 
        "id": "sg:person.01275373607.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275373607.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:stco.0000035301.49549.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000991887", 
          "https://doi.org/10.1023/b:stco.0000035301.49549.88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12883-014-0183-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046138208", 
          "https://doi.org/10.1186/s12883-014-0183-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1751-0473-3-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024236822", 
          "https://doi.org/10.1186/1751-0473-3-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8794-7-s1-s4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012283619", 
          "https://doi.org/10.1186/1755-8794-7-s1-s4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004150050299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015566589", 
          "https://doi.org/10.1007/s004150050299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1751-0473-3-17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041537446", 
          "https://doi.org/10.1186/1751-0473-3-17"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-18", 
    "datePublishedReg": "2017-05-18", 
    "description": "BACKGROUND: The number of people with dementia is increasing along with people's ageing trend worldwide. Therefore, there are various researches to improve a dementia diagnosis process in the field of computer-aided diagnosis (CAD) technology. The most significant issue is that the evaluation processes by physician which is based on medical information for patients and questionnaire from their guardians are time consuming, subjective and prone to error. This problem can be solved by an overall data mining modeling, which subsidizes an intuitive decision of clinicians.\nMETHODS: Therefore, in this paper we propose a quad-phased data mining modeling consisting of 4 modules. In Proposer Module, significant diagnostic criteria are selected that are effective for diagnostics. Then in Predictor Module, a model is constructed to predict and diagnose dementia based on a machine learning algorism. To help clinical physicians understand results of the predictive model better, in Descriptor Module, we interpret causes of diagnostics by profiling patient groups. Lastly, in Visualization Module, we provide visualization to effectively explore characteristics of patient groups.\nRESULTS: The proposed model is applied for CREDOS study which contains clinical data collected from 37 university-affiliated hospitals in republic of Korea from year 2005 to 2013.\nCONCLUSIONS: This research is an intelligent system enabling intuitive collaboration between CAD system and physicians. And also, improved evaluation process is able to effectively reduce time and cost consuming for clinicians and patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12911-017-0451-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1028432", 
        "issn": [
          "1472-6947"
        ], 
        "name": "BMC Medical Informatics and Decision Making", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "data mining modeling", 
      "computer-aided diagnosis technology", 
      "intelligent systems", 
      "visualization module", 
      "intuitive collaboration", 
      "CAD system", 
      "evaluation process", 
      "diagnosis process", 
      "diagnosis technology", 
      "patient group", 
      "predictor module", 
      "medical information", 
      "university-affiliated hospital", 
      "module", 
      "intuitive decisions", 
      "CREDOS study", 
      "predictive model", 
      "clinical data", 
      "significant issue", 
      "diagnostic criteria", 
      "clinical physicians", 
      "dementia diagnosis", 
      "significant diagnostic criteria", 
      "physicians", 
      "modeling", 
      "machine", 
      "patients", 
      "dementia", 
      "clinicians", 
      "number of people", 
      "system", 
      "visualization", 
      "technology", 
      "algorism", 
      "model", 
      "information", 
      "collaboration", 
      "group", 
      "hospital", 
      "years 2005", 
      "cost", 
      "diagnosis", 
      "decisions", 
