Validity of Danish register diagnoses of myocardial infarction and stroke against experts in people with screen-detected diabetes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Else-Marie Dalsgaard, Daniel Rinse Witte, Morten Charles, Marit Eika Jørgensen, Torsten Lauritzen, Annelli Sandbæk

ABSTRACT

BACKGROUND: Administrative patient registers are often used to estimate morbidity in epidemiological studies. The validity of register data is thus important. This study aims to assess the positive predictive value of myocardial infarction and stroke registered in the Danish National Patient Register, and to examine the association between cardiovascular risk factors and cardiovascular disease based on register data or validated diagnoses in a well-defined diabetes population. METHODS: We included 1533 individuals found with screen-detected type 2 diabetes in the ADDITION-Denmark study in 2001-2006. All individuals were followed for cardiovascular outcomes until the end of 2014. Hospital discharge codes for myocardial infarction and stroke were identified in the Danish National Patient Register. Hospital medical records and other clinically relevant information were collected and an independent adjudication committee evaluated all possible events. The positive predictive value for myocardial infarction and stroke were calculated as the proportion of cases recorded in the Danish National Patient Register confirmed by the adjudication committee. RESULTS: The positive predictive value was 75% (95% CI: 64;84) for MI and 70% (95% CI: 54;80) for stroke. The association between cardiovascular risk factors and incident cardiovascular disease did not depend on using register-based or verified diagnoses. However, a tendency was seen towards stronger associations when using verified diagnoses. CONCLUSIONS: Our results show that studies using only register-based diagnoses are likely to misclassify cardiovascular outcomes. Moreover, the results suggest that the magnitude of associations between cardiovascular risk factors and cardiovascular outcomes may be underestimated when using register-based diagnoses. More... »

PAGES

228

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12889-019-6549-z

DOI

http://dx.doi.org/10.1186/s12889-019-6549-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112315615

