Health care utilization in patients with gout: a prospective multicenter cohort study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-31

AUTHORS

Jasvinder A. Singh, Aseem Bharat, Dinesh Khanna, Cleopatra Aquino-Beaton, Jay E. Persselin, Erin Duffy, David Elashoff, Puja P. Khanna

ABSTRACT

BackgroundAll published studies of health care utilization in gout have been cross-sectional to date, and most used a patient-reported diagnosis of gout. Our objective was to assess health care utilization and its predictors in patients with physician-confirmed gout in a prospective cohort study.MethodsIn a multi-center prospective cohort study of U.S. veterans with rheumatologist-confirmed gout (N = 186; two centers), we assessed patient self-reported overall and gout-specific health care utilization with the Gout Assessment Questionnaire (GAQ) every 3-months for a 9-month period. Comparisons were made using the student’s t test or the chi-square, Wilcoxon rank sum test or Fisher exact test, as appropriate. Mixed effects Poisson regression was used to assess potential correlates of gout-related health care utilization.ResultsMean age was 64.6 years, 98% were men, 13% Hispanic or Latino, 32% were African-American, 6% did not graduate high school, mean serum urate was 8.3 and mean Deyo-Charlson score was 3.1. During the past year, mean gout-related visits were as follows: rheumatologist, 1.5; primary care physician, 2 visits; ≥1 inpatient visits, 7%; ≥1 ER visits, 26%; and urgent care/walk-in visit, 33%. In longitudinal analyses, African-American race and gout flares in the last 3 months were associated with significantly higher rate ratio of gout-related outpatient visits. African-American race and lack of college education were associated with significantly higher rate ratio for gout-related urgent visits and overnight stays.ConclusionsAfrican-American race and recent gout flares were associated with higher outpatient utilization and African-American race and no college education with higher urgent or inpatient utilization. Future studies should examine whether modifiable predictors of utilization can be targeted to reduce healthcare utilization in patients with gout. More... »

PAGES

233

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12891-017-1573-6

DOI

http://dx.doi.org/10.1186/s12891-017-1573-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085733316

