Development of an algorithm for determining smoking status and behaviour over the life course from UK electronic primary care records View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Mark D. Atkinson, Jonathan I. Kennedy, Ann John, Keir E. Lewis, Ronan A. Lyons, Sinead T. Brophy, on behalf of the DEMISTIFY Research Group

ABSTRACT

BACKGROUND: Patients' smoking status is routinely collected by General Practitioners (GP) in UK primary health care. There is an abundance of Read codes pertaining to smoking, including those relating to smoking cessation therapy, prescription, and administration codes, in addition to the more regularly employed smoking status codes. Large databases of primary care data are increasingly used for epidemiological analysis; smoking status is an important covariate in many such analyses. However, the variable definition is rarely documented in the literature. METHODS: The Secure Anonymised Information Linkage (SAIL) databank is a repository for a national collection of person-based anonymised health and socio-economic administrative data in Wales, UK. An exploration of GP smoking status data from the SAIL databank was carried out to explore the range of codes available and how they could be used in the identification of different categories of smokers, ex-smokers and never smokers. An algorithm was developed which addresses inconsistencies and changes in smoking status recording across the life course and compared with recorded smoking status as recorded in the Welsh Health Survey (WHS), 2013 and 2014 at individual level. However, the WHS could not be regarded as a "gold standard" for validation. RESULTS: There were 6836 individuals in the linked dataset. Missing data were more common in GP records (6%) than in WHS (1.1%). Our algorithm assigns ex-smoker status to 34% of never-smokers, and detects 30% more smokers than are declared in the WHS data. When distinguishing between current smokers and non-smokers, the similarity between the WHS and GP data using the nearest date of comparison was κ = 0.78. When temporal conflicts had been accounted for, the similarity was κ = 0.64, showing the importance of addressing conflicts. CONCLUSIONS: We present an algorithm for the identification of a patient's smoking status using GP self-reported data. We have included sufficient details to allow others to replicate this work, thus increasing the standards of documentation within this research area and assessment of smoking status in routine data. More... »

PAGES

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12911-016-0400-6

DOI

http://dx.doi.org/10.1186/s12911-016-0400-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002505143

