A reliable and robust method for the upper thigh muscle quantification on computed tomography: toward a quantitative biomarker for sarcopenia View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-01-27

AUTHORS

Yousun Ko, Youngbin Shin, Yu Sub Sung, Jiwoo Lee, Jei Hee Lee, Jai Keun Kim, Jisuk Park, Hye Sun Ko, Kyung Won Kim, Jimi Huh

ABSTRACT

BackgroundWe aimed to evaluate the feasibility of the upper thigh level as a landmark to measure muscle area for sarcopenia assessment on computed tomography (CT).MethodsIn the 116 healthy subjects who performed CT scans covering from mid-abdomen to feet, the skeletal muscle area in the upper thigh level at the inferior tip of ischial tuberosity (SMAUT), the mid-thigh level (SMAMT), and L3 inferior endplate level (SMAL3) were measured by two independent readers. Pearson correlation coefficients between SMAUT, SMAMT, and SMAL3 were calculated. Inter-reader agreement between the two readers were evaluated using intraclass correlation coefficient (ICC) and Bland-Altman plots with 95% limit of agreement (LOA).ResultsIn readers 1 and 2, very high positive correlations were observed between SMAUT and SMAMT (r = 0.91 and 0.92, respectively) and between SMAUT and SMAL3 (r = 0.90 and 0.91, respectively), while high positive correlation were observed between SMAMT and SMAL3 (r = 0.87 and 0.87, respectively). Based on ICC values, the inter-reader agreement was the best in the SMAUT (0.999), followed by the SMAL3 (0.990) and SMAMT (0.956). The 95% LOAs in the Bland-Altman plots indicated that the inter-reader agreement of the SMAUT (− 0.462 to 1.513) was the best, followed by the SMAL3 (− 9.949 to 7.636) and SMAMT (− 12.105 to 14.605).ConclusionMuscle area measurement at the upper thigh level correlates well with those with the mid-thigh and L3 inferior endpoint level and shows the highest inter-reader agreement. Thus, the upper thigh level might be an excellent landmark enabling SMAUT as a reliable and robust biomarker for muscle area measurement for sarcopenia assessment. More... »

PAGES

93

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12891-022-05032-2

DOI

http://dx.doi.org/10.1186/s12891-022-05032-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1145044968

