Relationships between menstrual status and obesity phenotypes in women: a cross-sectional study in northern China View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-06-22

AUTHORS

Xueyu Chen, Hui Xi, Long Ji, Weihua Liu, Fengxue Shi, Yanru Chen, Xiaohui Wang, Wenran Zhang, Xinxia Sui, Xiaojun Wang, Haitao Zhang, Huamin Liu, Dong Li

ABSTRACT

BACKGROUND: One of most important concerns of postmenopausal women is obesity. The relationships between menstruation status and obesity phenotypes are unclear. This study aimed to assess the associations between menstrual status and different obesity phenotypes in women. METHODS: In total, 5373 women aged ≥40 years were recruited from the Jidong and Kailuan communities. Basic information was collected via clinical examination, laboratory testing and standardized questionnaires. The women were stratified into the following three groups: menstrual period, menopausal transition period and postmenopausal period. General obesity was defined as a body mass index (BMI) of ≥28 kg/m2. Central obesity was defined as a waist-to-hip ratio (WHR) of > 0.85. Visceral obesity was defined as the presence of nonalcoholic fatty liver disease (NAFLD) and increased pericardial fat volume (PFV). RESULTS: The numbers of women in the menstrual, menopausal transition, and postmenopausal periods were 2807 (52.2%), 675 (12.6%) and 1891 (35.2%), respectively. The adjusted odds ratio (OR) and 95% confidence interval (CI) for central obesity among women in the menopausal transition and postmenopausal periods compared with women in the menstrual period were 0.99 (0.82-1.19) and 1.52 (1.26-1.84), respectively. The OR for NAFLD among postmenopausal women was 1.78 (1.44-2.20). The adjusted β-coefficient (standard error, SE) for PFV among postmenopausal women was 41.25 (7.49). The adjusted OR for general obesity among postmenopausal women was 1.01 (0.77-1.34). CONCLUSIONS: This study demonstrated that menopause is an independent risk factor for central and visceral obesity but not general obesity. More... »

PAGES

91

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12902-020-00577-6

DOI

http://dx.doi.org/10.1186/s12902-020-00577-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1128670191

