Pharmacogenomic knowledge representation, reasoning and genome-based clinical decision support based on OWL 2 DL ontologies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Matthias Samwald, Jose Antonio Miñarro Giménez, Richard D Boyce, Robert R Freimuth, Klaus-Peter Adlassnig, Michel Dumontier

ABSTRACT

BACKGROUND: Every year, hundreds of thousands of patients experience treatment failure or adverse drug reactions (ADRs), many of which could be prevented by pharmacogenomic testing. However, the primary knowledge needed for clinical pharmacogenomics is currently dispersed over disparate data structures and captured in unstructured or semi-structured formalizations. This is a source of potential ambiguity and complexity, making it difficult to create reliable information technology systems for enabling clinical pharmacogenomics. METHODS: We developed Web Ontology Language (OWL) ontologies and automated reasoning methodologies to meet the following goals: 1) provide a simple and concise formalism for representing pharmacogenomic knowledge, 2) finde errors and insufficient definitions in pharmacogenomic knowledge bases, 3) automatically assign alleles and phenotypes to patients, 4) match patients to clinically appropriate pharmacogenomic guidelines and clinical decision support messages and 5) facilitate the detection of inconsistencies and overlaps between pharmacogenomic treatment guidelines from different sources. We evaluated different reasoning systems and test our approach with a large collection of publicly available genetic profiles. RESULTS: Our methodology proved to be a novel and useful choice for representing, analyzing and using pharmacogenomic data. The Genomic Clinical Decision Support (Genomic CDS) ontology represents 336 SNPs with 707 variants; 665 haplotypes related to 43 genes; 22 rules related to drug-response phenotypes; and 308 clinical decision support rules. OWL reasoning identified CDS rules with overlapping target populations but differing treatment recommendations. Only a modest number of clinical decision support rules were triggered for a collection of 943 public genetic profiles. We found significant performance differences across available OWL reasoners. CONCLUSIONS: The ontology-based framework we developed can be used to represent, organize and reason over the growing wealth of pharmacogenomic knowledge, as well as to identify errors, inconsistencies and insufficient definitions in source data sets or individual patient data. Our study highlights both advantages and potential practical issues with such an ontology-based approach. More... »

PAGES

12

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12911-015-0130-1

DOI

http://dx.doi.org/10.1186/s12911-015-0130-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018667050

