Assessing aberrant muscle activity patterns via the analysis of surface EMG data collected during a functional evaluation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Fatemeh Noushin Golabchi, Stefano Sapienza, Giacomo Severini, Phil Reaston, Frank Tomecek, Danilo Demarchi, MaryRose Reaston, Paolo Bonato

ABSTRACT

BACKGROUND: Surface electromyographic (EMG) recordings collected during the performance of functional evaluations allow clinicians to assess aberrant patterns of muscle activity associated with musculoskeletal disorders. This assessment is typically achieved via visual inspection of the surface EMG data. This approach is time-consuming and leads to accurate results only when the assessment is carried out by an EMG expert. METHODS: A set of algorithms was developed to automatically evaluate aberrant patterns of muscle activity. EMG recordings collected during the performance of functional evaluations in 62 subjects (22 to 61 years old) were used to develop and characterize the algorithms. Clinical scores were generated via visual inspection by an EMG expert using an ordinal scale capturing the severity of aberrant patterns of muscle activity. The algorithms were used in a case study (i.e. the evaluation of a subject with persistent back pain following instrumented lumbar fusion who underwent lumbar hardware removal) to assess the clinical suitability of the proposed technique. RESULTS: The EMG-based algorithms produced accurate estimates of the clinical scores. Results were primarily obtained using a linear regression approach. However, when the results were not satisfactory, a regression implementation of a Random Forest was utilized, and the results compared with those obtained using a linear regression approach. The root-mean-square error of the clinical score estimates produced by the algorithms was a small fraction of the ordinal scale used to rate the severity of the aberrant patterns of muscle activity. Regression coefficients and associated 95% confidence intervals showed that the EMG-based estimates fit well the clinical scores generated by the EMG expert. When applied to the clinical case study, the algorithms appeared to capture the characteristics of the muscle activity patterns associated with persistent back pain following instrumented lumbar fusion. CONCLUSIONS: The proposed approach relies on EMG-based measures to generate accurate estimates of the severity of aberrant patterns of muscle activity. The results obtained in the case study suggest that the proposed technique is suitable to derive clinically-relevant information from EMG data collected during functional evaluations. More... »

PAGES

13

References to SciGraph publications

  • 2011-12. Musculoskeletal disorders early diagnosis: A retrospective study in the occupational medicine setting in JOURNAL OF OCCUPATIONAL MEDICINE AND TOXICOLOGY
  • 2018-12. Risk factors for neck pain among forklift truck operators: a retrospective cohort study in BMC MUSCULOSKELETAL DISORDERS
  • 2003-10. Removal of lumbar instrumentation for the treatment of recurrent low back pain in the absence of pseudarthrosis in ARCHIVES OF ORTHOPAEDIC AND TRAUMA SURGERY
  • 2017-12. Work outcome in persons with musculoskeletal diseases: comparison with other chronic diseases & the role of musculoskeletal diseases in multimorbidity in BMC MUSCULOSKELETAL DISORDERS
  • 2007-05. Sickness absence and concurrent low back and neck–shoulder pain: results from the MUSIC-Norrtälje study in EUROPEAN SPINE JOURNAL
  • 2015-12. Participatory intervention with objectively measured physical risk factors for musculoskeletal disorders in the construction industry: study protocol for a cluster randomized controlled trial in BMC MUSCULOSKELETAL DISORDERS
  • 2017-12. Do size, shape, and alignment parameters of the femoral condyle affect the trochlear groove tracking? A morphometric study based on 3D- computed tomography models in Chinese people in BMC MUSCULOSKELETAL DISORDERS
  • 2017-12. A protocol for a new methodological model for work-related shoulder complex injuries: From diagnosis to rehabilitation in BMC MUSCULOSKELETAL DISORDERS
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2006-02. Effects of chronic low back pain on trunk coordination and back muscle activity during walking: changes in motor control in EUROPEAN SPINE JOURNAL
  • 2010-01. Implant removal after posterior stabilization of the thoraco-lumbar spine in ARCHIVES OF ORTHOPAEDIC AND TRAUMA SURGERY
  • 2017-12. The influence of fatigue and chronic low back pain on muscle recruitment patterns following an unexpected external perturbation in BMC MUSCULOSKELETAL DISORDERS
  • 2017-12. Spasm and flexion-relaxation phenomenon response to large lifting load during the performance of a trunk flexion-extension exercise in BMC MUSCULOSKELETAL DISORDERS
  • 2006-12. Primary care consultation, hospital admission, sick leave and disability pension owing to neck and low back pain: a 12-year prospective cohort study in a rural population in BMC MUSCULOSKELETAL DISORDERS
  • 2012-12. A review of wearable sensors and systems with application in rehabilitation in JOURNAL OF NEUROENGINEERING AND REHABILITATION
  • 2017-12. Prevalence of low back pain in emergency settings: a systematic review and meta-analysis in BMC MUSCULOSKELETAL DISORDERS
  • 1996-08. Bagging predictors in MACHINE LEARNING
  • 2008-12. Movement control tests of the low back; evaluation of the difference between patients with low back pain and healthy controls in BMC MUSCULOSKELETAL DISORDERS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12891-018-2350-x

    DOI

    http://dx.doi.org/10.1186/s12891-018-2350-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111160991

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30611235


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Ave, 02129, Charlestown, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Golabchi", 
            "givenName": "Fatemeh Noushin", 
            "id": "sg:person.01127273754.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127273754.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Ave, 02129, Charlestown, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sapienza", 
