Modelling and extraction of variability in free-text medication prescriptions from an anonymised primary care electronic medical record research database View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

George Karystianis, Therese Sheppard, William G. Dixon, Goran Nenadic

ABSTRACT

BACKGROUND: Free-text medication prescriptions contain detailed instruction information that is key when preparing drug data for analysis. The objective of this study was to develop a novel model and automated text-mining method to extract detailed structured medication information from free-text prescriptions and explore their variability (e.g. optional dosages) in primary care research databases. METHODS: We introduce a prescription model that provides minimum and maximum values for dose number, frequency and interval, allowing modelling variability and flexibility within a drug prescription. We developed a text mining system that relies on rules to extract such structured information from prescription free-text dosage instructions. The system was applied to medication prescriptions from an anonymised primary care electronic record database (Clinical Practice Research Datalink, CPRD). RESULTS: We have evaluated our approach on a test set of 220 CPRD prescription free-text directions. The system achieved an overall accuracy of 91 % at the prescription level, with 97 % accuracy across the attribute levels. We then further analysed over 56,000 most common free text prescriptions from CPRD records and found that 1 in 4 has inherent variability, i.e. a choice in taking medication specified by different minimum and maximum doses, duration or frequency. CONCLUSIONS: Our approach provides an accurate, automated way of coding prescription free text information, including information about flexibility and variability within a prescription. The method allows the researcher to decide how best to prepare the prescription data for drug efficacy and safety analyses in any given setting, and test various scenarios and their impact. More... »

PAGES

18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12911-016-0255-x

DOI

http://dx.doi.org/10.1186/s12911-016-0255-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016727626