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30795763


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Denmark", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hospital Records", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hospitals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Screening", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medical Records", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Discharge", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Registries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stroke", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Public Health, Aarhus University, Bartholins all\u00e9 2, DK-8000, Aarhus C, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dalsgaard", 
        "givenName": "Else-Marie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Danish Diabetes Academy", 
          "id": "https://www.grid.ac/institutes/grid.484078.7", 
          "name": [
            "Department of Public Health, Aarhus University and Danish Diabetes Academy, Odense, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Witte", 
        "givenName": "Daniel Rinse", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Public Health, Aarhus University, Bartholins all\u00e9 2, DK-8000, Aarhus C, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charles", 
        "givenName": "Morten", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Steno Diabetes Center", 
          "id": "https://www.grid.ac/institutes/grid.419658.7", 
          "name": [
            "Steno Diabetes Center Copenhagen, The Capital Region of Denmark, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "J\u00f8rgensen", 
        "givenName": "Marit Eika", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Public Health, Aarhus University, Bartholins all\u00e9 2, DK-8000, Aarhus C, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lauritzen", 
        "givenName": "Torsten", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Public Health, Aarhus University and Steno Diabetes Center, Aarhus, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sandb\u00e6k", 
        "givenName": "Annelli", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.ijo.0801420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001751914", 
          "https://doi.org/10.1038/sj.ijo.0801420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0801420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001751914", 
          "https://doi.org/10.1038/sj.ijo.0801420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0135834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002919672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/clep.s91125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005201207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjopen-2013-002862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014102851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjopen-2016-012832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020919895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjmed.2005.12.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027740193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-4356(02)00391-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030369374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-4356(02)00391-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030369374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-4356(02)00591-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033511300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-4356(02)00591-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033511300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-11-83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035939702", 
          "https://doi.org/10.1186/1471-2288-11-83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000102143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036096135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclinepi.2008.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049366073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/clep.s50449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051869909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(11)60698-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052891898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(11)60698-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052891898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1403494811401482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064001927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1403494811401482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064001927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074497042", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Administrative patient registers are often used to estimate morbidity in epidemiological studies. The validity of register data is thus important. This study aims to assess the positive predictive value of myocardial infarction and stroke registered in the Danish National Patient Register, and to examine the association between cardiovascular risk factors and cardiovascular disease based on register data or validated diagnoses in a well-defined diabetes population.\nMETHODS: We included 1533 individuals found with screen-detected type 2 diabetes in the ADDITION-Denmark study in 2001-2006. All individuals were followed for cardiovascular outcomes until the end of 2014. Hospital discharge codes for myocardial infarction and stroke were identified in the Danish National Patient Register. Hospital medical records and other clinically relevant information were collected and an independent adjudication committee evaluated all possible events. The positive predictive value for myocardial infarction and stroke were calculated as the proportion of cases recorded in the Danish National Patient Register confirmed by the adjudication committee.\nRESULTS: The positive predictive value was 75% (95% CI: 64;84) for MI and 70% (95% CI: 54;80) for stroke. The association between cardiovascular risk factors and incident cardiovascular disease did not depend on using register-based or verified diagnoses. However, a tendency was seen towards stronger associations when using verified diagnoses.\nCONCLUSIONS: Our results show that studies using only register-based diagnoses are likely to misclassify cardiovascular outcomes. Moreover, the results suggest that the magnitude of associations between cardiovascular risk factors and cardiovascular outcomes may be underestimated when using register-based diagnoses.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12889-019-6549-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024954", 
        "issn": [
          "1471-2458"
        ], 