            "givenName": "Stefano", 
            "id": "sg:person.012454503377.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012454503377.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University College Dublin", 
              "id": "https://www.grid.ac/institutes/grid.7886.1", 
              "name": [
                "Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Ave, 02129, Charlestown, MA, USA", 
                "School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Severini", 
            "givenName": "Giacomo", 
            "id": "sg:person.01324043474.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324043474.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Emerge Diagnostics, Carlsbad, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reaston", 
            "givenName": "Phil", 
            "id": "sg:person.01225603116.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225603116.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Oklahoma Spine & Brain Institute, Tulsa, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tomecek", 
            "givenName": "Frank", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Polytechnic University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.4800.c", 
              "name": [
                "Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Demarchi", 
            "givenName": "Danilo", 
            "id": "sg:person.01051530624.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051530624.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Emerge Diagnostics, Carlsbad, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reaston", 
            "givenName": "MaryRose", 
            "id": "sg:person.01214463161.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214463161.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Ave, 02129, Charlestown, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bonato", 
            "givenName": "Paolo", 
            "id": "sg:person.01331752104.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331752104.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1097/01.bsd.0000211283.14143.ad", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001163462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.bsd.0000211283.14143.ad", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001163462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00007632-200011150-00014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001253271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00007632-200011150-00014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001253271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpain.2015.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002623792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00058655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929950", 
              "https://doi.org/10.1007/bf00058655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12891-015-0758-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005605647", 
              "https://doi.org/10.1186/s12891-015-0758-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12891-016-1365-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007247633", 
              "https://doi.org/10.1186/s12891-016-1365-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12891-016-1365-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007247633", 
              "https://doi.org/10.1186/s12891-016-1365-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.20041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007867684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelekin.2015.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009136026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelekin.2012.02.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010488715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1113/jphysiol.1975.sp010904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015136719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelekin.2011.12.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015358732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/brs.0b013e318291b502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016166828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/brs.0b013e318291b502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016166828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00402-003-0561-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018692741", 
              "https://doi.org/10.1007/s00402-003-0561-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelekin.2011.04.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019386944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2474-9-170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021188365", 
              "https://doi.org/10.1186/1471-2474-9-170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelekin.2012.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021449015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelekin.2007.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022117684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00402-009-0962-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023267889", 
              "https://doi.org/10.1007/s00402-009-0962-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00402-009-0962-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023267889", 
              "https://doi.org/10.1007/s00402-009-0962-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00402-009-0962-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023267889", 
              "https://doi.org/10.1007/s00402-009-0962-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12891-016-1374-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023746688", 
              "https://doi.org/10.1186/s12891-016-1374-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12891-016-1374-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023746688", 