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28056955


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electronic Health Records", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Behavior", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medical Record Linkage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Primary Health Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Smoking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Smoking Cessation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Wales", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Farr Institute", 
          "id": "https://www.grid.ac/institutes/grid.488827.9", 
          "name": [
            "Farr Institute, Swansea University Medical School, SA2 8PP, Swansea, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atkinson", 
        "givenName": "Mark D.", 
        "id": "sg:person.01013734010.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013734010.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Farr Institute", 
          "id": "https://www.grid.ac/institutes/grid.488827.9", 
          "name": [
            "Farr Institute, Swansea University Medical School, SA2 8PP, Swansea, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kennedy", 
        "givenName": "Jonathan I.", 
        "id": "sg:person.01023343145.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023343145.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Farr Institute", 
          "id": "https://www.grid.ac/institutes/grid.488827.9", 
          "name": [
            "Farr Institute, Swansea University Medical School, SA2 8PP, Swansea, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "John", 
        "givenName": "Ann", 
        "id": "sg:person.01361677440.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361677440.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Prince Philip Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415213.0", 
          "name": [
            "Farr Institute, Swansea University Medical School, SA2 8PP, Swansea, UK", 
            "Prince Philip Hospital, Hywel Dda Health Board, Llanelli, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lewis", 
        "givenName": "Keir E.", 
        "id": "sg:person.0667751667.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667751667.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Farr Institute", 
          "id": "https://www.grid.ac/institutes/grid.488827.9", 
          "name": [
            "Farr Institute, Swansea University Medical School, SA2 8PP, Swansea, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyons", 
        "givenName": "Ronan A.", 
        "id": "sg:person.01371504405.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371504405.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Farr Institute", 
          "id": "https://www.grid.ac/institutes/grid.488827.9", 
          "name": [
            "Farr Institute, Swansea University Medical School, SA2 8PP, Swansea, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brophy", 
        "givenName": "Sinead T.", 
        "id": "sg:person.01314236612.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314236612.17"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "on behalf of the DEMISTIFY Research Group", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3399/bjgp10x483544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004656628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awh471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007052992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/fampra/cmi026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008145737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ibd.21187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013040218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ibd.21187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013040218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1360-0443.2007.01766.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016312846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.3537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019472875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6947-9-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020284030", 
          "https://doi.org/10.1186/1472-6947-9-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dys188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021896957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.326.7398.1070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021911137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehn477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022316085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-11-773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022664253", 
          "https://doi.org/10.1186/1471-2458-11-773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-12-329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026647498", 
          "https://doi.org/10.1186/1471-2458-12-329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/fampra/cmq046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028489096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jech.2010.120154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030299627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.1335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032703247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/tc.2008.026294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035952714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/tc.2008.026294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035952714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10552-004-3485-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036059831", 
          "https://doi.org/10.1007/s10552-004-3485-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10552-004-3485-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036059831", 
          "https://doi.org/10.1007/s10552-004-3485-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10552-004-3485-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036059831", 
          "https://doi.org/10.1007/s10552-004-3485-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.300.6732.1092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036239429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/pubmed/22.2.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038356229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.1960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041654889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.1960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041654889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaad.2006.08.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043100007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmedinf.2004.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043192686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2261-7-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043665876", 
          "https://doi.org/10.1186/1471-2261-7-38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2261-7-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043665876", 
          "https://doi.org/10.1186/1471-2261-7-38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archpsyc.64.2.242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046880118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6963-9-157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047739446", 
          "https://doi.org/10.1186/1472-6963-9-157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048019410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1360-0443.2004.00995.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051454046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.302.6779.766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053165083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ntr/ntn010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059943151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14236/jhi.v12i1.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067225737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14236/jhi.v12i4.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067225761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14236/jhi.v14i4.637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067225826"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: Patients' smoking status is routinely collected by General Practitioners (GP) in UK primary health care. There is an abundance of Read codes pertaining to smoking, including those relating to smoking cessation therapy, prescription, and administration codes, in addition to the more regularly employed smoking status codes. Large databases of primary care data are increasingly used for epidemiological analysis; smoking status is an important covariate in many such analyses. However, the variable definition is rarely documented in the literature.\nMETHODS: The Secure Anonymised Information Linkage (SAIL) databank is a repository for a national collection of person-based anonymised health and socio-economic administrative data in Wales, UK. An exploration of GP smoking status data from the SAIL databank was carried out to explore the range of codes available and how they could be used in the identification of different categories of smokers, ex-smokers and never smokers. An algorithm was developed which addresses inconsistencies and changes in smoking status recording across the life course and compared with recorded smoking status as recorded in the Welsh Health Survey (WHS), 2013 and 2014 at individual level. However, the WHS could not be regarded as a \"gold standard\" for validation.\nRESULTS: There were 6836 individuals in the linked dataset. Missing data were more common in GP records (6%) than in WHS (1.1%). Our algorithm assigns ex-smoker status to 34% of never-smokers, and detects 30% more smokers than are declared in the WHS data. When distinguishing between current smokers and non-smokers, the similarity between the WHS and GP data using the nearest date of comparison was \u03ba\u2009=\u20090.78. When temporal conflicts had been accounted for, the similarity was \u03ba\u2009=\u20090.64, showing the importance of addressing conflicts.\nCONCLUSIONS: We present an algorithm for the identification of a patient's smoking status using GP self-reported data. We have included sufficient details to allow others to replicate this work, thus increasing the standards of documentation within this research area and assessment of smoking status in routine data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12911-016-0400-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2757699", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2767469", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3560644", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3559945", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2771982", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028432", 
        "issn": [
          "1472-6947"
        ], 
        "name": "BMC Medical Informatics and Decision Making", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Development of an algorithm for determining smoking status and behaviour over the life course from UK electronic primary care records", 
    "pagination": "2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0bed2abaf1f41f950124ad691d9da49280ab0ef90fe7be75447023f4f0b55712"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28056955"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101088682"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12911-016-0400-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002505143"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12911-016-0400-6", 
      "https://app.dimensions.ai/details/publication/pub.1002505143"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89798_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12911-016-0400-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12911-016-0400-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12911-016-0400-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12911-016-0400-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12911-016-0400-6'


 

This table displays all metadata directly associated to this object as RDF triples.