      "process", 
      "research", 
      "error", 
      "issues", 
      "Republic of Korea", 
      "cause", 
      "questionnaire", 
      "time", 
      "people", 
      "data", 
      "diagnostics", 
      "guardians", 
      "criteria", 
      "number", 
      "study", 
      "field", 
      "results", 
      "trends", 
      "characteristics", 
      "Korea", 
      "Republic", 
      "problem", 
      "paper", 
      "dementia diagnosis process", 
      "overall data mining modeling", 
      "mining modeling", 
      "quad-phased data mining modeling", 
      "Proposer Module", 
      "Descriptor Module", 
      "causes of diagnostics", 
      "improved evaluation process"
    ], 
    "name": "Quad-phased data mining modeling for dementia diagnosis", 
    "pagination": "60", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085441038"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12911-017-0451-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28539115"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12911-017-0451-3", 
      "https://app.dimensions.ai/details/publication/pub.1085441038"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_738.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12911-017-0451-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12911-017-0451-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12911-017-0451-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12911-017-0451-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12911-017-0451-3'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      22 PREDICATES      116 URIs      100 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12911-017-0451-3 schema:about N0ccdd89ed9294dcba2957a6925466115
2 N0f862703dde84749a37b9402a3194c80
3 N2af61b9f4fa74e19ae1ecec2b9578c3b
4 N3ba20056e8764da28a2ea2b6a3d5170a
5 N4affd8ccaaf843b19a8c63662e04b0e6
6 N534eef709d6048418a8a58717b4eb14a
7 N8ea3adf9c95149c9812446e227d9246e
8 Ne9ebdbc9a1ba4b36ac99881799da8264
9 anzsrc-for:08
10 anzsrc-for:0801
11 anzsrc-for:0806
12 schema:author Ne88709eee89d44bb8e23812f7a9129f8
13 schema:citation sg:pub.10.1007/bf00994018
14 sg:pub.10.1007/s004150050299
15 sg:pub.10.1023/b:stco.0000035301.49549.88
16 sg:pub.10.1186/1751-0473-3-1
17 sg:pub.10.1186/1751-0473-3-17
18 sg:pub.10.1186/1755-8794-7-s1-s4
19 sg:pub.10.1186/s12883-014-0183-2
20 schema:datePublished 2017-05-18
21 schema:datePublishedReg 2017-05-18
22 schema:description BACKGROUND: The number of people with dementia is increasing along with people's ageing trend worldwide. Therefore, there are various researches to improve a dementia diagnosis process in the field of computer-aided diagnosis (CAD) technology. The most significant issue is that the evaluation processes by physician which is based on medical information for patients and questionnaire from their guardians are time consuming, subjective and prone to error. This problem can be solved by an overall data mining modeling, which subsidizes an intuitive decision of clinicians. METHODS: Therefore, in this paper we propose a quad-phased data mining modeling consisting of 4 modules. In Proposer Module, significant diagnostic criteria are selected that are effective for diagnostics. Then in Predictor Module, a model is constructed to predict and diagnose dementia based on a machine learning algorism. To help clinical physicians understand results of the predictive model better, in Descriptor Module, we interpret causes of diagnostics by profiling patient groups. Lastly, in Visualization Module, we provide visualization to effectively explore characteristics of patient groups. RESULTS: The proposed model is applied for CREDOS study which contains clinical data collected from 37 university-affiliated hospitals in republic of Korea from year 2005 to 2013. CONCLUSIONS: This research is an intelligent system enabling intuitive collaboration between CAD system and physicians. And also, improved evaluation process is able to effectively reduce time and cost consuming for clinicians and patients.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N096703f60e2940aebe5f92305bc91a97
27 Nf0c3903dae854c7c8819aa5a3b37e7b3
28 sg:journal.1028432
29 schema:keywords CAD system
30 CREDOS study
31 Descriptor Module
32 Korea
33 Proposer Module
34 Republic
35 Republic of Korea