              "https://doi.org/10.1186/s12891-016-1374-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelekin.2011.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024803994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1050-6411(00)00027-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025172379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2011.10.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026806585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00005768-200208000-00013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026943874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00005768-200208000-00013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026943874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0268-0033(03)00024-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028711637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0268-0033(03)00024-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028711637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00002517-199604000-00006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028839184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00002517-199604000-00006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028839184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/brs.0b013e31823b00ce", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031509679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/brs.0b013e31823b00ce", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031509679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1050-6411(00)00039-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031856370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1743-0003-9-21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033340636", 
              "https://doi.org/10.1186/1743-0003-9-21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1743-0003-9-21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033340636", 
              "https://doi.org/10.1186/1743-0003-9-21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1743-0003-9-21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033340636", 
              "https://doi.org/10.1186/1743-0003-9-21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1743-0003-9-21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033340636", 
              "https://doi.org/10.1186/1743-0003-9-21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1743-0003-9-21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033340636", 
              "https://doi.org/10.1186/1743-0003-9-21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1054/math.2002.0476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033556467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1054/math.2002.0476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033556467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2474-7-66", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035386020", 
              "https://doi.org/10.1186/1471-2474-7-66"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00586-006-0152-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035773939", 
              "https://doi.org/10.1007/s00586-006-0152-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00586-006-0152-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035773939", 
              "https://doi.org/10.1007/s00586-006-0152-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1050-6411(00)00040-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037516182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/art.34347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040692484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00007632-198909000-00014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041019093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00007632-198909000-00014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041019093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.brs.0000087500.70575.45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043428149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.brs.0000087500.70575.45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043428149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1745-6673-6-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046491561", 
              "https://doi.org/10.1186/1745-6673-6-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/geront/gnw002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048044476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelekin.2009.03.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049753721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00586-004-0825-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051970988", 
              "https://doi.org/10.1007/s00586-004-0825-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00586-004-0825-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051970988", 
              "https://doi.org/10.1007/s00586-004-0825-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jep.12614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053410213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jep.12614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053410213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.930899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061085938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jbhi.2014.2320633", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061276882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mpul.2011.940427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061418919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnsre.2002.1021585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061739924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.4025112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062150428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1123/jab.13.2.135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062423554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1076621948", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iembs.2011.6091867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078504109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083156721", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12891-017-1435-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083719992", 