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26860263


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomedical Research", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Anonymization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electronic Health Records", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electronic Prescribing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medical Informatics Applications", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Primary Health Care", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Christie Hospital NHS Foundation Trust", 
          "id": "https://www.grid.ac/institutes/grid.412917.8", 
          "name": [
            "School of Computer Science, University of Manchester, Manchester, UK", 
            "The Christie NHS Foundation Trust, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karystianis", 
        "givenName": "George", 
        "id": "sg:person.01120522352.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120522352.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Arthritis Research UK Centre for Epidemiology, University of Manchester, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheppard", 
        "givenName": "Therese", 
        "id": "sg:person.01140361353.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140361353.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Farr Institute", 
          "id": "https://www.grid.ac/institutes/grid.488827.9", 
          "name": [
            "Arthritis Research UK Centre for Epidemiology, University of Manchester, Manchester, UK", 
            "The Farr Institute of Health Informatics Research, Health eResearch Centre, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dixon", 
        "givenName": "William G.", 
        "id": "sg:person.010655764157.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655764157.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, University of Manchester, Manchester, UK", 
            "The Farr Institute of Health Informatics Research, Health eResearch Centre, Manchester, UK", 
            "Manchester Institute of Biotechnology, University of Manchester, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nenadic", 
        "givenName": "Goran", 
        "id": "sg:person.01070526367.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070526367.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/ana.24174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002814136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jamia.2010.003863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005449507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmedinf.2014.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007740384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/amiajnl-2013-002190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007812427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jamia.2010.003939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011951459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6947-12-36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013352032", 
          "https://doi.org/10.1186/1472-6947-12-36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmedinf.2008.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017400020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2015.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018553417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6947-6-30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024163546", 
          "https://doi.org/10.1186/1472-6947-6-30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jamia.2009.000182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028228015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jamia.2010.003657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033686715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m3378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036067842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jamia.2010.003947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040096592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jamia.2010.004036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040320493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/ceor.s38323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040454475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jamia.2000.0070593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044603013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m1552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047617115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2042098611435911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049017727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2042098611435911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049017727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02976-9_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050985746", 
          "https://doi.org/10.1007/978-3-642-02976-9_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02976-9_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050985746", 
          "https://doi.org/10.1007/978-3-642-02976-9_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11606-013-2382-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051232744", 
          "https://doi.org/10.1007/s11606-013-2382-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11606-013-2382-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051232744", 
          "https://doi.org/10.1007/s11606-013-2382-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3414/me0615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071311983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076626277", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076626311", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077020019", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0038-1638592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077681020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083009859", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1667884.1667888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099238395"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: Free-text medication prescriptions contain detailed instruction information that is key when preparing drug data for analysis. The objective of this study was to develop a novel model and automated text-mining method to extract detailed structured medication information from free-text prescriptions and explore their variability (e.g. optional dosages) in primary care research databases.\nMETHODS: We introduce a prescription model that provides minimum and maximum values for dose number, frequency and interval, allowing modelling variability and flexibility within a drug prescription. We developed a text mining system that relies on rules to extract such structured information from prescription free-text dosage instructions. The system was applied to medication prescriptions from an anonymised primary care electronic record database (Clinical Practice Research Datalink, CPRD).\nRESULTS: We have evaluated our approach on a test set of 220 CPRD prescription free-text directions. The system achieved an overall accuracy of 91\u00a0% at the prescription level, with 97\u00a0% accuracy across the attribute levels. We then further analysed over 56,000 most common free text prescriptions from CPRD records and found that 1 in 4 has inherent variability, i.e. a choice in taking medication specified by different minimum and maximum doses, duration or frequency.\nCONCLUSIONS: Our approach provides an accurate, automated way of coding prescription free text information, including information about flexibility and variability within a prescription. The method allows the researcher to decide how best to prepare the prescription data for drug efficacy and safety analyses in any given setting, and test various scenarios and their impact.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12911-016-0255-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2763606", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2757449", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2785746", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028432", 