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35086521


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sarcopenia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thigh", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ko", 
        "givenName": "Yousun", 
        "id": "sg:person.01137623345.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137623345.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Youngbin", 
        "id": "sg:person.010222413237.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010222413237.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.267370.7", 
          "name": [
            "Clinical Research Center, Asan Medical Center, Seoul, South Korea", 
            "Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sung", 
        "givenName": "Yu Sub", 
        "id": "sg:person.0671111600.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671111600.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jiwoo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Ajou University School of Medicine & Graduate School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.411261.1", 
          "name": [
            "Department of Radiology, Ajou University School of Medicine & Graduate School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jei Hee", 
        "id": "sg:person.01021000731.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021000731.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Ajou University School of Medicine & Graduate School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.411261.1", 
          "name": [
            "Department of Radiology, Ajou University School of Medicine & Graduate School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jai Keun", 
        "id": "sg:person.0752665531.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752665531.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Ajou University School of Medicine & Graduate School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.411261.1", 
          "name": [
            "Department of Radiology, Ajou University School of Medicine & Graduate School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Jisuk", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Ajou University School of Medicine & Graduate School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.411261.1", 
          "name": [
            "Department of Radiology, Ajou University School of Medicine & Graduate School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ko", 
        "givenName": "Hye Sun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Kyung Won", 
        "id": "sg:person.010061104677.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010061104677.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Ajou University School of Medicine & Graduate School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.411261.1", 
          "name": [
            "Department of Radiology, Ajou University School of Medicine & Graduate School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huh", 
        "givenName": "Jimi", 
        "id": "sg:person.014702463575.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014702463575.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-019-06573-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123348305", 
          "https://doi.org/10.1007/s00330-019-06573-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12877-016-0349-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022116907", 
          "https://doi.org/10.1186/s12877-016-0349-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12603-010-0281-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041143568", 
          "https://doi.org/10.1007/s12603-010-0281-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00198-014-2959-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020101953", 
          "https://doi.org/10.1007/s00198-014-2959-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-06831-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090807791", 
          "https://doi.org/10.1038/s41598-017-06831-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12877-021-02187-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1137170818", 
          "https://doi.org/10.1186/s12877-021-02187-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.14283/jfa.2020.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126276918", 
          "https://doi.org/10.14283/jfa.2020.16"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-01-27", 
    "datePublishedReg": "2022-01-27", 