              "https://doi.org/10.1186/s12891-017-1435-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12891-017-1435-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083719992", 
              "https://doi.org/10.1186/s12891-017-1435-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelekin.2017.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083805033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/brs.0000000000002159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084193998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/brs.0000000000002159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084193998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12891-017-1511-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084512878", 
              "https://doi.org/10.1186/s12891-017-1511-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12891-017-1511-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084512878", 
              "https://doi.org/10.1186/s12891-017-1511-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12891-017-1523-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084935844", 
              "https://doi.org/10.1186/s12891-017-1523-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12891-017-1523-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084935844", 
              "https://doi.org/10.1186/s12891-017-1523-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00207454.2017.1326036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085126900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12891-017-1869-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093062816", 
              "https://doi.org/10.1186/s12891-017-1869-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.clinbiomech.2018.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100287661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.clinbiomech.2018.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100287661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12891-018-1956-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100921368", 
              "https://doi.org/10.1186/s12891-018-1956-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/jamasurg.2018.0072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101366819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/jamasurg.2018.0072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101366819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rehab.2018.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101699712"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: Surface electromyographic (EMG) recordings collected during the performance of functional evaluations allow clinicians to assess aberrant patterns of muscle activity associated with musculoskeletal disorders. This assessment is typically achieved via visual inspection of the surface EMG data. This approach is time-consuming and leads to accurate results only when the assessment is carried out by an EMG expert.\nMETHODS: A set of algorithms was developed to automatically evaluate aberrant patterns of muscle activity. EMG recordings collected during the performance of functional evaluations in 62 subjects (22 to 61\u2009years old) were used to develop and characterize the algorithms. Clinical scores were generated via visual inspection by an EMG expert using an ordinal scale capturing the severity of aberrant patterns of muscle activity. The algorithms were used in a case study (i.e. the evaluation of a subject with persistent back pain following instrumented lumbar fusion who underwent lumbar hardware removal) to assess the clinical suitability of the proposed technique.\nRESULTS: The EMG-based algorithms produced accurate estimates of the clinical scores. Results were primarily obtained using a linear regression approach. However, when the results were not satisfactory, a regression implementation of a Random Forest was utilized, and the results compared with those obtained using a linear regression approach. The root-mean-square error of the clinical score estimates produced by the algorithms was a small fraction of the ordinal scale used to rate the severity of the aberrant patterns of muscle activity. Regression coefficients and associated 95% confidence intervals showed that the EMG-based estimates fit well the clinical scores generated by the EMG expert. When applied to the clinical case study, the algorithms appeared to capture the characteristics of the muscle activity patterns associated with persistent back pain following instrumented lumbar fusion.\nCONCLUSIONS: The proposed approach relies on EMG-based measures to generate accurate estimates of the severity of aberrant patterns of muscle activity. The results obtained in the case study suggest that the proposed technique is suitable to derive clinically-relevant information from EMG data collected during functional evaluations.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12891-018-2350-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1024957", 
            "issn": [
              "1471-2474"
            ], 
            "name": "BMC Musculoskeletal Disorders", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "Assessing aberrant muscle activity patterns via the analysis of surface EMG data collected during a functional evaluation", 
        "pagination": "13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c1be5c3181507e2f1eb02cecddfcea8289824c7c7a208537e02b100ed3781032"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30611235"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100968565"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12891-018-2350-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111160991"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12891-018-2350-x", 