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32571278


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Menopause", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xueyu", 
        "id": "sg:person.07742736027.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07742736027.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiology, Peking University International Hospital, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.449412.e", 
          "name": [
            "Department of Cardiology, Peking University International Hospital, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xi", 
        "givenName": "Hui", 
        "id": "sg:person.010112346407.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010112346407.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Long", 
        "id": "sg:person.01017645064.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017645064.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Weihua", 
        "id": "sg:person.014323601027.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014323601027.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Second Affiliated Hospital of Shandong First Medical University, Tai\u2019an, Shandong Province China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The Second Affiliated Hospital of Shandong First Medical University, Tai\u2019an, Shandong Province China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Fengxue", 
        "id": "sg:person.015716542027.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015716542027.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yanru", 
        "id": "sg:person.010011051227.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010011051227.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiaohui", 
        "id": "sg:person.011404012227.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404012227.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Wenran", 
        "id": "sg:person.012776753227.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012776753227.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sui", 
        "givenName": "Xinxia", 
        "id": "sg:person.014371714227.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371714227.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiaojun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Taian Maternal and Child Health Hospital, Tai\u2019an, Shandong Province China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Taian Maternal and Child Health Hospital, Tai\u2019an, Shandong Province China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Haitao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Public Health, Southern Medical University, Guangzhou, Guangdong Province China", 
          "id": "http://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "School of Public Health, Southern Medical University, Guangzhou, Guangdong Province China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Huamin", 
        "id": "sg:person.013045066427.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045066427.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Second Affiliated Hospital of Shandong First Medical University, Tai\u2019an, Shandong Province China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, Shandong Province China", 
            "The Second Affiliated Hospital of Shandong First Medical University, Tai\u2019an, Shandong Province China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Dong", 
        "id": "sg:person.01206207226.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206207226.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ijo.2008.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050102605", 
          "https://doi.org/10.1038/ijo.2008.25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41366-018-0055-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101512388", 
          "https://doi.org/10.1038/s41366-018-0055-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep08076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004986748", 
          "https://doi.org/10.1038/srep08076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10654-012-9749-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009739393", 
          "https://doi.org/10.1007/s10654-012-9749-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41366-018-0033-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101350092", 
          "https://doi.org/10.1038/s41366-018-0033-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11892-018-1031-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105902729", 
          "https://doi.org/10.1007/s11892-018-1031-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-06-22", 
    "datePublishedReg": "2020-06-22", 
    "description": "BACKGROUND: One of most important concerns of postmenopausal women is obesity. The relationships between menstruation status and obesity phenotypes are unclear. This study aimed to assess the associations between menstrual status and different obesity phenotypes in women.\nMETHODS: In total, 5373 women aged \u226540\u2009years were recruited from the Jidong and Kailuan communities. Basic information was collected via clinical examination, laboratory testing and standardized questionnaires. The women were stratified into the following three groups: menstrual period, menopausal transition period and postmenopausal period. General obesity was defined as a body mass index (BMI) of \u226528\u2009kg/m2. Central obesity was defined as a waist-to-hip ratio (WHR) of >\u20090.85. Visceral obesity was defined as the presence of nonalcoholic fatty liver disease (NAFLD) and increased pericardial fat volume (PFV).\nRESULTS: The numbers of women in the menstrual, menopausal transition, and postmenopausal periods were 2807 (52.2%), 675 (12.6%) and 1891 (35.2%), respectively. The adjusted odds ratio (OR) and 95% confidence interval (CI) for central obesity among women in the menopausal transition and postmenopausal periods compared with women in the menstrual period were 0.99 (0.82-1.19) and 1.52 (1.26-1.84), respectively. The OR for NAFLD among postmenopausal women was 1.78 (1.44-2.20). The adjusted \u03b2-coefficient (standard error, SE) for PFV among postmenopausal women was 41.25 (7.49). The adjusted OR for general obesity among postmenopausal women was 1.01 (0.77-1.34).\nCONCLUSIONS: This study demonstrated that menopause is an independent risk factor for central and visceral obesity but not general obesity.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12902-020-00577-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8371437", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8889730", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028426", 
        "issn": [
          "1472-6823"
        ], 
        "name": "BMC Endocrine Disorders", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "nonalcoholic fatty liver disease", 
      "pericardial fat volume", 
      "body mass index", 
      "postmenopausal women", 
      "general obesity", 
      "postmenopausal period", 
      "obesity phenotypes", 
      "central obesity", 
      "visceral obesity", 
      "menstrual status", 
      "menstrual period", 
      "menopausal transition", 
      "odds ratio", 
      "menopausal transition period", 
      "independent risk factor", 
      "different obesity phenotypes", 
      "fatty liver disease", 
      "confidence intervals", 
      "cross-sectional study", 
      "menstruation status", 
      "Kailuan communities", 
      "mass index", 
      "liver disease", 
      "hip ratio", 
      "clinical examination", 
      "risk factors", 
      "fat volume", 
      "obesity", 
      "standardized questionnaire", 
      "number of women", 
      "women", 
      "laboratory testing", 
      "status", 
      "phenotype", 
      "period", 
      "menopause", 
      "disease", 
      "study", 
      "waist", 
      "total", 
      "examination", 
      "questionnaire", 
      "association", 
      "group", 
      "years", 
      "Jidong", 
      "intervals", 
      "index", 
      "factors", 
      "transition period", 
      "testing", 
      "relationship", 
      "basic information", 
      "important concern", 
      "ratio", 
      "volume", 
      "presence", 
      "concern", 
      "gt", 
      "number", 
      "information", 
      "community", 
      "China", 
      "northern China", 
      "transition", 
      "coefficient"
    ], 
    "name": "Relationships between menstrual status and obesity phenotypes in women: a cross-sectional study in northern China", 
    "pagination": "91", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1128670191"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12902-020-00577-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32571278"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12902-020-00577-6", 
      "https://app.dimensions.ai/details/publication/pub.1128670191"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_861.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12902-020-00577-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12902-020-00577-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12902-020-00577-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12902-020-00577-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12902-020-00577-6'


 

This table displays all metadata directly associated to this object as RDF triples.