        "issn": [
          "1472-6947"
        ], 
        "name": "BMC Medical Informatics and Decision Making", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Modelling and extraction of variability in free-text medication prescriptions from an anonymised primary care electronic medical record research database", 
    "pagination": "18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4fb3644137a947c720c388da0d147b29a4cc8778e7e9340f374918cce4d10d1b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26860263"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101088682"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12911-016-0255-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016727626"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12911-016-0255-x", 
      "https://app.dimensions.ai/details/publication/pub.1016727626"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12911-016-0255-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12911-016-0255-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12911-016-0255-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12911-016-0255-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12911-016-0255-x'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      64 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12911-016-0255-x schema:about N37aa212ec79c4708a45bab31a33d97fc
2 N8d9ca196a3b24491be194ee5bf16e26e
3 Nb4cd416d8c274afa86b13a7ea3ba8410
4 Nc1e3448560f14595b89ef210ac9f6c6d
5 Nd45f58473fc3489e87493d2d13c3fffa
6 Nd7c755f1da8d45b0ab379205604895d1
7 Ne5e57ea9f04b4ff1a9be5f485eb0a032
8 Ne74113d1f4c1479c8e4c114e6616b209
9 anzsrc-for:08
10 anzsrc-for:0806
11 schema:author N2d424c2eb9864a5984487901f0917de6
12 schema:citation sg:pub.10.1007/978-3-642-02976-9_1
13 sg:pub.10.1007/s11606-013-2382-8
14 sg:pub.10.1186/1472-6947-12-36
15 sg:pub.10.1186/1472-6947-6-30
16 https://app.dimensions.ai/details/publication/pub.1076626277
17 https://app.dimensions.ai/details/publication/pub.1076626311
18 https://app.dimensions.ai/details/publication/pub.1077020019
19 https://app.dimensions.ai/details/publication/pub.1083009859
20 https://doi.org/10.1002/ana.24174
21 https://doi.org/10.1016/j.ijmedinf.2008.08.006
22 https://doi.org/10.1016/j.ijmedinf.2014.06.009
23 https://doi.org/10.1016/j.jbi.2015.04.008
24 https://doi.org/10.1055/s-0038-1638592
25 https://doi.org/10.1136/amiajnl-2013-002190
26 https://doi.org/10.1136/jamia.2000.0070593
27 https://doi.org/10.1136/jamia.2009.000182
28 https://doi.org/10.1136/jamia.2010.003657
29 https://doi.org/10.1136/jamia.2010.003863
30 https://doi.org/10.1136/jamia.2010.003939
31 https://doi.org/10.1136/jamia.2010.003947
32 https://doi.org/10.1136/jamia.2010.004036
33 https://doi.org/10.1177/2042098611435911
34 https://doi.org/10.1197/jamia.m1552
35 https://doi.org/10.1197/jamia.m3378
36 https://doi.org/10.2147/ceor.s38323
37 https://doi.org/10.3115/1667884.1667888
38 https://doi.org/10.3414/me0615
39 schema:datePublished 2015-12
40 schema:datePublishedReg 2015-12-01
41 schema:description BACKGROUND: Free-text medication prescriptions contain detailed instruction information that is key when preparing drug data for analysis. The objective of this study was to develop a novel model and automated text-mining method to extract detailed structured medication information from free-text prescriptions and explore their variability (e.g. optional dosages) in primary care research databases. METHODS: We introduce a prescription model that provides minimum and maximum values for dose number, frequency and interval, allowing modelling variability and flexibility within a drug prescription. We developed a text mining system that relies on rules to extract such structured information from prescription free-text dosage instructions. The system was applied to medication prescriptions from an anonymised primary care electronic record database (Clinical Practice Research Datalink, CPRD). RESULTS: We have evaluated our approach on a test set of 220 CPRD prescription free-text directions. The system achieved an overall accuracy of 91 % at the prescription level, with 97 % accuracy across the attribute levels. We then further analysed over 56,000 most common free text prescriptions from CPRD records and found that 1 in 4 has inherent variability, i.e. a choice in taking medication specified by different minimum and maximum doses, duration or frequency. CONCLUSIONS: Our approach provides an accurate, automated way of coding prescription free text information, including information about flexibility and variability within a prescription. The method allows the researcher to decide how best to prepare the prescription data for drug efficacy and safety analyses in any given setting, and test various scenarios and their impact.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N6a4e1d1a7877468e8fa3150655c90cca
46 Nc953f7979ad6417b8d5753cb1733f52c
47 sg:journal.1028432
48 schema:name Modelling and extraction of variability in free-text medication prescriptions from an anonymised primary care electronic medical record research database
49 schema:pagination 18
50 schema:productId N14280bed1c124d27bfe1643666abeffd
51 N43919f17ff994895948335a1e5d44ca5
52 N5144fdcc7ff74c20aec56155faf7a089
53 N942a0afe3f974a71b2fe4c150a7bbf77
54 N9d1abde29e5a409787dc91df022abeb0
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016727626
56 https://doi.org/10.1186/s12911-016-0255-x
57 schema:sdDatePublished 2019-04-11T02:19
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N3b3e9b369aa94184b4e41142596713db
60 schema:url http://link.springer.com/10.1186%2Fs12911-016-0255-x
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N14280bed1c124d27bfe1643666abeffd schema:name readcube_id
65 schema:value 4fb3644137a947c720c388da0d147b29a4cc8778e7e9340f374918cce4d10d1b
66 rdf:type schema:PropertyValue
67 N2d424c2eb9864a5984487901f0917de6 rdf:first sg:person.01120522352.25
68 rdf:rest Nf2e4b4f3a09e4b0e8e7ebe9dfeca9a0a
69 N37aa212ec79c4708a45bab31a33d97fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Humans
71 rdf:type schema:DefinedTerm
72 N3b3e9b369aa94184b4e41142596713db schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N43919f17ff994895948335a1e5d44ca5 schema:name pubmed_id
75 schema:value 26860263
76 rdf:type schema:PropertyValue
77 N5144fdcc7ff74c20aec56155faf7a089 schema:name nlm_unique_id
78 schema:value 101088682
79 rdf:type schema:PropertyValue
80 N6a4e1d1a7877468e8fa3150655c90cca schema:issueNumber 1
81 rdf:type schema:PublicationIssue
82 N7fdb7eb4db4b4f2085204d41b7870809 rdf:first sg:person.010655764157.19
83 rdf:rest N9f81cf9d7cb14414a346730f60d90f5a
84 N8d9ca196a3b24491be194ee5bf16e26e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Primary Health Care
86 rdf:type schema:DefinedTerm