    "description": "BackgroundWe aimed to evaluate the feasibility of the upper thigh level as a landmark to measure muscle area for sarcopenia assessment on computed tomography (CT).MethodsIn the 116 healthy subjects who performed CT scans covering from mid-abdomen to feet, the skeletal muscle area in the upper thigh level at the inferior tip of ischial tuberosity (SMAUT), the mid-thigh level (SMAMT), and L3 inferior endplate level (SMAL3) were measured by two independent readers. Pearson correlation coefficients between SMAUT, SMAMT, and SMAL3 were calculated. Inter-reader agreement between the two readers were evaluated using intraclass correlation coefficient (ICC) and Bland-Altman plots with 95% limit of agreement (LOA).ResultsIn readers 1 and 2, very high positive correlations were observed between SMAUT and SMAMT (r\u2009=\u20090.91 and 0.92, respectively) and between SMAUT and SMAL3 (r\u2009=\u20090.90 and 0.91, respectively), while high positive correlation were observed between SMAMT and SMAL3 (r\u2009=\u00a00.87 and 0.87, respectively). Based on ICC values, the inter-reader agreement was the best in the SMAUT (0.999), followed by the SMAL3 (0.990) and SMAMT (0.956). The 95% LOAs in the Bland-Altman plots indicated that the inter-reader agreement of the SMAUT (\u2212\u20090.462 to 1.513) was the best, followed by the SMAL3 (\u2212\u20099.949 to 7.636) and SMAMT (\u2212\u200912.105 to 14.605).ConclusionMuscle area measurement at the upper thigh level correlates well with those with the mid-thigh and L3 inferior endpoint level and shows the highest inter-reader agreement. Thus, the upper thigh level might be an excellent landmark enabling SMAUT as a reliable and robust biomarker for muscle area measurement for sarcopenia assessment.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12891-022-05032-2", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024957", 
        "issn": [
          "1471-2474"
        ], 
        "name": "BMC Musculoskeletal Disorders", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "inter-reader agreement", 
      "limits of agreement", 
      "thigh level", 
      "computed tomography", 
      "intraclass correlation coefficient", 
      "Bland-Altman plots", 
      "sarcopenia assessment", 
      "skeletal muscle area", 
      "mid-thigh level", 
      "muscle area", 
      "high inter-reader agreement", 
      "healthy subjects", 
      "muscle area measurements", 
      "CT scan", 
      "positive correlation", 
      "inferior tip", 
      "ischial tuberosity", 
      "level correlates", 
      "robust biomarkers", 
      "muscle quantification", 
      "quantitative biomarkers", 
      "endplate level", 
      "independent readers", 
      "ICC values", 
      "Pearson correlation coefficient", 
      "reader 1", 
      "biomarkers", 
      "tomography", 
      "correlation coefficient", 
      "high positive correlation", 
      "excellent landmark", 
      "levels", 
      "sarcopenia", 
      "BackgroundWe", 
      "tuberosity", 
      "MethodsIn", 
      "assessment", 
      "scans", 
      "subjects", 
      "foot", 
      "correlates", 
      "correlation", 
      "landmarks", 
      "area measurements", 
      "area", 
      "feasibility", 
      "quantification", 
      "measurements", 
      "values", 
      "tip", 
      "method", 
      "endpoint level", 
      "readers", 
      "agreement", 
      "robust method", 
      "coefficient", 
      "plots", 
      "limit", 
      "SmAl3"
    ], 
    "name": "A reliable and robust method for the upper thigh muscle quantification on computed tomography: toward a quantitative biomarker for sarcopenia", 
    "pagination": "93", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1145044968"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12891-022-05032-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35086521"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12891-022-05032-2", 
      "https://app.dimensions.ai/details/publication/pub.1145044968"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_936.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12891-022-05032-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12891-022-05032-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12891-022-05032-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12891-022-05032-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12891-022-05032-2'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      21 PREDICATES      98 URIs      83 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12891-022-05032-2 schema:about N0eaf4a641a0641dfbe681e95f6891b1d
2 N301e6fe646bb431ca03f0bcc98bbd867
3 N4e32aeb7993347fb9173d4c024beebb7
4 N5a46e220f3894549b8c7526a46d10d10
5 Nae7a18fd12104e6eb5f279e705a94f5e
6 Nb07ceb9edec849feb93cc30f3c24f462
7 Ncb78b642f6004eeebcff5ca978a60040
8 anzsrc-for:11
9 anzsrc-for:1103
10 schema:author N358eb33648f34bf1bc299299a1e85bcf
11 schema:citation sg:pub.10.1007/s00198-014-2959-z
12 sg:pub.10.1007/s00330-019-06573-2
13 sg:pub.10.1007/s12603-010-0281-9
14 sg:pub.10.1038/s41598-017-06831-7
15 sg:pub.10.1186/s12877-016-0349-4
16 sg:pub.10.1186/s12877-021-02187-w
17 sg:pub.10.14283/jfa.2020.16
18 schema:datePublished 2022-01-27
19 schema:datePublishedReg 2022-01-27