297 TRIPLES      22 PREDICATES      110 URIs      96 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12902-020-00577-6 schema:about N072e5087f7224af0bb66105d9b400616
2 N0a3f019967c34ddeac75606f1f10808f
3 N101872da597f4a3eb3de494cacfc6b37
4 N1c73723edf014c0eb2bca820a7de0c4b
5 N35786d4dbd6a4dba9d5c616e07a4f71f
6 N56c343b64a6646bc97058ce304c14036
7 N701964e34fc943ce8e1b0d5257f27cee
8 Nb0e6371afb6e41a2860540333a8e8c32
9 Nb372795284244e9c9f5683cddff1d8b9
10 Nb721178c949246bdaecfd16288304092
11 Nbe37e1a71a224920946c0c20a181a9ee
12 Ne416245b8edd443eb02bc2a0a0f0822d
13 anzsrc-for:11
14 anzsrc-for:1117
15 schema:author N419c1749582c4fc7b87bdd831602d0fe
16 schema:citation sg:pub.10.1007/s10654-012-9749-8
17 sg:pub.10.1007/s11892-018-1031-3
18 sg:pub.10.1038/ijo.2008.25
19 sg:pub.10.1038/s41366-018-0033-1
20 sg:pub.10.1038/s41366-018-0055-8
21 sg:pub.10.1038/srep08076
22 schema:datePublished 2020-06-22
23 schema:datePublishedReg 2020-06-22
24 schema:description BACKGROUND: One of most important concerns of postmenopausal women is obesity. The relationships between menstruation status and obesity phenotypes are unclear. This study aimed to assess the associations between menstrual status and different obesity phenotypes in women. METHODS: In total, 5373 women aged ≥40 years were recruited from the Jidong and Kailuan communities. Basic information was collected via clinical examination, laboratory testing and standardized questionnaires. The women were stratified into the following three groups: menstrual period, menopausal transition period and postmenopausal period. General obesity was defined as a body mass index (BMI) of ≥28 kg/m<sup>2</sup>. Central obesity was defined as a waist-to-hip ratio (WHR) of &gt; 0.85. Visceral obesity was defined as the presence of nonalcoholic fatty liver disease (NAFLD) and increased pericardial fat volume (PFV). RESULTS: The numbers of women in the menstrual, menopausal transition, and postmenopausal periods were 2807 (52.2%), 675 (12.6%) and 1891 (35.2%), respectively. The adjusted odds ratio (OR) and 95% confidence interval (CI) for central obesity among women in the menopausal transition and postmenopausal periods compared with women in the menstrual period were 0.99 (0.82-1.19) and 1.52 (1.26-1.84), respectively. The OR for NAFLD among postmenopausal women was 1.78 (1.44-2.20). The adjusted β-coefficient (standard error, SE) for PFV among postmenopausal women was 41.25 (7.49). The adjusted OR for general obesity among postmenopausal women was 1.01 (0.77-1.34). CONCLUSIONS: This study demonstrated that menopause is an independent risk factor for central and visceral obesity but not general obesity.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N43d90e8521c145bcaf9c5049c6f10ca5
29 Ne1726919aa8c474d9cb21a72650948c1
30 sg:journal.1028426
31 schema:keywords China
32 Jidong
33 Kailuan communities
34 association
35 basic information
36 body mass index
37 central obesity
38 clinical examination
39 coefficient
40 community
41 concern
42 confidence intervals
43 cross-sectional study
44 different obesity phenotypes
45 disease
46 examination
47 factors
48 fat volume
49 fatty liver disease
50 general obesity
51 group
52 gt
53 hip ratio
54 important concern
55 independent risk factor
56 index
57 information
58 intervals
59 laboratory testing
60 liver disease
61 mass index
62 menopausal transition
63 menopausal transition period
64 menopause
65 menstrual period
66 menstrual status
67 menstruation status
68 nonalcoholic fatty liver disease
69 northern China
70 number