295 TRIPLES      21 PREDICATES      79 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12911-016-0400-6 schema:about N03a30e97c7c84c589c0416e10a9642ef
2 N0ef40647d8d146749cc341ab37f0c9df
3 N17942701cfe545dda7bc2f9356d5c387
4 N32300841415641468344a71d545b6ef4
5 N4486745bd4234149bafe53e08183769e
6 N5724543acb4247fa883e82086706462a
7 N591f402e700e447495e07b3c7ca0099b
8 N669d39a7fdf64aa8bf8d599834b6e372
9 N737d7b52fcd241708d8bb3d1587610ef
10 N7c81bd2973f54ef59faeb94b45ba685e
11 N86f4a795b04349dbad0c54d283d7c9a9
12 N9d7ac2ebbdf64d61848b076a8ddc7cf2
13 Na082e9ca15274d9887451ab8c58427ad
14 Nae2471834a874290b695bca8f47db15c
15 Nb3f316575cf14c43bae5ccd4cf2e7e51
16 Ne3882e9fcd34449fa8b277241536ba5d
17 Ne70ff3c052854ecab6e07f52830f814a
18 Nf3a5a05f52624cc9a89dfcb52a1e4ed9
19 anzsrc-for:11
20 anzsrc-for:1117
21 schema:author Na025d1f0ee264284a32c7956be48ce1e
22 schema:citation sg:pub.10.1007/s10552-004-3485-7
23 sg:pub.10.1186/1471-2261-7-38
24 sg:pub.10.1186/1471-2458-11-773
25 sg:pub.10.1186/1471-2458-12-329
26 sg:pub.10.1186/1472-6947-9-3
27 sg:pub.10.1186/1472-6963-9-157
28 https://doi.org/10.1001/archpsyc.64.2.242
29 https://doi.org/10.1002/ibd.21187
30 https://doi.org/10.1002/pds.1335
31 https://doi.org/10.1002/pds.1960
32 https://doi.org/10.1002/pds.3537
33 https://doi.org/10.1002/pds.902
34 https://doi.org/10.1016/j.ijmedinf.2004.02.002
35 https://doi.org/10.1016/j.jaad.2006.08.040
36 https://doi.org/10.1093/brain/awh471
37 https://doi.org/10.1093/eurheartj/ehn477
38 https://doi.org/10.1093/fampra/cmi026
39 https://doi.org/10.1093/fampra/cmq046
40 https://doi.org/10.1093/ije/dys188
41 https://doi.org/10.1093/ntr/ntn010
42 https://doi.org/10.1093/pubmed/22.2.198
43 https://doi.org/10.1111/j.1360-0443.2004.00995.x
44 https://doi.org/10.1111/j.1360-0443.2007.01766.x
45 https://doi.org/10.1136/bmj.300.6732.1092
46 https://doi.org/10.1136/bmj.302.6779.766
47 https://doi.org/10.1136/bmj.326.7398.1070
48 https://doi.org/10.1136/jech.2010.120154
49 https://doi.org/10.1136/tc.2008.026294
50 https://doi.org/10.14236/jhi.v12i1.108
51 https://doi.org/10.14236/jhi.v12i4.132
52 https://doi.org/10.14236/jhi.v14i4.637
53 https://doi.org/10.3399/bjgp10x483544
54 schema:datePublished 2017-12
55 schema:datePublishedReg 2017-12-01
56 schema:description BACKGROUND: Patients' smoking status is routinely collected by General Practitioners (GP) in UK primary health care. There is an abundance of Read codes pertaining to smoking, including those relating to smoking cessation therapy, prescription, and administration codes, in addition to the more regularly employed smoking status codes. Large databases of primary care data are increasingly used for epidemiological analysis; smoking status is an important covariate in many such analyses. However, the variable definition is rarely documented in the literature. METHODS: The Secure Anonymised Information Linkage (SAIL) databank is a repository for a national collection of person-based anonymised health and socio-economic administrative data in Wales, UK. An exploration of GP smoking status data from the SAIL databank was carried out to explore the range of codes available and how they could be used in the identification of different categories of smokers, ex-smokers and never smokers. An algorithm was developed which addresses inconsistencies and changes in smoking status recording across the life course and compared with recorded smoking status as recorded in the Welsh Health Survey (WHS), 2013 and 2014 at individual level. However, the WHS could not be regarded as a "gold standard" for validation. RESULTS: There were 6836 individuals in the linked dataset. Missing data were more common in GP records (6%) than in WHS (1.1%). Our algorithm assigns ex-smoker status to 34% of never-smokers, and detects 30% more smokers than are declared in the WHS data. When distinguishing between current smokers and non-smokers, the similarity between the WHS and GP data using the nearest date of comparison was κ = 0.78. When temporal conflicts had been accounted for, the similarity was κ = 0.64, showing the importance of addressing conflicts. CONCLUSIONS: We present an algorithm for the identification of a patient's smoking status using GP self-reported data. We have included sufficient details to allow others to replicate this work, thus increasing the standards of documentation within this research area and assessment of smoking status in routine data.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N699ef3164c28478eb0b68ce6dce37f8f
