The association between air pollution and preterm birth and low birth weight in Guangdong, China View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Ying Liu, Jihong Xu, Dian Chen, Pei Sun, Xu Ma

ABSTRACT

BACKGROUND: A mountain of evidence has shown that people's physical and mental health can be affected by various air pollutions. Poor pregnancy outcomes are associated with exposure to air pollution. Therefore, this study aims to investigate the association between air pollutions (PM2.5, PM10, SO2, NO2, CO, and O3) and preterm birth/low birth weight in Guangdong province, China. METHOD: All maternal data and birth data from January 1, 2014 to December 31, 2015 were selected from a National Free Pre-pregnancy Check-ups system, and the daily air quality data of Guangdong Province was collected from China National Environmental Monitoring Center. 1784 women with either preterm birth information (n = 687) or low birth weight information (n = 1097) were used as experimental group. Control group included 1766 women with healthy birth information. Logistic regression models were employed to evaluate the effects of air pollutants on the risk of preterm birth and low birth weight. RESULTS: The pollution levels of PM2.5, PM10, SO2, NO2, CO, and O3 in Guangdong province were all lower than the national air pollution concentrations. The concentrations of PM2.5, PM10, SO2, NO2 and CO had obvious seasonal trends with the highest in winter and the lowest in summer. O3 concentrations in September (65.72 μg/m3) and October (84.18 μg/m3) were relatively higher. After controlling for the impact of confounding factors, the increases in the risk of preterm birth were associated with each 10 μg/m3 increase in PM2.5 (OR 1.043, 95% CI 1.01-1.09) and PM10 (OR 1.039, 95% CI 1.01~1.14) during the first trimester and in PM2.5 (OR 1.038, 95% CI 1.01~1.12), PM10 (OR 1.024, 95% CI 1.02~1.09), SO2 (OR 1.081, 95% CI 1.01~1.29), and O3 (OR 1.016, 95% CI 1.004~1.35) during the third trimester. The increase in the risk of low birth weight was associated with PM2.5, PM10, NO2, and O3 in the first month and the last month. CONCLUSION: This study provides further evidence for the relationships between air pollutions and preterm birth/low birth weight. Pregnant women are recommended to reduce or avoid exposure to air pollutions during pregnancy, especially in the early and late stages of pregnancy. More... »

PAGES

3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12889-018-6307-7

DOI

http://dx.doi.org/10.1186/s12889-018-6307-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111097031