          "https://app.dimensions.ai/details/publication/pub.1111160991"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55852_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12891-018-2350-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12891-018-2350-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12891-018-2350-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12891-018-2350-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12891-018-2350-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    328 TRIPLES      21 PREDICATES      90 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12891-018-2350-x schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N25f6a880cfe3488f8e2df0e8221b037f
    4 schema:citation sg:pub.10.1007/bf00058655
    5 sg:pub.10.1007/s00402-003-0561-5
    6 sg:pub.10.1007/s00402-009-0962-1
    7 sg:pub.10.1007/s00586-004-0825-y
    8 sg:pub.10.1007/s00586-006-0152-6
    9 sg:pub.10.1023/a:1010933404324
    10 sg:pub.10.1186/1471-2474-7-66
    11 sg:pub.10.1186/1471-2474-9-170
    12 sg:pub.10.1186/1743-0003-9-21
    13 sg:pub.10.1186/1745-6673-6-1
    14 sg:pub.10.1186/s12891-015-0758-0
    15 sg:pub.10.1186/s12891-016-1365-4
    16 sg:pub.10.1186/s12891-016-1374-3
    17 sg:pub.10.1186/s12891-017-1435-2
    18 sg:pub.10.1186/s12891-017-1511-7
    19 sg:pub.10.1186/s12891-017-1523-3
    20 sg:pub.10.1186/s12891-017-1869-6
    21 sg:pub.10.1186/s12891-018-1956-3
    22 https://app.dimensions.ai/details/publication/pub.1076621948
    23 https://app.dimensions.ai/details/publication/pub.1083156721
    24 https://doi.org/10.1001/jamasurg.2018.0072
    25 https://doi.org/10.1002/art.34347
    26 https://doi.org/10.1002/gepi.20041
    27 https://doi.org/10.1016/j.clinbiomech.2018.01.003
    28 https://doi.org/10.1016/j.jelekin.2007.09.006
    29 https://doi.org/10.1016/j.jelekin.2009.03.011
    30 https://doi.org/10.1016/j.jelekin.2011.04.003
    31 https://doi.org/10.1016/j.jelekin.2011.05.003
    32 https://doi.org/10.1016/j.jelekin.2011.12.011
    33 https://doi.org/10.1016/j.jelekin.2012.02.019
    34 https://doi.org/10.1016/j.jelekin.2012.08.006
    35 https://doi.org/10.1016/j.jelekin.2015.10.003
    36 https://doi.org/10.1016/j.jelekin.2017.02.003
    37 https://doi.org/10.1016/j.jneumeth.2011.10.017
    38 https://doi.org/10.1016/j.jpain.2015.10.012
    39 https://doi.org/10.1016/j.rehab.2018.03.002
    40 https://doi.org/10.1016/s0268-0033(03)00024-x
    41 https://doi.org/10.1016/s1050-6411(00)00027-4
    42 https://doi.org/10.1016/s1050-6411(00)00039-0
    43 https://doi.org/10.1016/s1050-6411(00)00040-7
    44 https://doi.org/10.1054/math.2002.0476
    45 https://doi.org/10.1080/00207454.2017.1326036
    46 https://doi.org/10.1093/geront/gnw002
    47 https://doi.org/10.1097/00002517-199604000-00006
    48 https://doi.org/10.1097/00005768-200208000-00013
    49 https://doi.org/10.1097/00007632-198909000-00014
    50 https://doi.org/10.1097/00007632-200011150-00014
    51 https://doi.org/10.1097/01.brs.0000087500.70575.45
    52 https://doi.org/10.1097/01.bsd.0000211283.14143.ad
    53 https://doi.org/10.1097/brs.0000000000002159
    54 https://doi.org/10.1097/brs.0b013e31823b00ce
    55 https://doi.org/10.1097/brs.0b013e318291b502
    56 https://doi.org/10.1109/10.930899
    57 https://doi.org/10.1109/iembs.2011.6091867
    58 https://doi.org/10.1109/jbhi.2014.2320633
    59 https://doi.org/10.1109/mpul.2011.940427
    60 https://doi.org/10.1109/tnsre.2002.1021585
    61 https://doi.org/10.1111/jep.12614
    62 https://doi.org/10.1113/jphysiol.1975.sp010904
    63 https://doi.org/10.1115/1.4025112
    64 https://doi.org/10.1123/jab.13.2.135
    65 schema:datePublished 2019-12
    66 schema:datePublishedReg 2019-12-01
    67 schema:description BACKGROUND: Surface electromyographic (EMG) recordings collected during the performance of functional evaluations allow clinicians to assess aberrant patterns of muscle activity associated with musculoskeletal disorders. This assessment is typically achieved via visual inspection of the surface EMG data. This approach is time-consuming and leads to accurate results only when the assessment is carried out by an EMG expert. METHODS: A set of algorithms was developed to automatically evaluate aberrant patterns of muscle activity. EMG recordings collected during the performance of functional evaluations in 62 subjects (22 to 61 years old) were used to develop and characterize the algorithms. Clinical scores were generated via visual inspection by an EMG expert using an ordinal scale capturing the severity of aberrant patterns of muscle activity. The algorithms were used in a case study (i.e. the evaluation of a subject with persistent back pain following instrumented lumbar fusion who underwent lumbar hardware removal) to assess the clinical suitability of the proposed technique. RESULTS: The EMG-based algorithms produced accurate estimates of the clinical scores. Results were primarily obtained using a linear regression approach. However, when the results were not satisfactory, a regression implementation of a Random Forest was utilized, and the results compared with those obtained using a linear regression approach. The root-mean-square error of the clinical score estimates produced by the algorithms was a small fraction of the ordinal scale used to rate the severity of the aberrant patterns of muscle activity. Regression coefficients and associated 95% confidence intervals showed that the EMG-based estimates fit well the clinical scores generated by the EMG expert. When applied to the clinical case study, the algorithms appeared to capture the characteristics of the muscle activity patterns associated with persistent back pain following instrumented lumbar fusion. CONCLUSIONS: The proposed approach relies on EMG-based measures to generate accurate estimates of the severity of aberrant patterns of muscle activity. The results obtained in the case study suggest that the proposed technique is suitable to derive clinically-relevant information from EMG data collected during functional evaluations.