61 Nb6a53b17638a418482d9699056d6c3b4
62 sg:journal.1028432
63 schema:name Development of an algorithm for determining smoking status and behaviour over the life course from UK electronic primary care records
64 schema:pagination 2
65 schema:productId N13ae45aad40d47bb8206c136d5df1e35
66 N13ca2f8a73e94327bcb525393f8da116
67 N5abd2caa31fa4fb3b095d38afbd13f12
68 Nc62ae98d0bcc4815a20ce8c7ec2194b1
69 Neceb63906c63458eb054500c4c1c1d50
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002505143
71 https://doi.org/10.1186/s12911-016-0400-6
72 schema:sdDatePublished 2019-04-11T09:54
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N28c636dab57c49d4a81c004d7aaaed73
75 schema:url https://link.springer.com/10.1186%2Fs12911-016-0400-6
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N03a30e97c7c84c589c0416e10a9642ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Smoking
81 rdf:type schema:DefinedTerm
82 N0e7180647fee420ca13297190a66d101 rdf:first sg:person.01314236612.17
83 rdf:rest N6a8d7f6e05df4d5b94904b3e9354b6b8
84 N0ef40647d8d146749cc341ab37f0c9df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Middle Aged
86 rdf:type schema:DefinedTerm
87 N13ae45aad40d47bb8206c136d5df1e35 schema:name doi
88 schema:value 10.1186/s12911-016-0400-6
89 rdf:type schema:PropertyValue
90 N13ca2f8a73e94327bcb525393f8da116 schema:name nlm_unique_id
91 schema:value 101088682
92 rdf:type schema:PropertyValue
93 N17942701cfe545dda7bc2f9356d5c387 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Electronic Health Records
95 rdf:type schema:DefinedTerm
96 N20a6d22b28484504b05e59770526ffa4 rdf:first sg:person.0667751667.27
97 rdf:rest N4eb69e4f55e749eba0ace06be088eb84
98 N28c636dab57c49d4a81c004d7aaaed73 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N32300841415641468344a71d545b6ef4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Adult
102 rdf:type schema:DefinedTerm
103 N3325ac1aca984693a5370300c63c89f4 schema:familyName on behalf of the DEMISTIFY Research Group
104 rdf:type schema:Person
105 N3f0b6df6f31a46f6ac0d726b495b6ad0 rdf:first sg:person.01361677440.98
106 rdf:rest N20a6d22b28484504b05e59770526ffa4
107 N4486745bd4234149bafe53e08183769e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Young Adult
109 rdf:type schema:DefinedTerm
110 N4eb69e4f55e749eba0ace06be088eb84 rdf:first sg:person.01371504405.32
111 rdf:rest N0e7180647fee420ca13297190a66d101
112 N5724543acb4247fa883e82086706462a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Aged, 80 and over
114 rdf:type schema:DefinedTerm
115 N591f402e700e447495e07b3c7ca0099b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Prevalence
117 rdf:type schema:DefinedTerm
118 N5abd2caa31fa4fb3b095d38afbd13f12 schema:name readcube_id
119 schema:value 0bed2abaf1f41f950124ad691d9da49280ab0ef90fe7be75447023f4f0b55712
120 rdf:type schema:PropertyValue
121 N5f3dac1df63d43009783c411ed5036cb rdf:first sg:person.01023343145.84
122 rdf:rest N3f0b6df6f31a46f6ac0d726b495b6ad0
123 N669d39a7fdf64aa8bf8d599834b6e372 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Wales
125 rdf:type schema:DefinedTerm
126 N699ef3164c28478eb0b68ce6dce37f8f schema:issueNumber 1
127 rdf:type schema:PublicationIssue
128 N6a8d7f6e05df4d5b94904b3e9354b6b8 rdf:first N3325ac1aca984693a5370300c63c89f4
129 rdf:rest rdf:nil
130 N737d7b52fcd241708d8bb3d1587610ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Male
132 rdf:type schema:DefinedTerm
133 N7c81bd2973f54ef59faeb94b45ba685e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Health Behavior
135 rdf:type schema:DefinedTerm
136 N86f4a795b04349dbad0c54d283d7c9a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Algorithms
138 rdf:type schema:DefinedTerm
139 N9d7ac2ebbdf64d61848b076a8ddc7cf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Smoking Cessation
141 rdf:type schema:DefinedTerm
142 Na025d1f0ee264284a32c7956be48ce1e rdf:first sg:person.01013734010.85
143 rdf:rest N5f3dac1df63d43009783c411ed5036cb
144 Na082e9ca15274d9887451ab8c58427ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Humans