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25880555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Ontologies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Decision-Making", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Support Systems, Clinical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug-Related Side Effects and Adverse Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmacogenetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Practice Guidelines as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Precision Medicine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Medical University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Samwald", 
        "givenName": "Matthias", 
        "id": "sg:person.0661660735.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661660735.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Graz", 
          "id": "https://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria", 
            "Institute of Medical Informatics, Statistics, and Documentation; Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mi\u00f1arro Gim\u00e9nez", 
        "givenName": "Jose Antonio", 
        "id": "sg:person.015141325077.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141325077.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pittsburgh", 
          "id": "https://www.grid.ac/institutes/grid.21925.3d", 
          "name": [
            "Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Blvd, Suite 419, 15206-3701, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boyce", 
        "givenName": "Richard D", 
        "id": "sg:person.01263011645.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263011645.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Health Sciences Research; Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freimuth", 
        "givenName": "Robert R", 
        "id": "sg:person.013140663644.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140663644.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria", 
            "Medexter Healthcare GmbH, Borschkegasse 7/5, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adlassnig", 
        "givenName": "Klaus-Peter", 
        "id": "sg:person.01314141240.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314141240.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Stanford Center for Biomedical Informatics Research, Stanford University, 1265 Welch Road, 94305-5479, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dumontier", 
        "givenName": "Michel", 
        "id": "sg:person.01324655201.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324655201.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bib/bbn056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004892751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1471-4914(01)01986-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005390552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.1.308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005817660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/bmm.11.94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010772868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010939168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.websem.2007.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013524367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0093769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020475101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0093769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020475101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2010.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022207002", 
          "https://doi.org/10.1038/clpt.2010.279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra032424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024080521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2133/dmpk.dmpk-11-rv-093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025470564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026179602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gut.52.suppl_2.ii10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026365854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028001312", 
          "https://doi.org/10.1038/nbt1346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/amiajnl-2012-001275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031388959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11814771_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033805137", 
          "https://doi.org/10.1007/11814771_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11814771_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033805137", 
          "https://doi.org/10.1007/11814771_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1758-2946-3-19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034947266", 
          "https://doi.org/10.1186/1758-2946-3-19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11915034_89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036522785", 
          "https://doi.org/10.1007/11915034_89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11915034_89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036522785", 
          "https://doi.org/10.1007/11915034_89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.296.15.1858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038437345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2011.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039036569", 
          "https://doi.org/10.1038/clpt.2011.34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13489-0_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041943144", 
          "https://doi.org/10.1007/978-3-642-13489-0_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbp004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049086014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbp004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049086014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077020003", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078672257", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812702456_0014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096062031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.2811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105674387"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: Every year, hundreds of thousands of patients experience treatment failure or adverse drug reactions (ADRs), many of which could be prevented by pharmacogenomic testing. However, the primary knowledge needed for clinical pharmacogenomics is currently dispersed over disparate data structures and captured in unstructured or semi-structured formalizations. This is a source of potential ambiguity and complexity, making it difficult to create reliable information technology systems for enabling clinical pharmacogenomics.\nMETHODS: We developed Web Ontology Language (OWL) ontologies and automated reasoning methodologies to meet the following goals: 1) provide a simple and concise formalism for representing pharmacogenomic knowledge, 2) finde errors and insufficient definitions in pharmacogenomic knowledge bases, 3) automatically assign alleles and phenotypes to patients, 4) match patients to clinically appropriate pharmacogenomic guidelines and clinical decision support messages and 5) facilitate the detection of inconsistencies and overlaps between pharmacogenomic treatment guidelines from different sources. We evaluated different reasoning systems and test our approach with a large collection of publicly available genetic profiles.\nRESULTS: Our methodology proved to be a novel and useful choice for representing, analyzing and using pharmacogenomic data. The Genomic Clinical Decision Support (Genomic CDS) ontology represents 336 SNPs with 707 variants; 665 haplotypes related to 43 genes; 22 rules related to drug-response phenotypes; and 308 clinical decision support rules. OWL reasoning identified CDS rules with overlapping target populations but differing treatment recommendations. Only a modest number of clinical decision support rules were triggered for a collection of 943 public genetic profiles. We found significant performance differences across available OWL reasoners.\nCONCLUSIONS: The ontology-based framework we developed can be used to represent, organize and reason over the growing wealth of pharmacogenomic knowledge, as well as to identify errors, inconsistencies and insufficient definitions in source data sets or individual patient data. Our study highlights both advantages and potential practical issues with such an ontology-based approach.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12911-015-0130-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3493156", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2416699", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6207135", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2696055", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2403044", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028432", 
        "issn": [
          "1472-6947"
        ], 
        "name": "BMC Medical Informatics and Decision Making", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Pharmacogenomic knowledge representation, reasoning and genome-based clinical decision support based on OWL 2 DL ontologies", 
    "pagination": "12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "58f0f0d43fdbf0981cf50b8b984540043efa284a13841e08da4ee2c5b7260883"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25880555"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101088682"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12911-015-0130-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018667050"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12911-015-0130-1", 
      "https://app.dimensions.ai/details/publication/pub.1018667050"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87078_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12911-015-0130-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12911-015-0130-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12911-015-0130-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12911-015-0130-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12911-015-0130-1'


 

This table displays all metadata directly associated to this object as RDF triples.