    68 schema:genre research_article
    69 schema:inLanguage en
    70 schema:isAccessibleForFree true
    71 schema:isPartOf Na3a568a457274ce0b5546eb7f485766f
    72 Nafc3959b41494b6c85210aa47f557816
    73 sg:journal.1024957
    74 schema:name Assessing aberrant muscle activity patterns via the analysis of surface EMG data collected during a functional evaluation
    75 schema:pagination 13
    76 schema:productId N075120bb42da444da9b296faf5b9887d
    77 N34ebad5082574c9c95965d4a56baca57
    78 N7032c9f302324baf9bcc25bf80c76fdd
    79 N8a3845dcd7d947af86af8e638ba52c1b
    80 Ndabf654efabe400db4d9cd3a5991c383
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111160991
    82 https://doi.org/10.1186/s12891-018-2350-x
    83 schema:sdDatePublished 2019-04-11T08:36
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher Ne86f964a127a4e298c26e88e8f45e64a
    86 schema:url https://link.springer.com/10.1186%2Fs12891-018-2350-x
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N075120bb42da444da9b296faf5b9887d schema:name readcube_id
    91 schema:value c1be5c3181507e2f1eb02cecddfcea8289824c7c7a208537e02b100ed3781032
    92 rdf:type schema:PropertyValue
    93 N18e2d4ac45654b40b6a1a5a68ec912cc rdf:first sg:person.01051530624.41
    94 rdf:rest N84191db26cc9444b8539fb98f9a2f095
    95 N25f6a880cfe3488f8e2df0e8221b037f rdf:first sg:person.01127273754.34
    96 rdf:rest Nc5d3ae7fce204780aed3c403cd727a32
    97 N34ebad5082574c9c95965d4a56baca57 schema:name doi
    98 schema:value 10.1186/s12891-018-2350-x
    99 rdf:type schema:PropertyValue
    100 N3ed1ec24d5dd4e26b9c62095493d5d7f rdf:first sg:person.01324043474.37
    101 rdf:rest N906524ac81754fc0bb16e91eec781848
    102 N7032c9f302324baf9bcc25bf80c76fdd schema:name dimensions_id
    103 schema:value pub.1111160991
    104 rdf:type schema:PropertyValue
    105 N7a03a602c9834c0f9ea9d60e61743ef9 schema:name Emerge Diagnostics, Carlsbad, CA, USA
    106 rdf:type schema:Organization
    107 N7b83892053904771a9742daa246fc915 rdf:first Na21f6d3da64446719d09d1452dd7a93e
    108 rdf:rest N18e2d4ac45654b40b6a1a5a68ec912cc
    109 N84191db26cc9444b8539fb98f9a2f095 rdf:first sg:person.01214463161.02
    110 rdf:rest N947b108129314177b783ab9a22eba351
    111 N8a3845dcd7d947af86af8e638ba52c1b schema:name pubmed_id
    112 schema:value 30611235
    113 rdf:type schema:PropertyValue
    114 N906524ac81754fc0bb16e91eec781848 rdf:first sg:person.01225603116.18
    115 rdf:rest N7b83892053904771a9742daa246fc915
    116 N947b108129314177b783ab9a22eba351 rdf:first sg:person.01331752104.95
    117 rdf:rest rdf:nil
    118 Na21f6d3da64446719d09d1452dd7a93e schema:affiliation Nc54f2bf875bf424dbec77fc425a2a18e
    119 schema:familyName Tomecek
    120 schema:givenName Frank
    121 rdf:type schema:Person
    122 Na3a568a457274ce0b5546eb7f485766f schema:issueNumber 1
    123 rdf:type schema:PublicationIssue
    124 Nafc3959b41494b6c85210aa47f557816 schema:volumeNumber 20
    125 rdf:type schema:PublicationVolume
    126 Nc54f2bf875bf424dbec77fc425a2a18e schema:name Oklahoma Spine & Brain Institute, Tulsa, OK, USA
    127 rdf:type schema:Organization
    128 Nc5d3ae7fce204780aed3c403cd727a32 rdf:first sg:person.012454503377.74
    129 rdf:rest N3ed1ec24d5dd4e26b9c62095493d5d7f
    130 Nd63ba71e39b2466e937fc7351a76c4ea schema:name Emerge Diagnostics, Carlsbad, CA, USA
    131 rdf:type schema:Organization
    132 Ndabf654efabe400db4d9cd3a5991c383 schema:name nlm_unique_id
    133 schema:value 100968565
    134 rdf:type schema:PropertyValue
    135 Ne86f964a127a4e298c26e88e8f45e64a schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Information and Computing Sciences
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Artificial Intelligence and Image Processing
    142 rdf:type schema:DefinedTerm
    143 sg:journal.1024957 schema:issn 1471-2474
    144 schema:name BMC Musculoskeletal Disorders
    145 rdf:type schema:Periodical
    146 sg:person.01051530624.41 schema:affiliation https://www.grid.ac/institutes/grid.4800.c
    147 schema:familyName Demarchi
    148 schema:givenName Danilo
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051530624.41
    150 rdf:type schema:Person
    151 sg:person.01127273754.34 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    152 schema:familyName Golabchi
    153 schema:givenName Fatemeh Noushin
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127273754.34
    155 rdf:type schema:Person
    156 sg:person.01214463161.02 schema:affiliation N7a03a602c9834c0f9ea9d60e61743ef9
    157 schema:familyName Reaston
    158 schema:givenName MaryRose
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214463161.02
    160 rdf:type schema:Person
    161 sg:person.01225603116.18 schema:affiliation Nd63ba71e39b2466e937fc7351a76c4ea
    162 schema:familyName Reaston
    163 schema:givenName Phil
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225603116.18
    165 rdf:type schema:Person
    166 sg:person.012454503377.74 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    167 schema:familyName Sapienza
    168 schema:givenName Stefano
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012454503377.74