146 rdf:type schema:DefinedTerm
147 Nae2471834a874290b695bca8f47db15c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Medical Record Linkage
149 rdf:type schema:DefinedTerm
150 Nb3f316575cf14c43bae5ccd4cf2e7e51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Adolescent
152 rdf:type schema:DefinedTerm
153 Nb6a53b17638a418482d9699056d6c3b4 schema:volumeNumber 17
154 rdf:type schema:PublicationVolume
155 Nc62ae98d0bcc4815a20ce8c7ec2194b1 schema:name pubmed_id
156 schema:value 28056955
157 rdf:type schema:PropertyValue
158 Ne3882e9fcd34449fa8b277241536ba5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Primary Health Care
160 rdf:type schema:DefinedTerm
161 Ne70ff3c052854ecab6e07f52830f814a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Aged
163 rdf:type schema:DefinedTerm
164 Neceb63906c63458eb054500c4c1c1d50 schema:name dimensions_id
165 schema:value pub.1002505143
166 rdf:type schema:PropertyValue
167 Nf3a5a05f52624cc9a89dfcb52a1e4ed9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Female
169 rdf:type schema:DefinedTerm
170 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
171 schema:name Medical and Health Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
174 schema:name Public Health and Health Services
175 rdf:type schema:DefinedTerm
176 sg:grant.2757699 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-016-0400-6
177 rdf:type schema:MonetaryGrant
178 sg:grant.2767469 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-016-0400-6
179 rdf:type schema:MonetaryGrant
180 sg:grant.2771982 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-016-0400-6
181 rdf:type schema:MonetaryGrant
182 sg:grant.3559945 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-016-0400-6
183 rdf:type schema:MonetaryGrant
184 sg:grant.3560644 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-016-0400-6
185 rdf:type schema:MonetaryGrant
186 sg:journal.1028432 schema:issn 1472-6947
187 schema:name BMC Medical Informatics and Decision Making
188 rdf:type schema:Periodical
189 sg:person.01013734010.85 schema:affiliation https://www.grid.ac/institutes/grid.488827.9
190 schema:familyName Atkinson
191 schema:givenName Mark D.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013734010.85
193 rdf:type schema:Person
194 sg:person.01023343145.84 schema:affiliation https://www.grid.ac/institutes/grid.488827.9
195 schema:familyName Kennedy
196 schema:givenName Jonathan I.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023343145.84
198 rdf:type schema:Person
199 sg:person.01314236612.17 schema:affiliation https://www.grid.ac/institutes/grid.488827.9
200 schema:familyName Brophy
201 schema:givenName Sinead T.
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314236612.17
203 rdf:type schema:Person
204 sg:person.01361677440.98 schema:affiliation https://www.grid.ac/institutes/grid.488827.9
205 schema:familyName John
206 schema:givenName Ann
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361677440.98
208 rdf:type schema:Person
209 sg:person.01371504405.32 schema:affiliation https://www.grid.ac/institutes/grid.488827.9
210 schema:familyName Lyons
211 schema:givenName Ronan A.
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371504405.32
213 rdf:type schema:Person
214 sg:person.0667751667.27 schema:affiliation https://www.grid.ac/institutes/grid.415213.0
215 schema:familyName Lewis
216 schema:givenName Keir E.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667751667.27
218 rdf:type schema:Person
219 sg:pub.10.1007/s10552-004-3485-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036059831
220 https://doi.org/10.1007/s10552-004-3485-7
221 rdf:type schema:CreativeWork
222 sg:pub.10.1186/1471-2261-7-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043665876
223 https://doi.org/10.1186/1471-2261-7-38
224 rdf:type schema:CreativeWork
225 sg:pub.10.1186/1471-2458-11-773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022664253
226 https://doi.org/10.1186/1471-2458-11-773
227 rdf:type schema:CreativeWork
228 sg:pub.10.1186/1471-2458-12-329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026647498
229 https://doi.org/10.1186/1471-2458-12-329
230 rdf:type schema:CreativeWork
231 sg:pub.10.1186/1472-6947-9-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020284030