20 schema:description BackgroundWe aimed to evaluate the feasibility of the upper thigh level as a landmark to measure muscle area for sarcopenia assessment on computed tomography (CT).MethodsIn the 116 healthy subjects who performed CT scans covering from mid-abdomen to feet, the skeletal muscle area in the upper thigh level at the inferior tip of ischial tuberosity (SMAUT), the mid-thigh level (SMAMT), and L3 inferior endplate level (SMAL3) were measured by two independent readers. Pearson correlation coefficients between SMAUT, SMAMT, and SMAL3 were calculated. Inter-reader agreement between the two readers were evaluated using intraclass correlation coefficient (ICC) and Bland-Altman plots with 95% limit of agreement (LOA).ResultsIn readers 1 and 2, very high positive correlations were observed between SMAUT and SMAMT (r = 0.91 and 0.92, respectively) and between SMAUT and SMAL3 (r = 0.90 and 0.91, respectively), while high positive correlation were observed between SMAMT and SMAL3 (r = 0.87 and 0.87, respectively). Based on ICC values, the inter-reader agreement was the best in the SMAUT (0.999), followed by the SMAL3 (0.990) and SMAMT (0.956). The 95% LOAs in the Bland-Altman plots indicated that the inter-reader agreement of the SMAUT (− 0.462 to 1.513) was the best, followed by the SMAL3 (− 9.949 to 7.636) and SMAMT (− 12.105 to 14.605).ConclusionMuscle area measurement at the upper thigh level correlates well with those with the mid-thigh and L3 inferior endpoint level and shows the highest inter-reader agreement. Thus, the upper thigh level might be an excellent landmark enabling SMAUT as a reliable and robust biomarker for muscle area measurement for sarcopenia assessment.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N5bae71118860448ba7993c4873848273
24 Nce85bec7acdb4ea9928ab02cdba9404d
25 sg:journal.1024957
26 schema:keywords BackgroundWe
27 Bland-Altman plots
28 CT scan
29 ICC values
30 MethodsIn
31 Pearson correlation coefficient
32 SmAl3
33 agreement
34 area
35 area measurements
36 assessment
37 biomarkers
38 coefficient
39 computed tomography
40 correlates
41 correlation
42 correlation coefficient
43 endplate level
44 endpoint level
45 excellent landmark
46 feasibility
47 foot
48 healthy subjects
49 high inter-reader agreement
50 high positive correlation
51 independent readers
52 inferior tip
53 inter-reader agreement
54 intraclass correlation coefficient
55 ischial tuberosity
56 landmarks
57 level correlates
58 levels
59 limit
60 limits of agreement
61 measurements
62 method
63 mid-thigh level
64 muscle area
65 muscle area measurements
66 muscle quantification
67 plots
68 positive correlation
69 quantification
70 quantitative biomarkers
71 reader 1
72 readers
73 robust biomarkers
74 robust method
75 sarcopenia
76 sarcopenia assessment
77 scans
78 skeletal muscle area
79 subjects
80 thigh level
81 tip
82 tomography
83 tuberosity
84 values
85 schema:name A reliable and robust method for the upper thigh muscle quantification on computed tomography: toward a quantitative biomarker for sarcopenia
86 schema:pagination 93
87 schema:productId N212c874cb3ab440ea7dcc8c86803a109
88 Naa8d1da5738f4e30a8a0c2c6b25305f3
89 Ned0c64af0a1a4d2d9d0c39a2b86016b5
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145044968
91 https://doi.org/10.1186/s12891-022-05032-2
92 schema:sdDatePublished 2022-10-01T06:50
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N71d0575f02e8478599a63c53cc668619
95 schema:url https://doi.org/10.1186/s12891-022-05032-2
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N0eaf4a641a0641dfbe681e95f6891b1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Tomography, X-Ray Computed
101 rdf:type schema:DefinedTerm
102 N212c874cb3ab440ea7dcc8c86803a109 schema:name doi
103 schema:value 10.1186/s12891-022-05032-2
104 rdf:type schema:PropertyValue
105 N2fad6949620342e2a3365af5898ff188 schema:affiliation grid-institutes:grid.411261.1
106 schema:familyName Ko
107 schema:givenName Hye Sun
108 rdf:type schema:Person
109 N301e6fe646bb431ca03f0bcc98bbd867 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Humans
111 rdf:type schema:DefinedTerm
112 N358eb33648f34bf1bc299299a1e85bcf rdf:first sg:person.01137623345.18
113 rdf:rest Ndd8c551f92a849529516e3096b739223
114 N39ac88073d1f4c1f8e786a8435b3e003 rdf:first sg:person.014702463575.98
115 rdf:rest rdf:nil
116 N3e1b5d22602e4bc88c6f065bec2fb235 rdf:first N2fad6949620342e2a3365af5898ff188
117 rdf:rest N563ad76e19ed467bb00955af2b2720cc
118 N4bec4535d35543b0bd01365d7a8248a6 rdf:first N6f52aa9f6ded416cb5af9664ba3edba4
119 rdf:rest Nef0befaa37b546c99d57ed5f9ff8ce7c
120 N4e32aeb7993347fb9173d4c024beebb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Thigh
122 rdf:type schema:DefinedTerm
123 N563ad76e19ed467bb00955af2b2720cc rdf:first sg:person.010061104677.90
124 rdf:rest N39ac88073d1f4c1f8e786a8435b3e003
125 N5a46e220f3894549b8c7526a46d10d10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Sarcopenia
127 rdf:type schema:DefinedTerm
128 N5bae71118860448ba7993c4873848273 schema:issueNumber 1
129 rdf:type schema:PublicationIssue
130 N6f52aa9f6ded416cb5af9664ba3edba4 schema:affiliation grid-institutes:grid.413967.e
131 schema:familyName Lee
132 schema:givenName Jiwoo
133 rdf:type schema:Person
134 N71d0575f02e8478599a63c53cc668619 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 N85acaf6c73d649c38ceb9369739eca06 rdf:first sg:person.0752665531.36
137 rdf:rest N883cdad2a71b4ee288825e1d6154fdfb
138 N883cdad2a71b4ee288825e1d6154fdfb rdf:first Nb488c856e5ab4ca781ac5805c85d8e02
139 rdf:rest N3e1b5d22602e4bc88c6f065bec2fb235
140 N9aafb2e672c94fb98c8c5b2e113a7353 rdf:first sg:person.0671111600.05
141 rdf:rest N4bec4535d35543b0bd01365d7a8248a6
142 Naa8d1da5738f4e30a8a0c2c6b25305f3 schema:name pubmed_id
143 schema:value 35086521
144 rdf:type schema:PropertyValue
145 Nae7a18fd12104e6eb5f279e705a94f5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Biomarkers