    170 rdf:type schema:Person
    171 sg:person.01324043474.37 schema:affiliation https://www.grid.ac/institutes/grid.7886.1
    172 schema:familyName Severini
    173 schema:givenName Giacomo
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324043474.37
    175 rdf:type schema:Person
    176 sg:person.01331752104.95 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    177 schema:familyName Bonato
    178 schema:givenName Paolo
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331752104.95
    180 rdf:type schema:Person
    181 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
    182 https://doi.org/10.1007/bf00058655
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00402-003-0561-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018692741
    185 https://doi.org/10.1007/s00402-003-0561-5
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00402-009-0962-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023267889
    188 https://doi.org/10.1007/s00402-009-0962-1
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s00586-004-0825-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051970988
    191 https://doi.org/10.1007/s00586-004-0825-y
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s00586-006-0152-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773939
    194 https://doi.org/10.1007/s00586-006-0152-6
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    197 https://doi.org/10.1023/a:1010933404324
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1186/1471-2474-7-66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035386020
    200 https://doi.org/10.1186/1471-2474-7-66
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1186/1471-2474-9-170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021188365
    203 https://doi.org/10.1186/1471-2474-9-170
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1186/1743-0003-9-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033340636
    206 https://doi.org/10.1186/1743-0003-9-21
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/1745-6673-6-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046491561
    209 https://doi.org/10.1186/1745-6673-6-1
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/s12891-015-0758-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005605647
    212 https://doi.org/10.1186/s12891-015-0758-0
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/s12891-016-1365-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007247633
    215 https://doi.org/10.1186/s12891-016-1365-4
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1186/s12891-016-1374-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023746688
    218 https://doi.org/10.1186/s12891-016-1374-3
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1186/s12891-017-1435-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083719992
    221 https://doi.org/10.1186/s12891-017-1435-2
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1186/s12891-017-1511-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084512878
    224 https://doi.org/10.1186/s12891-017-1511-7
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1186/s12891-017-1523-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084935844
    227 https://doi.org/10.1186/s12891-017-1523-3
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1186/s12891-017-1869-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093062816
    230 https://doi.org/10.1186/s12891-017-1869-6
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1186/s12891-018-1956-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100921368
    233 https://doi.org/10.1186/s12891-018-1956-3
    234 rdf:type schema:CreativeWork
    235 https://app.dimensions.ai/details/publication/pub.1076621948 schema:CreativeWork
    236 https://app.dimensions.ai/details/publication/pub.1083156721 schema:CreativeWork
    237 https://doi.org/10.1001/jamasurg.2018.0072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101366819
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1002/art.34347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040692484
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1002/gepi.20041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007867684
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1016/j.clinbiomech.2018.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100287661
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/j.jelekin.2007.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022117684
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1016/j.jelekin.2009.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049753721
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1016/j.jelekin.2011.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019386944
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1016/j.jelekin.2011.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024803994
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1016/j.jelekin.2011.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015358732
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1016/j.jelekin.2012.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010488715