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30606145


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Air Pollutants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Air Pollution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Low Birth Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Newborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pregnancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Premature Birth", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seasons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute of Psychology Continuing Education College, University of the Chinese Academy of Sciences, National Research Institute for Family Planning, No.12, Dahuisi Road, Hai Dian District, 100081, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Ying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Health and Family Planning Commission", 
          "id": "https://www.grid.ac/institutes/grid.453135.5", 
          "name": [
            "Research Center for Mental Health and Behavior Big Data, National Research Institute for Family Planning, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Jihong", 
        "id": "sg:person.0607076575.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607076575.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Psychology, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Dian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Psychology, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Pei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Health and Family Planning Commission", 
          "id": "https://www.grid.ac/institutes/grid.453135.5", 
          "name": [
            "Research Center for Mental Health and Behavior Big Data, National Research Institute for Family Planning, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Xu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1289/ehp.7646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001131708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.8733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003341134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2012.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003883925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2213-2600(13)70192-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007251362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.11.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009354602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/oem.60.8.612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019465489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/oem.60.8.612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019465489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjopen-2012-001955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022583854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)60820-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025793568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-069x-5-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029831223", 
          "https://doi.org/10.1186/1476-069x-5-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001648-200111000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030646329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001648-200111000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030646329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jech.58.1.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030849560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbagen.2016.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030970924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00039896.1995.9935976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031590547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2016.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036346194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/089583701753403962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036649240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.9759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042685444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2014.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043321337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwt216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043589286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1205862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045986294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064736833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.00108173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064736991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1409651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064741475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.6251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064741765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077589145", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078964004", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3760/cma.j.issn.0254-6450.2016.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079258516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2017.03.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085091901"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: A mountain of evidence has shown that people's physical and mental health can be affected by various air pollutions. Poor pregnancy outcomes are associated with exposure to air pollution. Therefore, this study aims to investigate the association between air pollutions (PM2.5, PM10, SO2, NO2, CO, and O3) and preterm birth/low birth weight in Guangdong province, China.