147 rdf:type schema:DefinedTerm
148 Nb07ceb9edec849feb93cc30f3c24f462 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Magnetic Resonance Imaging
150 rdf:type schema:DefinedTerm
151 Nb488c856e5ab4ca781ac5805c85d8e02 schema:affiliation grid-institutes:grid.411261.1
152 schema:familyName Park
153 schema:givenName Jisuk
154 rdf:type schema:Person
155 Ncb78b642f6004eeebcff5ca978a60040 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Muscle, Skeletal
157 rdf:type schema:DefinedTerm
158 Nce85bec7acdb4ea9928ab02cdba9404d schema:volumeNumber 23
159 rdf:type schema:PublicationVolume
160 Ndd8c551f92a849529516e3096b739223 rdf:first sg:person.010222413237.11
161 rdf:rest N9aafb2e672c94fb98c8c5b2e113a7353
162 Ned0c64af0a1a4d2d9d0c39a2b86016b5 schema:name dimensions_id
163 schema:value pub.1145044968
164 rdf:type schema:PropertyValue
165 Nef0befaa37b546c99d57ed5f9ff8ce7c rdf:first sg:person.01021000731.62
166 rdf:rest N85acaf6c73d649c38ceb9369739eca06
167 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
168 schema:name Medical and Health Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
171 schema:name Clinical Sciences
172 rdf:type schema:DefinedTerm
173 sg:journal.1024957 schema:issn 1471-2474
174 schema:name BMC Musculoskeletal Disorders
175 schema:publisher Springer Nature
176 rdf:type schema:Periodical
177 sg:person.010061104677.90 schema:affiliation grid-institutes:grid.413967.e
178 schema:familyName Kim
179 schema:givenName Kyung Won
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010061104677.90
181 rdf:type schema:Person
182 sg:person.01021000731.62 schema:affiliation grid-institutes:grid.411261.1
183 schema:familyName Lee
184 schema:givenName Jei Hee
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021000731.62
186 rdf:type schema:Person
187 sg:person.010222413237.11 schema:affiliation grid-institutes:grid.413967.e
188 schema:familyName Shin
189 schema:givenName Youngbin
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010222413237.11
191 rdf:type schema:Person
192 sg:person.01137623345.18 schema:affiliation grid-institutes:grid.413967.e
193 schema:familyName Ko
194 schema:givenName Yousun
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137623345.18
196 rdf:type schema:Person
197 sg:person.014702463575.98 schema:affiliation grid-institutes:grid.411261.1
198 schema:familyName Huh
199 schema:givenName Jimi
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014702463575.98
201 rdf:type schema:Person
202 sg:person.0671111600.05 schema:affiliation grid-institutes:grid.267370.7
203 schema:familyName Sung
204 schema:givenName Yu Sub
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671111600.05
206 rdf:type schema:Person
207 sg:person.0752665531.36 schema:affiliation grid-institutes:grid.411261.1
208 schema:familyName Kim
209 schema:givenName Jai Keun
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752665531.36
211 rdf:type schema:Person
212 sg:pub.10.1007/s00198-014-2959-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020101953
213 https://doi.org/10.1007/s00198-014-2959-z
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s00330-019-06573-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123348305
216 https://doi.org/10.1007/s00330-019-06573-2
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s12603-010-0281-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041143568
219 https://doi.org/10.1007/s12603-010-0281-9
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/s41598-017-06831-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090807791
222 https://doi.org/10.1038/s41598-017-06831-7
223 rdf:type schema:CreativeWork
224 sg:pub.10.1186/s12877-016-0349-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022116907
225 https://doi.org/10.1186/s12877-016-0349-4
226 rdf:type schema:CreativeWork
227 sg:pub.10.1186/s12877-021-02187-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1137170818
228 https://doi.org/10.1186/s12877-021-02187-w
229 rdf:type schema:CreativeWork
230 sg:pub.10.14283/jfa.2020.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126276918
231 https://doi.org/10.14283/jfa.2020.16
232 rdf:type schema:CreativeWork
233 grid-institutes:grid.267370.7 schema:alternateName Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, South Korea
234 schema:name Clinical Research Center, Asan Medical Center, Seoul, South Korea
235 Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, South Korea
236 rdf:type schema:Organization
237 grid-institutes:grid.411261.1 schema:alternateName Department of Radiology, Ajou University School of Medicine & Graduate School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, South Korea
238 schema:name Department of Radiology, Ajou University School of Medicine & Graduate School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, South Korea
239 rdf:type schema:Organization
240 grid-institutes:grid.413967.e schema:alternateName Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
241 Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, South Korea
242 schema:name Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
243 Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, South Korea
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...