36 algorism
37 cause
38 causes of diagnostics
39 characteristics
40 clinical data
41 clinical physicians
42 clinicians
43 collaboration
44 computer-aided diagnosis technology
45 cost
46 criteria
47 data
48 data mining modeling
49 decisions
50 dementia
51 dementia diagnosis
52 dementia diagnosis process
53 diagnosis
54 diagnosis process
55 diagnosis technology
56 diagnostic criteria
57 diagnostics
58 error
59 evaluation process
60 field
61 group
62 guardians
63 hospital
64 improved evaluation process
65 information
66 intelligent systems
67 intuitive collaboration
68 intuitive decisions
69 issues
70 machine
71 medical information
72 mining modeling
73 model
74 modeling
75 module
76 number
77 number of people
78 overall data mining modeling
79 paper
80 patient group
81 patients
82 people
83 physicians
84 predictive model
85 predictor module
86 problem
87 process
88 quad-phased data mining modeling
89 questionnaire
90 research
91 results
92 significant diagnostic criteria
93 significant issue
94 study
95 system
96 technology
97 time
98 trends
99 university-affiliated hospital
100 visualization
101 visualization module
102 years 2005
103 schema:name Quad-phased data mining modeling for dementia diagnosis
104 schema:pagination 60
105 schema:productId N67c8c0dad421440d8dd648fa4140022d
106 Nb7e8f64e86c44ccb8af15f88be3e88d6
107 Nc65ebf4165494184847b7736fdea4993
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085441038
109 https://doi.org/10.1186/s12911-017-0451-3
110 schema:sdDatePublished 2022-01-01T18:44
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher Nb05b2f340d8f4c5f8776e9bf59343788
113 schema:url https://doi.org/10.1186/s12911-017-0451-3
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N096703f60e2940aebe5f92305bc91a97 schema:issueNumber Suppl 1
118 rdf:type schema:PublicationIssue
119 N0ccdd89ed9294dcba2957a6925466115 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Data Mining
121 rdf:type schema:DefinedTerm
122 N0f862703dde84749a37b9402a3194c80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Diagnosis, Computer-Assisted
124 rdf:type schema:DefinedTerm
125 N2af61b9f4fa74e19ae1ecec2b9578c3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Support Vector Machine
127 rdf:type schema:DefinedTerm
128 N355814767a9040abacbf9a2500b1c2ea rdf:first sg:person.01166711422.75
129 rdf:rest Nf4e11b53bc7940dba29cbe45b016b12d
130 N3ba20056e8764da28a2ea2b6a3d5170a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Computer Simulation
132 rdf:type schema:DefinedTerm
133 N3bd32a47106f48a2987c7911be5a3a02 rdf:first sg:person.01172552522.05
134 rdf:rest N355814767a9040abacbf9a2500b1c2ea
135 N4affd8ccaaf843b19a8c63662e04b0e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Dementia
137 rdf:type schema:DefinedTerm
138 N4c87b7394cb14713ada22450748f5d1f rdf:first sg:person.01275373607.23
139 rdf:rest rdf:nil
140 N534eef709d6048418a8a58717b4eb14a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Neural Networks, Computer
142 rdf:type schema:DefinedTerm
143 N5bf937419b674f1f891d60a522c429c1 rdf:first sg:person.01223317566.34
144 rdf:rest N4c87b7394cb14713ada22450748f5d1f
145 N67c8c0dad421440d8dd648fa4140022d schema:name dimensions_id
146 schema:value pub.1085441038
147 rdf:type schema:PropertyValue
148 N7875057193604b1c8f540aeba3458d43 rdf:first sg:person.015112376731.87
149 rdf:rest N5bf937419b674f1f891d60a522c429c1
150 N8ea3adf9c95149c9812446e227d9246e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Humans
152 rdf:type schema:DefinedTerm
153 N9cf35e25453842b1a5a5c2a5c8caa08a rdf:first sg:person.012757433257.69
154 rdf:rest N7875057193604b1c8f540aeba3458d43
155 N9f7b86ee99004dccbf241b39af1c2b9b schema:affiliation grid-institutes:grid.251916.8
156 schema:familyName Lee
157 schema:givenName Jihye
158 rdf:type schema:Person
159 Nb05b2f340d8f4c5f8776e9bf59343788 schema:name Springer Nature - SN SciGraph project
160 rdf:type schema:Organization
161 Nb7e8f64e86c44ccb8af15f88be3e88d6 schema:name pubmed_id
162 schema:value 28539115
163 rdf:type schema:PropertyValue
164 Nc65ebf4165494184847b7736fdea4993 schema:name doi
165 schema:value 10.1186/s12911-017-0451-3
166 rdf:type schema:PropertyValue
167 Ne88709eee89d44bb8e23812f7a9129f8 rdf:first sg:person.010746545775.90
168 rdf:rest N3bd32a47106f48a2987c7911be5a3a02