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28569193


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gout", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Longitudinal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Acceptance of Health Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Veterans", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Medicine at School of Medicine, and Division of Epidemiology at School of Public Health, University of Alabama at Birmingham (UAB), Faculty Office Tower 805B, 510 20th Street S, 35294, Birmingham, AL, USA", 
            "Medicine Service, Birmingham VA Medical Center, Birmingham, AL, USA", 
            "Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Jasvinder A.", 
        "id": "sg:person.01202274465.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202274465.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medicine Service, Birmingham VA Medical Center, Birmingham, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.280808.a", 
          "name": [
            "Medicine Service, Birmingham VA Medical Center, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bharat", 
        "givenName": "Aseem", 
        "id": "sg:person.01033377071.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033377071.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan, Ann Arbor, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "University of Michigan, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khanna", 
        "givenName": "Dinesh", 
        "id": "sg:person.01265141712.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265141712.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.417119.b", 
          "name": [
            "VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aquino-Beaton", 
        "givenName": "Cleopatra", 
        "id": "sg:person.01125114643.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125114643.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.417119.b", 
          "name": [
            "VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Persselin", 
        "givenName": "Jay E.", 
        "id": "sg:person.016455735215.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016455735215.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duffy", 
        "givenName": "Erin", 
        "id": "sg:person.01057337532.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057337532.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elashoff", 
        "givenName": "David", 
        "id": "sg:person.0604142176.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604142176.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VA Ann Arbor Healthcare System, Ann Arbor, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.413800.e", 
          "name": [
            "University of Michigan, Ann Arbor, MI, USA", 
            "VA Ann Arbor Healthcare System, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khanna", 
        "givenName": "Puja P.", 
        "id": "sg:person.01023670575.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023670575.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4615-8012-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052880641", 
          "https://doi.org/10.1007/978-1-4615-8012-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1525-1497.1999.00335.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024890971", 
          "https://doi.org/10.1046/j.1525-1497.1999.00335.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/ar4425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053024087", 
          "https://doi.org/10.1186/ar4425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/ar2659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023568855", 
          "https://doi.org/10.1186/ar2659"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-31", 
    "datePublishedReg": "2017-05-31", 
    "description": "BackgroundAll published studies of health care utilization in gout have been cross-sectional to date, and most used a patient-reported diagnosis of gout. Our objective was to assess health care utilization and its predictors in patients with physician-confirmed gout in a prospective cohort study.MethodsIn a multi-center prospective cohort study of U.S. veterans with rheumatologist-confirmed gout (N\u2009= 186; two centers), we assessed patient self-reported overall and gout-specific health care utilization with the Gout Assessment Questionnaire (GAQ) every 3-months for a 9-month period. Comparisons were made using the student\u2019s t test or the chi-square, Wilcoxon rank sum test or Fisher exact test, as appropriate. Mixed effects Poisson regression was used to assess potential correlates of gout-related health care utilization.ResultsMean age was 64.6\u00a0years, 98% were men, 13% Hispanic or Latino, 32% were African-American, 6% did not graduate high school, mean serum urate was 8.3 and mean Deyo-Charlson score was 3.1. During the past year, mean gout-related visits were as follows: rheumatologist, 1.5; primary care physician, 2 visits; \u22651 inpatient visits, 7%; \u22651 ER visits, 26%; and urgent care/walk-in visit, 33%. In longitudinal analyses, African-American race and gout flares in the last 3\u00a0months were associated with significantly higher rate ratio of gout-related outpatient visits. African-American race and lack of college education were associated with significantly higher rate ratio for gout-related urgent visits and overnight stays.ConclusionsAfrican-American race and recent gout flares were associated with higher outpatient utilization and African-American race and no college education with higher urgent or inpatient utilization. Future studies should examine whether modifiable predictors of utilization can be targeted to reduce healthcare utilization in patients with gout.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12891-017-1573-6", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2420873", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024957", 