243 TRIPLES      21 PREDICATES      63 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12911-015-0130-1 schema:about N307e7bfed52d4362a7cf5c41681839c3
2 N5070297069a34dc6a71a028c53aadeff
3 N5a15e54661fa4eedad1b82af46b51dfc
4 N602e2d87488841c7a74516c64f51c393
5 N6de58099ecaa45838203f362e8b88aaa
6 N9d40de56bc8b41638a940604393614e3
7 Nbc9c99241e8840a395109a994d251309
8 Nc693c4c6f04344f08a339196ff63b8c1
9 Nd1347f17d8714bafbebe995943e3da18
10 anzsrc-for:08
11 anzsrc-for:0806
12 schema:author Nbc8ba3deb9b74b739295d49b39d6a313
13 schema:citation sg:pub.10.1007/11814771_26
14 sg:pub.10.1007/11915034_89
15 sg:pub.10.1007/978-3-642-13489-0_38
16 sg:pub.10.1038/clpt.2010.279
17 sg:pub.10.1038/clpt.2011.34
18 sg:pub.10.1038/nbt1346
19 sg:pub.10.1186/1758-2946-3-19
20 https://app.dimensions.ai/details/publication/pub.1077020003
21 https://app.dimensions.ai/details/publication/pub.1078672257
22 https://doi.org/10.1001/jama.296.15.1858
23 https://doi.org/10.1016/j.websem.2007.03.004
24 https://doi.org/10.1016/s1471-4914(01)01986-4
25 https://doi.org/10.1056/nejmra032424
26 https://doi.org/10.1093/bib/bbn056
27 https://doi.org/10.1093/bib/bbp004
28 https://doi.org/10.1093/bioinformatics/btr058
29 https://doi.org/10.1093/nar/29.1.308
30 https://doi.org/10.1093/nar/gkr798
31 https://doi.org/10.1136/amiajnl-2012-001275
32 https://doi.org/10.1136/gut.52.suppl_2.ii10
33 https://doi.org/10.1142/9789812702456_0014
34 https://doi.org/10.1371/journal.pone.0093769
35 https://doi.org/10.1613/jair.2811
36 https://doi.org/10.2133/dmpk.dmpk-11-rv-093
37 https://doi.org/10.2217/bmm.11.94
38 schema:datePublished 2015-12
39 schema:datePublishedReg 2015-12-01
40 schema:description BACKGROUND: Every year, hundreds of thousands of patients experience treatment failure or adverse drug reactions (ADRs), many of which could be prevented by pharmacogenomic testing. However, the primary knowledge needed for clinical pharmacogenomics is currently dispersed over disparate data structures and captured in unstructured or semi-structured formalizations. This is a source of potential ambiguity and complexity, making it difficult to create reliable information technology systems for enabling clinical pharmacogenomics. METHODS: We developed Web Ontology Language (OWL) ontologies and automated reasoning methodologies to meet the following goals: 1) provide a simple and concise formalism for representing pharmacogenomic knowledge, 2) finde errors and insufficient definitions in pharmacogenomic knowledge bases, 3) automatically assign alleles and phenotypes to patients, 4) match patients to clinically appropriate pharmacogenomic guidelines and clinical decision support messages and 5) facilitate the detection of inconsistencies and overlaps between pharmacogenomic treatment guidelines from different sources. We evaluated different reasoning systems and test our approach with a large collection of publicly available genetic profiles. RESULTS: Our methodology proved to be a novel and useful choice for representing, analyzing and using pharmacogenomic data. The Genomic Clinical Decision Support (Genomic CDS) ontology represents 336 SNPs with 707 variants; 665 haplotypes related to 43 genes; 22 rules related to drug-response phenotypes; and 308 clinical decision support rules. OWL reasoning identified CDS rules with overlapping target populations but differing treatment recommendations. Only a modest number of clinical decision support rules were triggered for a collection of 943 public genetic profiles. We found significant performance differences across available OWL reasoners. CONCLUSIONS: The ontology-based framework we developed can be used to represent, organize and reason over the growing wealth of pharmacogenomic knowledge, as well as to identify errors, inconsistencies and insufficient definitions in source data sets or individual patient data. Our study highlights both advantages and potential practical issues with such an ontology-based approach.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N828db3e283ea4200ab0905b2d64f22b1
45 Nbb96dd3f83ac44c78e392e1aac7b04d4
46 sg:journal.1028432
47 schema:name Pharmacogenomic knowledge representation, reasoning and genome-based clinical decision support based on OWL 2 DL ontologies
48 schema:pagination 12
49 schema:productId N2ae80d653e19438fb6cd15ba06e3b027
50 N9a86f824fd104078ab36ccabc572fb94
51 Nb0ef27969f294327a9d14ce3806d1a75
52 Nec3b0bbff4494fbdb102714faa1ec357
53 Nf78a3f3d5f6f4ca195fb638331beaf23
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018667050
55 https://doi.org/10.1186/s12911-015-0130-1
56 schema:sdDatePublished 2019-04-11T12:20
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N2e2fc2bccf0641c49f2e021d39edcfe0
59 schema:url https://link.springer.com/10.1186%2Fs12911-015-0130-1
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N2ae80d653e19438fb6cd15ba06e3b027 schema:name doi
64 schema:value 10.1186/s12911-015-0130-1