        "name": "BMC Public Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Validity of Danish register diagnoses of myocardial infarction and stroke against experts in people with screen-detected diabetes", 
    "pagination": "228", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12889-019-6549-z"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "082989417522d4f886e4d19eff80d48238a543090db29658f783f0e1eb2bac61"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112315615"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968562"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30795763"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12889-019-6549-z", 
      "https://app.dimensions.ai/details/publication/pub.1112315615"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119746_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12889-019-6549-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12889-019-6549-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12889-019-6549-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12889-019-6549-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12889-019-6549-z'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      61 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12889-019-6549-z schema:about N06672d274d3b4e92989be63f6c3f7c7d
2 N0faa4f80dd0d41909bec0b5e9da9906f
3 N1d32d5ac61094b45a366387d9fb52274
4 N4850eee97dd849cab9a58c4a530eae01
5 N4de6a829d26543f7a41706ce6801f301
6 N4e595c7253204cdd94e09af992d3c1f7
7 N66c87882b6014490b201e6441bbb295a
8 N6c4941e84eb04c58a8630c301d02463c
9 N822f496d9a67471d94256cfc6ada84e8
10 N9e4efc637f9b4839bfec2d81389d1a37
11 Nb1638aabed5646f1a739b9b6a8ceb8bf
12 Nb99ec33e417245049433b57a4a195286
13 Nc327802342d5427d96dc6937f80a1640
14 Nd133a890c64342a79f326c98763ffa35
15 Ne4f59e58cecb4f64b48f285f9dd5b6e6
16 Nf025c96e663c43b1b7ed12b41bb846e8
17 Nf872bab9225f41b1ab51199f57b22247
18 anzsrc-for:11
19 anzsrc-for:1117
20 schema:author N3e5de079634844baa6a6040fc4b6db0f
21 schema:citation sg:pub.10.1038/sj.ijo.0801420
22 sg:pub.10.1186/1471-2288-11-83
23 https://app.dimensions.ai/details/publication/pub.1074497042
24 https://doi.org/10.1016/j.amjmed.2005.12.027
25 https://doi.org/10.1016/j.jclinepi.2008.03.005
26 https://doi.org/10.1016/s0140-6736(11)60698-3
27 https://doi.org/10.1016/s0895-4356(02)00391-8
28 https://doi.org/10.1016/s0895-4356(02)00591-7
29 https://doi.org/10.1136/bmjopen-2013-002862
30 https://doi.org/10.1136/bmjopen-2016-012832
31 https://doi.org/10.1159/000102143
32 https://doi.org/10.1177/1403494811401482
33 https://doi.org/10.1371/journal.pone.0135834
34 https://doi.org/10.2147/clep.s50449
35 https://doi.org/10.2147/clep.s91125
36 schema:datePublished 2019-12
37 schema:datePublishedReg 2019-12-01
38 schema:description BACKGROUND: Administrative patient registers are often used to estimate morbidity in epidemiological studies. The validity of register data is thus important. This study aims to assess the positive predictive value of myocardial infarction and stroke registered in the Danish National Patient Register, and to examine the association between cardiovascular risk factors and cardiovascular disease based on register data or validated diagnoses in a well-defined diabetes population. METHODS: We included 1533 individuals found with screen-detected type 2 diabetes in the ADDITION-Denmark study in 2001-2006. All individuals were followed for cardiovascular outcomes until the end of 2014. Hospital discharge codes for myocardial infarction and stroke were identified in the Danish National Patient Register. Hospital medical records and other clinically relevant information were collected and an independent adjudication committee evaluated all possible events. The positive predictive value for myocardial infarction and stroke were calculated as the proportion of cases recorded in the Danish National Patient Register confirmed by the adjudication committee. RESULTS: The positive predictive value was 75% (95% CI: 64;84) for MI and 70% (95% CI: 54;80) for stroke. The association between cardiovascular risk factors and incident cardiovascular disease did not depend on using register-based or verified diagnoses. However, a tendency was seen towards stronger associations when using verified diagnoses. CONCLUSIONS: Our results show that studies using only register-based diagnoses are likely to misclassify cardiovascular outcomes. Moreover, the results suggest that the magnitude of associations between cardiovascular risk factors and cardiovascular outcomes may be underestimated when using register-based diagnoses.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N79de2ab8fae640c18c253075693c8c3f
43 Na166f79dc5b24dfcb1c2729505c410df
44 sg:journal.1024954
45 schema:name Validity of Danish register diagnoses of myocardial infarction and stroke against experts in people with screen-detected diabetes
46 schema:pagination 228
47 schema:productId N404867a49a30481fa293c5b92cb94878
48 N5675e108aba747a3bc259b2801aab1c5
49 N62144aa5a9264f1eb0d23fb35cea0246
50 N8eb03f8a7de24889822510b097ee5bad
51 Nc1c3609a03ca4aef9920312cab7e63b0
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112315615
53 https://doi.org/10.1186/s12889-019-6549-z
54 schema:sdDatePublished 2019-04-15T08:52
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Neb690b30e0af467fa9f232c121bebcdd
57 schema:url https://link.springer.com/10.1186%2Fs12889-019-6549-z
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N01f11e3e80f54112945db2d2260a6ef4 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
62 schema:familyName Charles
63 schema:givenName Morten
64 rdf:type schema:Person
65 N06672d274d3b4e92989be63f6c3f7c7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Patient Discharge
67 rdf:type schema:DefinedTerm
68 N0faa4f80dd0d41909bec0b5e9da9906f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Myocardial Infarction
70 rdf:type schema:DefinedTerm
71 N1d32d5ac61094b45a366387d9fb52274 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Male
73 rdf:type schema:DefinedTerm
74 N2140e43f95d5405698445a53090cebfb schema:affiliation https://www.grid.ac/institutes/grid.7048.b
75 schema:familyName Sandbæk
76 schema:givenName Annelli
77 rdf:type schema:Person
78 N284259b0593f47cf97e25c74d6790cd3 rdf:first N2abfba10a6504cd1b43db77516db8530
79 rdf:rest N3a463d3a5eab4be9b64ad4c602d1da8e
80 N2abfba10a6504cd1b43db77516db8530 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
81 schema:familyName Lauritzen
82 schema:givenName Torsten
83 rdf:type schema:Person
84 N3a463d3a5eab4be9b64ad4c602d1da8e rdf:first N2140e43f95d5405698445a53090cebfb
85 rdf:rest rdf:nil
86 N3e5de079634844baa6a6040fc4b6db0f rdf:first N714dc5666c204680b6a1d8a9bb8c7475
87 rdf:rest Nb7584c2f7cd74652b2782a249254e8ec
88 N404867a49a30481fa293c5b92cb94878 schema:name doi
89 schema:value 10.1186/s12889-019-6549-z