87 N942a0afe3f974a71b2fe4c150a7bbf77 schema:name dimensions_id
88 schema:value pub.1016727626
89 rdf:type schema:PropertyValue
90 N9d1abde29e5a409787dc91df022abeb0 schema:name doi
91 schema:value 10.1186/s12911-016-0255-x
92 rdf:type schema:PropertyValue
93 N9f81cf9d7cb14414a346730f60d90f5a rdf:first sg:person.01070526367.22
94 rdf:rest rdf:nil
95 Nb4cd416d8c274afa86b13a7ea3ba8410 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Databases, Factual
97 rdf:type schema:DefinedTerm
98 Nc1e3448560f14595b89ef210ac9f6c6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Biomedical Research
100 rdf:type schema:DefinedTerm
101 Nc953f7979ad6417b8d5753cb1733f52c schema:volumeNumber 16
102 rdf:type schema:PublicationVolume
103 Nd45f58473fc3489e87493d2d13c3fffa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Data Anonymization
105 rdf:type schema:DefinedTerm
106 Nd7c755f1da8d45b0ab379205604895d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Medical Informatics Applications
108 rdf:type schema:DefinedTerm
109 Ne5e57ea9f04b4ff1a9be5f485eb0a032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Electronic Prescribing
111 rdf:type schema:DefinedTerm
112 Ne74113d1f4c1479c8e4c114e6616b209 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Electronic Health Records
114 rdf:type schema:DefinedTerm
115 Nf2e4b4f3a09e4b0e8e7ebe9dfeca9a0a rdf:first sg:person.01140361353.16
116 rdf:rest N7fdb7eb4db4b4f2085204d41b7870809
117 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
118 schema:name Information and Computing Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information Systems
122 rdf:type schema:DefinedTerm
123 sg:grant.2757449 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-016-0255-x
124 rdf:type schema:MonetaryGrant
125 sg:grant.2763606 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-016-0255-x
126 rdf:type schema:MonetaryGrant
127 sg:grant.2785746 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-016-0255-x
128 rdf:type schema:MonetaryGrant
129 sg:journal.1028432 schema:issn 1472-6947
130 schema:name BMC Medical Informatics and Decision Making
131 rdf:type schema:Periodical
132 sg:person.010655764157.19 schema:affiliation https://www.grid.ac/institutes/grid.488827.9
133 schema:familyName Dixon
134 schema:givenName William G.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655764157.19
136 rdf:type schema:Person
137 sg:person.01070526367.22 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
138 schema:familyName Nenadic
139 schema:givenName Goran
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070526367.22
141 rdf:type schema:Person
142 sg:person.01120522352.25 schema:affiliation https://www.grid.ac/institutes/grid.412917.8
143 schema:familyName Karystianis
144 schema:givenName George
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120522352.25
146 rdf:type schema:Person
147 sg:person.01140361353.16 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
148 schema:familyName Sheppard
149 schema:givenName Therese
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140361353.16
151 rdf:type schema:Person
152 sg:pub.10.1007/978-3-642-02976-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050985746
153 https://doi.org/10.1007/978-3-642-02976-9_1
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11606-013-2382-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051232744
156 https://doi.org/10.1007/s11606-013-2382-8
157 rdf:type schema:CreativeWork
158 sg:pub.10.1186/1472-6947-12-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013352032
159 https://doi.org/10.1186/1472-6947-12-36
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1472-6947-6-30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024163546
162 https://doi.org/10.1186/1472-6947-6-30
163 rdf:type schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1076626277 schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1076626311 schema:CreativeWork
166 https://app.dimensions.ai/details/publication/pub.1077020019 schema:CreativeWork
167 https://app.dimensions.ai/details/publication/pub.1083009859 schema:CreativeWork
168 https://doi.org/10.1002/ana.24174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002814136
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.ijmedinf.2008.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017400020
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.ijmedinf.2014.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007740384
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.jbi.2015.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018553417
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1055/s-0038-1638592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077681020
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1136/amiajnl-2013-002190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007812427
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1136/jamia.2000.0070593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044603013
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1136/jamia.2009.000182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028228015
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1136/jamia.2010.003657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033686715
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1136/jamia.2010.003863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005449507
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1136/jamia.2010.003939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011951459
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1136/jamia.2010.003947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040096592
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1136/jamia.2010.004036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040320493
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1177/2042098611435911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049017727
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1197/jamia.m1552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047617115
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1197/jamia.m3378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036067842
199 rdf:type schema:CreativeWork
200 https://doi.org/10.2147/ceor.s38323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040454475
201 rdf:type schema:CreativeWork
202 https://doi.org/10.3115/1667884.1667888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099238395
203 rdf:type schema:CreativeWork
204 https://doi.org/10.3414/me0615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071311983
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.412917.8 schema:alternateName Christie Hospital NHS Foundation Trust
207 schema:name School of Computer Science, University of Manchester, Manchester, UK
208 The Christie NHS Foundation Trust, Manchester, UK
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.488827.9 schema:alternateName Farr Institute
211 schema:name Arthritis Research UK Centre for Epidemiology, University of Manchester, Manchester, UK
212 The Farr Institute of Health Informatics Research, Health eResearch Centre, Manchester, UK
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
215 schema:name Arthritis Research UK Centre for Epidemiology, University of Manchester, Manchester, UK
216 Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
217 School of Computer Science, University of Manchester, Manchester, UK
218 The Farr Institute of Health Informatics Research, Health eResearch Centre, Manchester, UK
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...