\nMETHOD: All maternal data and birth data from January 1, 2014 to December 31, 2015 were selected from a National Free Pre-pregnancy Check-ups system, and the daily air quality data of Guangdong Province was collected from China National Environmental Monitoring Center. 1784 women with either preterm birth information (n\u2009=\u2009687) or low birth weight information (n\u2009=\u20091097) were used as experimental group. Control group included 1766 women with healthy birth information. Logistic regression models were employed to evaluate the effects of air pollutants on the risk of preterm birth and low birth weight.\nRESULTS: The pollution levels of PM2.5, PM10, SO2, NO2, CO, and O3 in Guangdong province were all lower than the national air pollution concentrations. The concentrations of PM2.5, PM10, SO2, NO2 and CO had obvious seasonal trends with the highest in winter and the lowest in summer. O3 concentrations in September (65.72 \u03bcg/m3) and October (84.18 \u03bcg/m3) were relatively higher. After controlling for the impact of confounding factors, the increases in the risk of preterm birth were associated with each 10\u2009\u03bcg/m3 increase in PM2.5 (OR 1.043, 95% CI 1.01-1.09) and PM10 (OR 1.039, 95% CI 1.01~1.14) during the first trimester and in PM2.5 (OR 1.038, 95% CI 1.01~1.12), PM10 (OR 1.024, 95% CI 1.02~1.09), SO2 (OR 1.081, 95% CI 1.01~1.29), and O3 (OR 1.016, 95% CI 1.004~1.35) during the third trimester. The increase in the risk of low birth weight was associated with PM2.5, PM10, NO2, and O3 in the first month and the last month.\nCONCLUSION: This study provides further evidence for the relationships between air pollutions and preterm birth/low birth weight. Pregnant women are recommended to reduce or avoid exposure to air pollutions during pregnancy, especially in the early and late stages of pregnancy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12889-018-6307-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024954", 
        "issn": [
          "1471-2458"
        ], 
        "name": "BMC Public Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "The association between air pollution and preterm birth and low birth weight in Guangdong, China", 
    "pagination": "3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a007a63d16cd519c041b8b3a475d15666ab7b63977f8c7600021003beafbd1bd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30606145"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968562"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12889-018-6307-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111097031"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12889-018-6307-7", 
      "https://app.dimensions.ai/details/publication/pub.1111097031"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113650_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12889-018-6307-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12889-018-6307-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12889-018-6307-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12889-018-6307-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12889-018-6307-7'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      69 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12889-018-6307-7 schema:about N0424c5f71f6548649b5195485baf5760
2 N3146b142afb34ba1a758e22e32f544ae
3 N3c8e0cc746f8451daa8eaef3145dc4c2
4 N54ec7fd753fc4c06afc7dcbf2e7e6a9f
5 N577d0414b88c495294d3cf0513683a37
6 N6ac885f184ea4c25885e3f59bcc77ff0
7 Nad88044b6f044037bf133cbc978a770f
8 Nb847a31d39fa4544a54dd6aeed9f3c5a
9 Ncabaf6cfb1564d35a65bd60160a47298
10 Ndd7df19506a748a2b9374fdde035a4af
11 Nde6edd865a664f9bbafc566fb34a51bd
12 Neb75ac69001e44c9bc701460862c57f2
13 Nfc1c4f98d2b44b448db66b0102adab53
14 anzsrc-for:11
15 anzsrc-for:1117
16 schema:author N8a5b76cc035742a6bcf9bd02e8dd89dc
17 schema:citation sg:pub.10.1186/1476-069x-5-3
18 https://app.dimensions.ai/details/publication/pub.1077589145
19 https://app.dimensions.ai/details/publication/pub.1078964004
20 https://doi.org/10.1016/j.bbagen.2016.03.019
21 https://doi.org/10.1016/j.envpol.2017.03.055
22 https://doi.org/10.1016/j.envres.2012.05.007
23 https://doi.org/10.1016/j.envres.2014.08.002
24 https://doi.org/10.1016/j.envres.2016.04.026
25 https://doi.org/10.1016/j.scitotenv.2016.11.100
26 https://doi.org/10.1016/s0140-6736(12)60820-4
27 https://doi.org/10.1016/s2213-2600(13)70192-9
28 https://doi.org/10.1080/00039896.1995.9935976
29 https://doi.org/10.1080/089583701753403962
30 https://doi.org/10.1093/aje/kwt216
31 https://doi.org/10.1097/00001648-200111000-00011
32 https://doi.org/10.1136/bmjopen-2012-001955
33 https://doi.org/10.1136/jech.58.1.11
34 https://doi.org/10.1136/oem.60.8.612
35 https://doi.org/10.1289/ehp.00108173
36 https://doi.org/10.1289/ehp.1205862
37 https://doi.org/10.1289/ehp.1409651
38 https://doi.org/10.1289/ehp.6251
39 https://doi.org/10.1289/ehp.7646
40 https://doi.org/10.1289/ehp.8733
41 https://doi.org/10.1289/ehp.9759
42 https://doi.org/10.1289/ehp200
43 https://doi.org/10.3760/cma.j.issn.0254-6450.2016.04.027
44 schema:datePublished 2019-12
45 schema:datePublishedReg 2019-12-01