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1016/j.jelekin.2012.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021449015
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1016/j.jelekin.2015.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009136026
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1016/j.jelekin.2017.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083805033
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1016/j.jneumeth.2011.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026806585
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1016/j.jpain.2015.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002623792
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1016/j.rehab.2018.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101699712
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1016/s0268-0033(03)00024-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028711637
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1016/s1050-6411(00)00027-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025172379
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1016/s1050-6411(00)00039-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031856370
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1016/s1050-6411(00)00040-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037516182
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1054/math.2002.0476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033556467
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1080/00207454.2017.1326036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085126900
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1093/geront/gnw002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048044476
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1097/00002517-199604000-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028839184
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1097/00005768-200208000-00013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026943874
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1097/00007632-198909000-00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041019093
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1097/00007632-200011150-00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001253271
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1097/01.brs.0000087500.70575.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043428149
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1097/01.bsd.0000211283.14143.ad schema:sameAs https://app.dimensions.ai/details/publication/pub.1001163462
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1097/brs.0000000000002159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084193998
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1097/brs.0b013e31823b00ce schema:sameAs https://app.dimensions.ai/details/publication/pub.1031509679
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1097/brs.0b013e318291b502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016166828
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1109/10.930899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061085938
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1109/iembs.2011.6091867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078504109
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1109/jbhi.2014.2320633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061276882
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1109/mpul.2011.940427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061418919
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1109/tnsre.2002.1021585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061739924
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1111/jep.12614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053410213
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1113/jphysiol.1975.sp010904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015136719
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1115/1.4025112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062150428
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1123/jab.13.2.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062423554
    318 rdf:type schema:CreativeWork
    319 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    320 schema:name Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Ave, 02129, Charlestown, MA, USA
    321 rdf:type schema:Organization
    322 https://www.grid.ac/institutes/grid.4800.c schema:alternateName Polytechnic University of Turin
    323 schema:name Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
    324 rdf:type schema:Organization
    325 https://www.grid.ac/institutes/grid.7886.1 schema:alternateName University College Dublin
    326 schema:name Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Ave, 02129, Charlestown, MA, USA
    327 School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
    328 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...