65 rdf:type schema:PropertyValue
66 N2e2fc2bccf0641c49f2e021d39edcfe0 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N307e7bfed52d4362a7cf5c41681839c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Drug-Related Side Effects and Adverse Reactions
70 rdf:type schema:DefinedTerm
71 N5070297069a34dc6a71a028c53aadeff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Practice Guidelines as Topic
73 rdf:type schema:DefinedTerm
74 N5a15e54661fa4eedad1b82af46b51dfc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Biological Ontologies
76 rdf:type schema:DefinedTerm
77 N5f99bba512fa407590827054824041ca rdf:first sg:person.01324655201.14
78 rdf:rest rdf:nil
79 N602e2d87488841c7a74516c64f51c393 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Artificial Intelligence
81 rdf:type schema:DefinedTerm
82 N62d72bae76334edbb2a69720d847a3a2 rdf:first sg:person.013140663644.76
83 rdf:rest N938a074200624312aa02a9ecd6a9a9c3
84 N6de58099ecaa45838203f362e8b88aaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Precision Medicine
86 rdf:type schema:DefinedTerm
87 N828db3e283ea4200ab0905b2d64f22b1 schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 N938a074200624312aa02a9ecd6a9a9c3 rdf:first sg:person.01314141240.50
90 rdf:rest N5f99bba512fa407590827054824041ca
91 N9a86f824fd104078ab36ccabc572fb94 schema:name pubmed_id
92 schema:value 25880555
93 rdf:type schema:PropertyValue
94 N9d40de56bc8b41638a940604393614e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Clinical Decision-Making
96 rdf:type schema:DefinedTerm
97 Nb0ef27969f294327a9d14ce3806d1a75 schema:name nlm_unique_id
98 schema:value 101088682
99 rdf:type schema:PropertyValue
100 Nbb96dd3f83ac44c78e392e1aac7b04d4 schema:volumeNumber 15
101 rdf:type schema:PublicationVolume
102 Nbc8ba3deb9b74b739295d49b39d6a313 rdf:first sg:person.0661660735.59
103 rdf:rest Nd39afa685e6e4f3fba055887ce5ad665
104 Nbc9c99241e8840a395109a994d251309 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Decision Support Systems, Clinical
106 rdf:type schema:DefinedTerm
107 Nc693c4c6f04344f08a339196ff63b8c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Humans
109 rdf:type schema:DefinedTerm
110 Nd1347f17d8714bafbebe995943e3da18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Pharmacogenetics
112 rdf:type schema:DefinedTerm
113 Nd39afa685e6e4f3fba055887ce5ad665 rdf:first sg:person.015141325077.52
114 rdf:rest Nf9f2c72b67784b2c9eb3a95e2852d953
115 Nec3b0bbff4494fbdb102714faa1ec357 schema:name readcube_id
116 schema:value 58f0f0d43fdbf0981cf50b8b984540043efa284a13841e08da4ee2c5b7260883
117 rdf:type schema:PropertyValue
118 Nf78a3f3d5f6f4ca195fb638331beaf23 schema:name dimensions_id
119 schema:value pub.1018667050
120 rdf:type schema:PropertyValue
121 Nf9f2c72b67784b2c9eb3a95e2852d953 rdf:first sg:person.01263011645.39
122 rdf:rest N62d72bae76334edbb2a69720d847a3a2
123 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
124 schema:name Information and Computing Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
127 schema:name Information Systems
128 rdf:type schema:DefinedTerm
129 sg:grant.2403044 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-015-0130-1
130 rdf:type schema:MonetaryGrant
131 sg:grant.2416699 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-015-0130-1
132 rdf:type schema:MonetaryGrant
133 sg:grant.2696055 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-015-0130-1
134 rdf:type schema:MonetaryGrant
135 sg:grant.3493156 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-015-0130-1
136 rdf:type schema:MonetaryGrant
137 sg:grant.6207135 http://pending.schema.org/fundedItem sg:pub.10.1186/s12911-015-0130-1
138 rdf:type schema:MonetaryGrant
139 sg:journal.1028432 schema:issn 1472-6947
140 schema:name BMC Medical Informatics and Decision Making
141 rdf:type schema:Periodical
142 sg:person.01263011645.39 schema:affiliation https://www.grid.ac/institutes/grid.21925.3d
143 schema:familyName Boyce
144 schema:givenName Richard D
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263011645.39
146 rdf:type schema:Person
147 sg:person.013140663644.76 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
148 schema:familyName Freimuth
149 schema:givenName Robert R
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140663644.76
151 rdf:type schema:Person
152 sg:person.01314141240.50 schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
153 schema:familyName Adlassnig
154 schema:givenName Klaus-Peter
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314141240.50
156 rdf:type schema:Person
157 sg:person.01324655201.14 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
158 schema:familyName Dumontier
159 schema:givenName Michel
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324655201.14
161 rdf:type schema:Person
162 sg:person.015141325077.52 schema:affiliation https://www.grid.ac/institutes/grid.11598.34
163 schema:familyName Miñarro Giménez
164 schema:givenName Jose Antonio