169 Ne9ebdbc9a1ba4b36ac99881799da8264 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Decision Trees
171 rdf:type schema:DefinedTerm
172 Nf0c3903dae854c7c8819aa5a3b37e7b3 schema:volumeNumber 17
173 rdf:type schema:PublicationVolume
174 Nf4e11b53bc7940dba29cbe45b016b12d rdf:first N9f7b86ee99004dccbf241b39af1c2b9b
175 rdf:rest N9cf35e25453842b1a5a5c2a5c8caa08a
176 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
177 schema:name Information and Computing Sciences
178 rdf:type schema:DefinedTerm
179 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
180 schema:name Artificial Intelligence and Image Processing
181 rdf:type schema:DefinedTerm
182 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
183 schema:name Information Systems
184 rdf:type schema:DefinedTerm
185 sg:journal.1028432 schema:issn 1472-6947
186 schema:name BMC Medical Informatics and Decision Making
187 schema:publisher Springer Nature
188 rdf:type schema:Periodical
189 sg:person.010746545775.90 schema:affiliation grid-institutes:grid.251916.8
190 schema:familyName Bang
191 schema:givenName Sunjoo
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010746545775.90
193 rdf:type schema:Person
194 sg:person.01166711422.75 schema:affiliation grid-institutes:grid.251916.8
195 schema:familyName Roh
196 schema:givenName Hyunwoong
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166711422.75
198 rdf:type schema:Person
199 sg:person.01172552522.05 schema:affiliation grid-institutes:grid.251916.8
200 schema:familyName Son
201 schema:givenName Sangjoon
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172552522.05
203 rdf:type schema:Person
204 sg:person.01223317566.34 schema:affiliation grid-institutes:grid.251916.8
205 schema:familyName Hong
206 schema:givenName Changhyung
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223317566.34
208 rdf:type schema:Person
209 sg:person.01275373607.23 schema:affiliation grid-institutes:grid.251916.8
210 schema:familyName Shin
211 schema:givenName Hyunjung
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275373607.23
213 rdf:type schema:Person
214 sg:person.012757433257.69 schema:affiliation grid-institutes:grid.251916.8
215 schema:familyName Bae
216 schema:givenName Sungyun
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757433257.69
218 rdf:type schema:Person
219 sg:person.015112376731.87 schema:affiliation grid-institutes:grid.251916.8
220 schema:familyName Lee
221 schema:givenName Kyungwon
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112376731.87
223 rdf:type schema:Person
224 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
225 https://doi.org/10.1007/bf00994018
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/s004150050299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015566589
228 https://doi.org/10.1007/s004150050299
229 rdf:type schema:CreativeWork
230 sg:pub.10.1023/b:stco.0000035301.49549.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000991887
231 https://doi.org/10.1023/b:stco.0000035301.49549.88
232 rdf:type schema:CreativeWork
233 sg:pub.10.1186/1751-0473-3-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024236822
234 https://doi.org/10.1186/1751-0473-3-1
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/1751-0473-3-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041537446
237 https://doi.org/10.1186/1751-0473-3-17
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/1755-8794-7-s1-s4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012283619
240 https://doi.org/10.1186/1755-8794-7-s1-s4
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/s12883-014-0183-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046138208
243 https://doi.org/10.1186/s12883-014-0183-2
244 rdf:type schema:CreativeWork
245 grid-institutes:grid.251916.8 schema:alternateName Department of Digital Media, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea
246 Department of Industrial Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea
247 Department of Psychiatry, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea
248 schema:name Department of Digital Media, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea
249 Department of Industrial Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea
250 Department of Psychiatry, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...