        "issn": [
          "1471-2474"
        ], 
        "name": "BMC Musculoskeletal Disorders", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "health care utilization", 
      "African American race", 
      "Gout Assessment Questionnaire", 
      "prospective cohort study", 
      "care utilization", 
      "higher rate ratios", 
      "cohort study", 
      "gout flares", 
      "multi-center prospective cohort study", 
      "prospective multicenter cohort study", 
      "mixed-effects Poisson regression", 
      "patient-reported diagnosis", 
      "higher outpatient utilization", 
      "multicenter cohort study", 
      "primary care physicians", 
      "rate ratio", 
      "Fisher's exact test", 
      "Wilcoxon rank sum test", 
      "effects Poisson regression", 
      "t-test", 
      "Student's t-test", 
      "rank sum test", 
      "ResultsMean age", 
      "urgent visits", 
      "inpatient visits", 
      "ER visits", 
      "care physicians", 
      "outpatient visits", 
      "healthcare utilization", 
      "outpatient utilization", 
      "serum urate", 
      "inpatient utilization", 
      "modifiable predictors", 
      "Assessment Questionnaire", 
      "exact test", 
      "U.S. veterans", 
      "Poisson regression", 
      "gout", 
      "patients", 
      "visits", 
      "sum test", 
      "Chi-square", 
      "college education", 
      "overnight stay", 
      "potential correlates", 
      "longitudinal analysis", 
      "future studies", 
      "predictors", 
      "past year", 
      "rheumatologists", 
      "stay", 
      "years", 
      "study", 
      "BackgroundAll", 
      "race", 
      "MethodsIn", 
      "physicians", 
      "diagnosis", 
      "months", 
      "urate", 
      "age", 
      "veterans", 
      "men", 
      "scores", 
      "test", 
      "questionnaire", 
      "correlates", 
      "flares", 
      "regression", 
      "Latinos", 
      "utilization", 
      "period", 
      "ratio", 
      "education", 
      "lack", 
      "date", 
      "objective", 
      "Africans", 
      "high school", 
      "comparison", 
      "analysis", 
      "schools", 
      "walk"
    ], 
    "name": "Health care utilization in patients with gout: a prospective multicenter cohort study", 
    "pagination": "233", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085733316"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12891-017-1573-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28569193"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12891-017-1573-6", 
      "https://app.dimensions.ai/details/publication/pub.1085733316"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_744.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12891-017-1573-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12891-017-1573-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12891-017-1573-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12891-017-1573-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12891-017-1573-6'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      21 PREDICATES      124 URIs      112 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12891-017-1573-6 schema:about N17543e799a364f2a9b9169462744e5bd
2 N2837f16d68144ab3879710e34aac43f2
3 N297a776aafe94e59aa06adb3591fa7c8
4 N3568b30868d94ac7b131b0d3cb2a67f8
5 N6868f4f3ea8340ec8fabdc00e5a7f78e
6 N703ea33bfad1470fb197d9b401899400
7 N88fe4f1fa3aa483e882a32aa11141907
8 N8e01677dc2914f2582c4da971487ee02
9 N9687a871c7d94ca1be62ecafef2f0e69
10 Nb55061be6db8423fb74fae6c765fa0d5
11 Nce12f83365d84b07a1bfd4bdc83bfdc0
12 Nd616fcc881da4ead9928533266ba4874
13 anzsrc-for:11
14 anzsrc-for:1117
15 schema:author Nf836f48cbbd9435fa7da4379884297b3
16 schema:citation sg:pub.10.1007/978-1-4615-8012-6
17 sg:pub.10.1046/j.1525-1497.1999.00335.x
18 sg:pub.10.1186/ar2659
19 sg:pub.10.1186/ar4425
20 schema:datePublished 2017-05-31
21 schema:datePublishedReg 2017-05-31
22 schema:description BackgroundAll published studies of health care utilization in gout have been cross-sectional to date, and most used a patient-reported diagnosis of gout. Our objective was to assess health care utilization and its predictors in patients with physician-confirmed gout in a prospective cohort study.MethodsIn a multi-center prospective cohort study of U.S. veterans with rheumatologist-confirmed gout (N = 186; two centers), we assessed patient self-reported overall and gout-specific health care utilization with the Gout Assessment Questionnaire (GAQ) every 3-months for a 9-month period. Comparisons were made using the student’s t test or the chi-square, Wilcoxon rank sum test or Fisher exact test, as appropriate. Mixed effects Poisson regression was used to assess potential correlates of gout-related health care utilization.ResultsMean age was 64.6 years, 98% were men, 13% Hispanic or Latino, 32% were African-American, 6% did not graduate high school, mean serum urate was 8.3 and mean Deyo-Charlson score was 