232 https://doi.org/10.1186/1472-6947-9-3
233 rdf:type schema:CreativeWork
234 sg:pub.10.1186/1472-6963-9-157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047739446
235 https://doi.org/10.1186/1472-6963-9-157
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1001/archpsyc.64.2.242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046880118
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1002/ibd.21187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013040218
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1002/pds.1335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032703247
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1002/pds.1960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041654889
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1002/pds.3537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019472875
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1002/pds.902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048019410
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.ijmedinf.2004.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043192686
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.jaad.2006.08.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043100007
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/brain/awh471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007052992
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1093/eurheartj/ehn477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022316085
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1093/fampra/cmi026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008145737
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1093/fampra/cmq046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028489096
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1093/ije/dys188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021896957
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1093/ntr/ntn010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059943151
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1093/pubmed/22.2.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038356229
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1111/j.1360-0443.2004.00995.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051454046
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1111/j.1360-0443.2007.01766.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016312846
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1136/bmj.300.6732.1092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036239429
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1136/bmj.302.6779.766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053165083
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1136/bmj.326.7398.1070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021911137
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1136/jech.2010.120154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030299627
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1136/tc.2008.026294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035952714
280 rdf:type schema:CreativeWork
281 https://doi.org/10.14236/jhi.v12i1.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067225737
282 rdf:type schema:CreativeWork
283 https://doi.org/10.14236/jhi.v12i4.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067225761
284 rdf:type schema:CreativeWork
285 https://doi.org/10.14236/jhi.v14i4.637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067225826
286 rdf:type schema:CreativeWork
287 https://doi.org/10.3399/bjgp10x483544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004656628
288 rdf:type schema:CreativeWork
289 https://www.grid.ac/institutes/grid.415213.0 schema:alternateName Prince Philip Hospital
290 schema:name Farr Institute, Swansea University Medical School, SA2 8PP, Swansea, UK
291 Prince Philip Hospital, Hywel Dda Health Board, Llanelli, UK
292 rdf:type schema:Organization
293 https://www.grid.ac/institutes/grid.488827.9 schema:alternateName Farr Institute
294 schema:name Farr Institute, Swansea University Medical School, SA2 8PP, Swansea, UK
295 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...