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141325077.52
166 rdf:type schema:Person
167 sg:person.0661660735.59 schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
168 schema:familyName Samwald
169 schema:givenName Matthias
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661660735.59
171 rdf:type schema:Person
172 sg:pub.10.1007/11814771_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033805137
173 https://doi.org/10.1007/11814771_26
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/11915034_89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036522785
176 https://doi.org/10.1007/11915034_89
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/978-3-642-13489-0_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041943144
179 https://doi.org/10.1007/978-3-642-13489-0_38
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/clpt.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022207002
182 https://doi.org/10.1038/clpt.2010.279
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/clpt.2011.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039036569
185 https://doi.org/10.1038/clpt.2011.34
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nbt1346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028001312
188 https://doi.org/10.1038/nbt1346
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1758-2946-3-19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034947266
191 https://doi.org/10.1186/1758-2946-3-19
192 rdf:type schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1077020003 schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1078672257 schema:CreativeWork
195 https://doi.org/10.1001/jama.296.15.1858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038437345
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.websem.2007.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013524367
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s1471-4914(01)01986-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005390552
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1056/nejmra032424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024080521
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/bib/bbn056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004892751
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bib/bbp004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049086014
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/btr058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026179602
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/nar/29.1.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005817660
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/nar/gkr798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010939168
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1136/amiajnl-2012-001275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031388959
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1136/gut.52.suppl_2.ii10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026365854
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1142/9789812702456_0014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096062031
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1371/journal.pone.0093769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020475101
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1613/jair.2811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105674387
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2133/dmpk.dmpk-11-rv-093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025470564
224 rdf:type schema:CreativeWork
225 https://doi.org/10.2217/bmm.11.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010772868
226 rdf:type schema:CreativeWork
227 https://www.grid.ac/institutes/grid.11598.34 schema:alternateName Medical University of Graz
228 schema:name Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
229 Institute of Medical Informatics, Statistics, and Documentation; Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
232 schema:name Stanford Center for Biomedical Informatics Research, Stanford University, 1265 Welch Road, 94305-5479, Stanford, CA, USA
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.21925.3d schema:alternateName University of Pittsburgh
235 schema:name Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Blvd, Suite 419, 15206-3701, Pittsburgh, PA, USA
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.22937.3d schema:alternateName Medical University of Vienna
238 schema:name Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
239 Medexter Healthcare GmbH, Borschkegasse 7/5, 1090, Vienna, Austria
240 rdf:type schema:Organization
241 https://www.grid.ac/institutes/grid.66875.3a schema:alternateName Mayo Clinic
242 schema:name Department of Health Sciences Research; Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA
243 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...