71 number of women
72 obesity
73 obesity phenotypes
74 odds ratio
75 pericardial fat volume
76 period
77 phenotype
78 postmenopausal period
79 postmenopausal women
80 presence
81 questionnaire
82 ratio
83 relationship
84 risk factors
85 standardized questionnaire
86 status
87 study
88 testing
89 total
90 transition
91 transition period
92 visceral obesity
93 volume
94 waist
95 women
96 years
97 schema:name Relationships between menstrual status and obesity phenotypes in women: a cross-sectional study in northern China
98 schema:pagination 91
99 schema:productId N0af51b07ad8046a98e06d1efe079ec02
100 N52ff209f3aa1411bbd68c70dcf1bc848
101 Na660900b30fb4be78d546dc9c38f9fe1
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128670191
103 https://doi.org/10.1186/s12902-020-00577-6
104 schema:sdDatePublished 2022-01-01T18:55
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N4074bb26ec3748e5ba8fb40465fe5088
107 schema:url https://doi.org/10.1186/s12902-020-00577-6
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N03fc1ce07dc84e37b6dcf714f4926432 rdf:first N8a2586c786c84f4d867e1b08a4bfcbf8
112 rdf:rest N26d897aff4e449678e743cf07afbbc52
113 N072e5087f7224af0bb66105d9b400616 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Obesity
115 rdf:type schema:DefinedTerm
116 N07fdab28b7c44d498c933bc4647f3f04 rdf:first sg:person.010011051227.84
117 rdf:rest N15c90408b8364c578ab7c1abc4ea4a9f
118 N0a3f019967c34ddeac75606f1f10808f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Phenotype
120 rdf:type schema:DefinedTerm
121 N0af51b07ad8046a98e06d1efe079ec02 schema:name doi
122 schema:value 10.1186/s12902-020-00577-6
123 rdf:type schema:PropertyValue
124 N101872da597f4a3eb3de494cacfc6b37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Body Mass Index
126 rdf:type schema:DefinedTerm
127 N15c90408b8364c578ab7c1abc4ea4a9f rdf:first sg:person.011404012227.68
128 rdf:rest N24011ff1afe542678488e43423efe496
129 N15e87b8688604d7d8bbbd13623171874 rdf:first sg:person.014323601027.34
130 rdf:rest Ne02efeb2b56f4c7b8bbe6fcc1062b4d8
131 N1c73723edf014c0eb2bca820a7de0c4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Adult
133 rdf:type schema:DefinedTerm
134 N24011ff1afe542678488e43423efe496 rdf:first sg:person.012776753227.30
135 rdf:rest N964b8fe4c56b412f8fa596f47b1ec5fb
136 N26d897aff4e449678e743cf07afbbc52 rdf:first sg:person.013045066427.34
137 rdf:rest Nfa2bed0f0d294b59a5b5fd42944f777e
138 N35786d4dbd6a4dba9d5c616e07a4f71f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Follow-Up Studies
140 rdf:type schema:DefinedTerm
141 N4074bb26ec3748e5ba8fb40465fe5088 schema:name Springer Nature - SN SciGraph project
142 rdf:type schema:Organization
143 N419c1749582c4fc7b87bdd831602d0fe rdf:first sg:person.07742736027.92
144 rdf:rest N7139da1dc8a84aeb943e6ac0cc9ab538
145 N43d90e8521c145bcaf9c5049c6f10ca5 schema:volumeNumber 20
146 rdf:type schema:PublicationVolume
147 N4460abb572144f2fbd98495e627cf719 schema:affiliation grid-institutes:None
148 schema:familyName Wang
149 schema:givenName Xiaojun
150 rdf:type schema:Person
151 N52ff209f3aa1411bbd68c70dcf1bc848 schema:name pubmed_id
152 schema:value 32571278
153 rdf:type schema:PropertyValue
154 N56c343b64a6646bc97058ce304c14036 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Middle Aged
156 rdf:type schema:DefinedTerm
157 N701964e34fc943ce8e1b0d5257f27cee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Menopause
159 rdf:type schema:DefinedTerm
160 N7139da1dc8a84aeb943e6ac0cc9ab538 rdf:first sg:person.010112346407.00
161 rdf:rest Nd9bde3a389b940c7abb25a2c1c98dbf1