3.1. During the past year, mean gout-related visits were as follows: rheumatologist, 1.5; primary care physician, 2 visits; ≥1 inpatient visits, 7%; ≥1 ER visits, 26%; and urgent care/walk-in visit, 33%. In longitudinal analyses, African-American race and gout flares in the last 3 months were associated with significantly higher rate ratio of gout-related outpatient visits. African-American race and lack of college education were associated with significantly higher rate ratio for gout-related urgent visits and overnight stays.ConclusionsAfrican-American race and recent gout flares were associated with higher outpatient utilization and African-American race and no college education with higher urgent or inpatient utilization. Future studies should examine whether modifiable predictors of utilization can be targeted to reduce healthcare utilization in patients with gout.
23 schema:genre article
24 schema:isAccessibleForFree true
25 schema:isPartOf N7d163415cfe24474bbdc45d4e67ee03e
26 Nf4e7cc28049346cc816b90c0d589c119
27 sg:journal.1024957
28 schema:keywords African American race
29 Africans
30 Assessment Questionnaire
31 BackgroundAll
32 Chi-square
33 ER visits
34 Fisher's exact test
35 Gout Assessment Questionnaire
36 Latinos
37 MethodsIn
38 Poisson regression
39 ResultsMean age
40 Student's t-test
41 U.S. veterans
42 Wilcoxon rank sum test
43 age
44 analysis
45 care physicians
46 care utilization
47 cohort study
48 college education
49 comparison
50 correlates
51 date
52 diagnosis
53 education
54 effects Poisson regression
55 exact test
56 flares
57 future studies
58 gout
59 gout flares
60 health care utilization
61 healthcare utilization
62 high school
63 higher outpatient utilization
64 higher rate ratios
65 inpatient utilization
66 inpatient visits
67 lack
68 longitudinal analysis
69 men
70 mixed-effects Poisson regression
71 modifiable predictors
72 months
73 multi-center prospective cohort study
74 multicenter cohort study
75 objective
76 outpatient utilization
77 outpatient visits
78 overnight stay
79 past year
80 patient-reported diagnosis
81 patients
82 period
83 physicians
84 potential correlates
85 predictors
86 primary care physicians
87 prospective cohort study
88 prospective multicenter cohort study
89 questionnaire
90 race
91 rank sum test
92 rate ratio
93 ratio
94 regression
95 rheumatologists
96 schools
97 scores
98 serum urate
99 stay
100 study
101 sum test
102 t-test
103 test
104 urate
105 urgent visits
106 utilization
107 veterans
108 visits
109 walk
110 years
111 schema:name Health care utilization in patients with gout: a prospective multicenter cohort study
112 schema:pagination 233
113 schema:productId N2763238eaaeb4e229d04d1b9fa0f15e3
114 N34d8f2beea6941ffa77731137a78f7fe
115 Ne20e9ededfeb49edb7d1254b808f4ef7
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085733316
117 https://doi.org/10.1186/s12891-017-1573-6
118 schema:sdDatePublished 2022-11-24T21:03
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher N18a1fc0df6044ffbbcdcb17717c72543
121 schema:url https://doi.org/10.1186/s12891-017-1573-6
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N0195d62253e04e909b7853c1cd502bb6 rdf:first sg:person.01023670575.90
126 rdf:rest rdf:nil
127 N17543e799a364f2a9b9169462744e5bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Gout
129 rdf:type schema:DefinedTerm
130 N18a1fc0df6044ffbbcdcb17717c72543 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 N2763238eaaeb4e229d04d1b9fa0f15e3 schema:name dimensions_id
133 schema:value pub.1085733316
134 rdf:type schema:PropertyValue
135 N2837f16d68144ab3879710e34aac43f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Prospective Studies
137 rdf:type schema:DefinedTerm
138 N297a776aafe94e59aa06adb3591fa7c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Aged
140 rdf:type schema:DefinedTerm
141 N34d8f2beea6941ffa77731137a78f7fe schema:name doi
142 schema:value 10.1186/s12891-017-1573-6
143 rdf:type schema:PropertyValue
144 N3568b30868d94ac7b131b0d3cb2a67f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Cross-Sectional Studies
146 rdf:type schema:DefinedTerm
147 N4ba044865d364723a3156aa455413b50 rdf:first sg:person.01057337532.99
148 rdf:rest Ndeeecb0dddba422aa12ebacd11c76d58
149 N6868f4f3ea8340ec8fabdc00e5a7f78e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Male
151 rdf:type schema:DefinedTerm
152 N6f9767523c404b2d9c8f6b5739d2136c rdf:first sg:person.016455735215.40
153 rdf:rest N4ba044865d364723a3156aa455413b50
154 N703ea33bfad1470fb197d9b401899400 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Longitudinal Studies
156 rdf:type schema:DefinedTerm
157 N7d163415cfe24474bbdc45d4e67ee03e schema:issueNumber 1
158 rdf:type schema:PublicationIssue
159 N88fe4f1fa3aa483e882a32aa11141907 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Humans
161 rdf:type schema:DefinedTerm
162 N8e01677dc2914f2582c4da971487ee02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Cohort Studies
164 rdf:type schema:DefinedTerm
165 N9687a871c7d94ca1be62ecafef2f0e69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Middle Aged
167 rdf:type schema:DefinedTerm
168 Nb55061be6db8423fb74fae6c765fa0d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Patient Acceptance of Health Care
170 rdf:type schema:DefinedTerm
171 Nce12f83365d84b07a1bfd4bdc83bfdc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Female
173 rdf:type schema:DefinedTerm
174 Nd4838178a7194d62b2353b6a00d5887d rdf:first sg:person.01265141712.87
175 rdf:rest Nee17c1994cbc4611b7d9372c3b0d6551