90 rdf:type schema:PropertyValue
91 N4850eee97dd849cab9a58c4a530eae01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Female
93 rdf:type schema:DefinedTerm
94 N4de6a829d26543f7a41706ce6801f301 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Aged
96 rdf:type schema:DefinedTerm
97 N4e595c7253204cdd94e09af992d3c1f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Risk Factors
99 rdf:type schema:DefinedTerm
100 N5675e108aba747a3bc259b2801aab1c5 schema:name dimensions_id
101 schema:value pub.1112315615
102 rdf:type schema:PropertyValue
103 N582864b0f30945bf9f7812dce74339bf schema:affiliation https://www.grid.ac/institutes/grid.484078.7
104 schema:familyName Witte
105 schema:givenName Daniel Rinse
106 rdf:type schema:Person
107 N62144aa5a9264f1eb0d23fb35cea0246 schema:name nlm_unique_id
108 schema:value 100968562
109 rdf:type schema:PropertyValue
110 N66c87882b6014490b201e6441bbb295a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Adult
112 rdf:type schema:DefinedTerm
113 N6c4941e84eb04c58a8630c301d02463c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Diabetes Mellitus, Type 2
115 rdf:type schema:DefinedTerm
116 N714dc5666c204680b6a1d8a9bb8c7475 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
117 schema:familyName Dalsgaard
118 schema:givenName Else-Marie
119 rdf:type schema:Person
120 N79de2ab8fae640c18c253075693c8c3f schema:volumeNumber 19
121 rdf:type schema:PublicationVolume
122 N822f496d9a67471d94256cfc6ada84e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Stroke
124 rdf:type schema:DefinedTerm
125 N8eb03f8a7de24889822510b097ee5bad schema:name pubmed_id
126 schema:value 30795763
127 rdf:type schema:PropertyValue
128 N9bc06c5abc234403ae3e4239c7abe18e rdf:first Nf5b82f9da63c40e3aee8734b4e691d76
129 rdf:rest N284259b0593f47cf97e25c74d6790cd3
130 N9e4efc637f9b4839bfec2d81389d1a37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Medical Records
132 rdf:type schema:DefinedTerm
133 Na166f79dc5b24dfcb1c2729505c410df schema:issueNumber 1
134 rdf:type schema:PublicationIssue
135 Nb1638aabed5646f1a739b9b6a8ceb8bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Hospital Records
137 rdf:type schema:DefinedTerm
138 Nb7584c2f7cd74652b2782a249254e8ec rdf:first N582864b0f30945bf9f7812dce74339bf
139 rdf:rest Ncb1b1d61c8944e458d71ae9b4f8cd799
140 Nb99ec33e417245049433b57a4a195286 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Middle Aged
142 rdf:type schema:DefinedTerm
143 Nc1c3609a03ca4aef9920312cab7e63b0 schema:name readcube_id
144 schema:value 082989417522d4f886e4d19eff80d48238a543090db29658f783f0e1eb2bac61
145 rdf:type schema:PropertyValue
146 Nc327802342d5427d96dc6937f80a1640 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Hospitals
148 rdf:type schema:DefinedTerm
149 Ncb1b1d61c8944e458d71ae9b4f8cd799 rdf:first N01f11e3e80f54112945db2d2260a6ef4
150 rdf:rest N9bc06c5abc234403ae3e4239c7abe18e
151 Nd133a890c64342a79f326c98763ffa35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Mass Screening
153 rdf:type schema:DefinedTerm
154 Ne4f59e58cecb4f64b48f285f9dd5b6e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Registries
156 rdf:type schema:DefinedTerm
157 Neb690b30e0af467fa9f232c121bebcdd schema:name Springer Nature - SN SciGraph project
158 rdf:type schema:Organization
159 Nf025c96e663c43b1b7ed12b41bb846e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Denmark
161 rdf:type schema:DefinedTerm
162 Nf5b82f9da63c40e3aee8734b4e691d76 schema:affiliation https://www.grid.ac/institutes/grid.419658.7
163 schema:familyName Jørgensen
164 schema:givenName Marit Eika
165 rdf:type schema:Person
166 Nf872bab9225f41b1ab51199f57b22247 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Humans
168 rdf:type schema:DefinedTerm
169 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
170 schema:name Medical and Health Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
173 schema:name Public Health and Health Services
174 rdf:type schema:DefinedTerm
175 sg:journal.1024954 schema:issn 1471-2458
176 schema:name BMC Public Health
177 rdf:type schema:Periodical
178 sg:pub.10.1038/sj.ijo.0801420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001751914
179 https://doi.org/10.1038/sj.ijo.0801420
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1471-2288-11-83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035939702
182 https://doi.org/10.1186/1471-2288-11-83
183 rdf:type schema:CreativeWork
184 https://app.dimensions.ai/details/publication/pub.1074497042 schema:CreativeWork
185 https://doi.org/10.1016/j.amjmed.2005.12.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027740193
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.jclinepi.2008.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049366073
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0140-6736(11)60698-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052891898
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0895-4356(02)00391-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030369374
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0895-4356(02)00591-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033511300
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1136/bmjopen-2013-002862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014102851
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1136/bmjopen-2016-012832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020919895
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1159/000102143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036096135
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1177/1403494811401482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064001927
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1371/journal.pone.0135834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002919672
204 rdf:type schema:CreativeWork
205 https://doi.org/10.2147/clep.s50449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051869909
206 rdf:type schema:CreativeWork
207 https://doi.org/10.2147/clep.s91125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005201207
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.419658.7 schema:alternateName Steno Diabetes Center
210 schema:name Steno Diabetes Center Copenhagen, The Capital Region of Denmark, Copenhagen, Denmark
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.484078.7 schema:alternateName Danish Diabetes Academy
213 schema:name Department of Public Health, Aarhus University and Danish Diabetes Academy, Odense, Denmark
214 rdf:type schema:Organization
215 https://www.grid.ac/institutes/grid.7048.b schema:alternateName Aarhus University
216 schema:name Department of Public Health, Aarhus University and Steno Diabetes Center, Aarhus, Denmark
217 Department of Public Health, Aarhus University, Bartholins allé 2, DK-8000, Aarhus C, Denmark
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...