162 N8a2586c786c84f4d867e1b08a4bfcbf8 schema:affiliation grid-institutes:None
163 schema:familyName Zhang
164 schema:givenName Haitao
165 rdf:type schema:Person
166 N964b8fe4c56b412f8fa596f47b1ec5fb rdf:first sg:person.014371714227.95
167 rdf:rest Ndd6ac93357bf4e978b51ed9f88c2394a
168 Na660900b30fb4be78d546dc9c38f9fe1 schema:name dimensions_id
169 schema:value pub.1128670191
170 rdf:type schema:PropertyValue
171 Nb0e6371afb6e41a2860540333a8e8c32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Prognosis
173 rdf:type schema:DefinedTerm
174 Nb372795284244e9c9f5683cddff1d8b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Cross-Sectional Studies
176 rdf:type schema:DefinedTerm
177 Nb721178c949246bdaecfd16288304092 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Humans
179 rdf:type schema:DefinedTerm
180 Nbe37e1a71a224920946c0c20a181a9ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Female
182 rdf:type schema:DefinedTerm
183 Nd9bde3a389b940c7abb25a2c1c98dbf1 rdf:first sg:person.01017645064.28
184 rdf:rest N15e87b8688604d7d8bbbd13623171874
185 Ndd6ac93357bf4e978b51ed9f88c2394a rdf:first N4460abb572144f2fbd98495e627cf719
186 rdf:rest N03fc1ce07dc84e37b6dcf714f4926432
187 Ne02efeb2b56f4c7b8bbe6fcc1062b4d8 rdf:first sg:person.015716542027.93
188 rdf:rest N07fdab28b7c44d498c933bc4647f3f04
189 Ne1726919aa8c474d9cb21a72650948c1 schema:issueNumber 1
190 rdf:type schema:PublicationIssue
191 Ne416245b8edd443eb02bc2a0a0f0822d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name China
193 rdf:type schema:DefinedTerm
194 Nfa2bed0f0d294b59a5b5fd42944f777e rdf:first sg:person.01206207226.81
195 rdf:rest rdf:nil
196 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
197 schema:name Medical and Health Sciences
198 rdf:type schema:DefinedTerm
199 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
200 schema:name Public Health and Health Services
201 rdf:type schema:DefinedTerm
202 sg:grant.8371437 http://pending.schema.org/fundedItem sg:pub.10.1186/s12902-020-00577-6
203 rdf:type schema:MonetaryGrant
204 sg:grant.8889730 http://pending.schema.org/fundedItem sg:pub.10.1186/s12902-020-00577-6
205 rdf:type schema:MonetaryGrant
206 sg:journal.1028426 schema:issn 1472-6823
207 schema:name BMC Endocrine Disorders
208 schema:publisher Springer Nature
209 rdf:type schema:Periodical
210 sg:person.010011051227.84 schema:affiliation grid-institutes:None
211 schema:familyName Chen
212 schema:givenName Yanru
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010011051227.84
214 rdf:type schema:Person
215 sg:person.010112346407.00 schema:affiliation grid-institutes:grid.449412.e
216 schema:familyName Xi
217 schema:givenName Hui
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010112346407.00
219 rdf:type schema:Person
220 sg:person.01017645064.28 schema:affiliation grid-institutes:None
221 schema:familyName Ji
222 schema:givenName Long
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017645064.28
224 rdf:type schema:Person
225 sg:person.011404012227.68 schema:affiliation grid-institutes:None
226 schema:familyName Wang
227 schema:givenName Xiaohui
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404012227.68
229 rdf:type schema:Person
230 sg:person.01206207226.81 schema:affiliation grid-institutes:None
231 schema:familyName Li
232 schema:givenName Dong
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206207226.81
234 rdf:type schema:Person
235 sg:person.012776753227.30 schema:affiliation grid-institutes:None
236 schema:familyName Zhang
237 schema:givenName Wenran