176 Nd616fcc881da4ead9928533266ba4874 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Veterans
178 rdf:type schema:DefinedTerm
179 Ndadd115726164471807dd909cd61f8dd rdf:first sg:person.01033377071.33
180 rdf:rest Nd4838178a7194d62b2353b6a00d5887d
181 Ndeeecb0dddba422aa12ebacd11c76d58 rdf:first sg:person.0604142176.92
182 rdf:rest N0195d62253e04e909b7853c1cd502bb6
183 Ne20e9ededfeb49edb7d1254b808f4ef7 schema:name pubmed_id
184 schema:value 28569193
185 rdf:type schema:PropertyValue
186 Nee17c1994cbc4611b7d9372c3b0d6551 rdf:first sg:person.01125114643.24
187 rdf:rest N6f9767523c404b2d9c8f6b5739d2136c
188 Nf4e7cc28049346cc816b90c0d589c119 schema:volumeNumber 18
189 rdf:type schema:PublicationVolume
190 Nf836f48cbbd9435fa7da4379884297b3 rdf:first sg:person.01202274465.50
191 rdf:rest Ndadd115726164471807dd909cd61f8dd
192 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
193 schema:name Medical and Health Sciences
194 rdf:type schema:DefinedTerm
195 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
196 schema:name Public Health and Health Services
197 rdf:type schema:DefinedTerm
198 sg:grant.2420873 http://pending.schema.org/fundedItem sg:pub.10.1186/s12891-017-1573-6
199 rdf:type schema:MonetaryGrant
200 sg:journal.1024957 schema:issn 1471-2474
201 schema:name BMC Musculoskeletal Disorders
202 schema:publisher Springer Nature
203 rdf:type schema:Periodical
204 sg:person.01023670575.90 schema:affiliation grid-institutes:grid.413800.e
205 schema:familyName Khanna
206 schema:givenName Puja P.
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023670575.90
208 rdf:type schema:Person
209 sg:person.01033377071.33 schema:affiliation grid-institutes:grid.280808.a
210 schema:familyName Bharat
211 schema:givenName Aseem
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033377071.33
213 rdf:type schema:Person
214 sg:person.01057337532.99 schema:affiliation grid-institutes:grid.19006.3e
215 schema:familyName Duffy
216 schema:givenName Erin
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057337532.99
218 rdf:type schema:Person
219 sg:person.01125114643.24 schema:affiliation grid-institutes:grid.417119.b
220 schema:familyName Aquino-Beaton
221 schema:givenName Cleopatra
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125114643.24
223 rdf:type schema:Person
224 sg:person.01202274465.50 schema:affiliation grid-institutes:grid.66875.3a
225 schema:familyName Singh
226 schema:givenName Jasvinder A.
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202274465.50
228 rdf:type schema:Person
229 sg:person.01265141712.87 schema:affiliation grid-institutes:grid.214458.e
230 schema:familyName Khanna
231 schema:givenName Dinesh
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265141712.87
233 rdf:type schema:Person
234 sg:person.016455735215.40 schema:affiliation grid-institutes:grid.417119.b
235 schema:familyName Persselin
236 schema:givenName Jay E.
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016455735215.40
238 rdf:type schema:Person
239 sg:person.0604142176.92 schema:affiliation grid-institutes:grid.19006.3e
240 schema:familyName Elashoff
241 schema:givenName David
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604142176.92
243 rdf:type schema:Person
244 sg:pub.10.1007/978-1-4615-8012-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052880641
245 https://doi.org/10.1007/978-1-4615-8012-6
246 rdf:type schema:CreativeWork
247 sg:pub.10.1046/j.1525-1497.1999.00335.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024890971
248 https://doi.org/10.1046/j.1525-1497.1999.00335.x
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/ar2659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023568855
251 https://doi.org/10.1186/ar2659
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/ar4425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053024087
254 https://doi.org/10.1186/ar4425
255 rdf:type schema:CreativeWork
256 grid-institutes:grid.19006.3e schema:alternateName University of California, Los Angeles, CA, USA
257 schema:name University of California, Los Angeles, CA, USA
258 rdf:type schema:Organization
259 grid-institutes:grid.214458.e schema:alternateName University of Michigan, Ann Arbor, MI, USA
260 schema:name University of Michigan, Ann Arbor, MI, USA
261 rdf:type schema:Organization
262 grid-institutes:grid.280808.a schema:alternateName Medicine Service, Birmingham VA Medical Center, Birmingham, AL, USA
263 schema:name Medicine Service, Birmingham VA Medical Center, Birmingham, AL, USA
264 rdf:type schema:Organization
265 grid-institutes:grid.413800.e schema:alternateName VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
266 schema:name University of Michigan, Ann Arbor, MI, USA
267 VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
268 rdf:type schema:Organization
269 grid-institutes:grid.417119.b schema:alternateName VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
270 schema:name VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
271 rdf:type schema:Organization
272 grid-institutes:grid.66875.3a schema:alternateName Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
273 schema:name Department of Medicine at School of Medicine, and Division of Epidemiology at School of Public Health, University of Alabama at Birmingham (UAB), Faculty Office Tower 805B, 510 20th Street S, 35294, Birmingham, AL, USA
274 Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
275 Medicine Service, Birmingham VA Medical Center, Birmingham, AL, USA
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...