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012776753227.30
239 rdf:type schema:Person
240 sg:person.013045066427.34 schema:affiliation grid-institutes:grid.284723.8
241 schema:familyName Liu
242 schema:givenName Huamin
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045066427.34
244 rdf:type schema:Person
245 sg:person.014323601027.34 schema:affiliation grid-institutes:None
246 schema:familyName Liu
247 schema:givenName Weihua
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014323601027.34
249 rdf:type schema:Person
250 sg:person.014371714227.95 schema:affiliation grid-institutes:None
251 schema:familyName Sui
252 schema:givenName Xinxia
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371714227.95
254 rdf:type schema:Person
255 sg:person.015716542027.93 schema:affiliation grid-institutes:None
256 schema:familyName Shi
257 schema:givenName Fengxue
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015716542027.93
259 rdf:type schema:Person
260 sg:person.07742736027.92 schema:affiliation grid-institutes:None
261 schema:familyName Chen
262 schema:givenName Xueyu
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07742736027.92
264 rdf:type schema:Person
265 sg:pub.10.1007/s10654-012-9749-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009739393
266 https://doi.org/10.1007/s10654-012-9749-8
267 rdf:type schema:CreativeWork
268 sg:pub.10.1007/s11892-018-1031-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105902729
269 https://doi.org/10.1007/s11892-018-1031-3
270 rdf:type schema:CreativeWork
271 sg:pub.10.1038/ijo.2008.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050102605
272 https://doi.org/10.1038/ijo.2008.25
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/s41366-018-0033-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101350092
275 https://doi.org/10.1038/s41366-018-0033-1
276 rdf:type schema:CreativeWork
277 sg:pub.10.1038/s41366-018-0055-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101512388
278 https://doi.org/10.1038/s41366-018-0055-8
279 rdf:type schema:CreativeWork
280 sg:pub.10.1038/srep08076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004986748
281 https://doi.org/10.1038/srep08076
282 rdf:type schema:CreativeWork
283 grid-institutes:None schema:alternateName School of nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong Province China
284 School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong Province China
285 Taian Maternal and Child Health Hospital, Tai’an, Shandong Province China
286 The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong Province China
287 schema:name School of nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong Province China
288 School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong Province China
289 Taian Maternal and Child Health Hospital, Tai’an, Shandong Province China
290 The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong Province China
291 rdf:type schema:Organization
292 grid-institutes:grid.284723.8 schema:alternateName School of Public Health, Southern Medical University, Guangzhou, Guangdong Province China
293 schema:name School of Public Health, Southern Medical University, Guangzhou, Guangdong Province China
294 rdf:type schema:Organization
295 grid-institutes:grid.449412.e schema:alternateName Department of Cardiology, Peking University International Hospital, Beijing, China
296 schema:name Department of Cardiology, Peking University International Hospital, Beijing, China
297 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...