46 schema:description BACKGROUND: A mountain of evidence has shown that people's physical and mental health can be affected by various air pollutions. Poor pregnancy outcomes are associated with exposure to air pollution. Therefore, this study aims to investigate the association between air pollutions (PM2.5, PM10, SO2, NO2, CO, and O3) and preterm birth/low birth weight in Guangdong province, China. METHOD: All maternal data and birth data from January 1, 2014 to December 31, 2015 were selected from a National Free Pre-pregnancy Check-ups system, and the daily air quality data of Guangdong Province was collected from China National Environmental Monitoring Center. 1784 women with either preterm birth information (n = 687) or low birth weight information (n = 1097) were used as experimental group. Control group included 1766 women with healthy birth information. Logistic regression models were employed to evaluate the effects of air pollutants on the risk of preterm birth and low birth weight. RESULTS: The pollution levels of PM2.5, PM10, SO2, NO2, CO, and O3 in Guangdong province were all lower than the national air pollution concentrations. The concentrations of PM2.5, PM10, SO2, NO2 and CO had obvious seasonal trends with the highest in winter and the lowest in summer. O3 concentrations in September (65.72 μg/m3) and October (84.18 μg/m3) were relatively higher. After controlling for the impact of confounding factors, the increases in the risk of preterm birth were associated with each 10 μg/m3 increase in PM2.5 (OR 1.043, 95% CI 1.01-1.09) and PM10 (OR 1.039, 95% CI 1.01~1.14) during the first trimester and in PM2.5 (OR 1.038, 95% CI 1.01~1.12), PM10 (OR 1.024, 95% CI 1.02~1.09), SO2 (OR 1.081, 95% CI 1.01~1.29), and O3 (OR 1.016, 95% CI 1.004~1.35) during the third trimester. The increase in the risk of low birth weight was associated with PM2.5, PM10, NO2, and O3 in the first month and the last month. CONCLUSION: This study provides further evidence for the relationships between air pollutions and preterm birth/low birth weight. Pregnant women are recommended to reduce or avoid exposure to air pollutions during pregnancy, especially in the early and late stages of pregnancy.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf Ndec2ff358ae04e2c861aff0da0769a31
51 Nf59c56c4d70d4ee8b025ffe5bca81bfc
52 sg:journal.1024954
53 schema:name The association between air pollution and preterm birth and low birth weight in Guangdong, China
54 schema:pagination 3
55 schema:productId N247f69ab60a64ee99f913214ee35a3c9
56 N7dd29b1248374b29a1dc5f6cca3e59d3
57 N8e1c9f4ce2e34f41a789b9f7c7ff92da
58 Nb23de36ba5cc4bbfbdf33007baa99b51
59 Nb73e6d328a6d4823aef4a74be5b36920
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111097031
61 https://doi.org/10.1186/s12889-018-6307-7
62 schema:sdDatePublished 2019-04-11T10:31
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N3c205772197544ceb1ee92e2dc927889
65 schema:url https://link.springer.com/10.1186%2Fs12889-018-6307-7
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0424c5f71f6548649b5195485baf5760 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Humans
71 rdf:type schema:DefinedTerm
72 N1938d6764dda4d9ba4ff2251cd8bb90e schema:affiliation https://www.grid.ac/institutes/grid.12527.33
73 schema:familyName Sun
74 schema:givenName Pei
75 rdf:type schema:Person
76 N1fb48ee061834714bab0032cfc1b6bfd schema:affiliation https://www.grid.ac/institutes/grid.12527.33
77 schema:familyName Chen
78 schema:givenName Dian
79 rdf:type schema:Person
80 N22c22931dddb47668d31c9bfe83f92ba schema:name Institute of Psychology Continuing Education College, University of the Chinese Academy of Sciences, National Research Institute for Family Planning, No.12, Dahuisi Road, Hai Dian District, 100081, Beijing, China
81 rdf:type schema:Organization
82 N247f69ab60a64ee99f913214ee35a3c9 schema:name readcube_id
83 schema:value a007a63d16cd519c041b8b3a475d15666ab7b63977f8c7600021003beafbd1bd
84 rdf:type schema:PropertyValue
85 N3146b142afb34ba1a758e22e32f544ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Infant, Low Birth Weight
87 rdf:type schema:DefinedTerm
88 N3c205772197544ceb1ee92e2dc927889 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N3c8e0cc746f8451daa8eaef3145dc4c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Seasons
92 rdf:type schema:DefinedTerm
93 N53aaccd7a38f42a6a5c28d8d34c1bcb0 rdf:first sg:person.0607076575.03
94 rdf:rest N5eb839e8ab6646a591ca668be73d8f7e
95 N54ec7fd753fc4c06afc7dcbf2e7e6a9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Air Pollution
97 rdf:type schema:DefinedTerm
98 N577d0414b88c495294d3cf0513683a37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Young Adult
100 rdf:type schema:DefinedTerm
101 N5eb839e8ab6646a591ca668be73d8f7e rdf:first N1fb48ee061834714bab0032cfc1b6bfd
102 rdf:rest Naadf21623e3a4f5ab2f4abe0e637fb70
103 N69c1af0ebc5f4334bc574aa02502d877 schema:affiliation N22c22931dddb47668d31c9bfe83f92ba
104 schema:familyName Liu
105 schema:givenName Ying
106 rdf:type schema:Person
107 N6ac885f184ea4c25885e3f59bcc77ff0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Middle Aged
109 rdf:type schema:DefinedTerm
110 N79c7e69dfb9244948541e29f16174dbe rdf:first Nf8c851ed6a094284930e7856b1ed3973
111 rdf:rest rdf:nil
112 N7dd29b1248374b29a1dc5f6cca3e59d3 schema:name doi
113 schema:value 10.1186/s12889-018-6307-7
114 rdf:type schema:PropertyValue
115 N8a5b76cc035742a6bcf9bd02e8dd89dc rdf:first N69c1af0ebc5f4334bc574aa02502d877
116 rdf:rest N53aaccd7a38f42a6a5c28d8d34c1bcb0
117 N8e1c9f4ce2e34f41a789b9f7c7ff92da schema:name pubmed_id
118 schema:value 30606145
119 rdf:type schema:PropertyValue
120 Naadf21623e3a4f5ab2f4abe0e637fb70 rdf:first N1938d6764dda4d9ba4ff2251cd8bb90e
121 rdf:rest N79c7e69dfb9244948541e29f16174dbe
122 Nad88044b6f044037bf133cbc978a770f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Premature Birth
124 rdf:type schema:DefinedTerm
125 Nb23de36ba5cc4bbfbdf33007baa99b51 schema:name dimensions_id
126 schema:value pub.1111097031
127 rdf:type schema:PropertyValue
128 Nb73e6d328a6d4823aef4a74be5b36920 schema:name nlm_unique_id
129 schema:value 100968562
130 rdf:type schema:PropertyValue
131 Nb847a31d39fa4544a54dd6aeed9f3c5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Pregnancy
133 rdf:type schema:DefinedTerm
134 Ncabaf6cfb1564d35a65bd60160a47298 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Air Pollutants
136 rdf:type schema:DefinedTerm
137 Ndd7df19506a748a2b9374fdde035a4af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Adult
139 rdf:type schema:DefinedTerm
140 Nde6edd865a664f9bbafc566fb34a51bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name China
142 rdf:type schema:DefinedTerm
143 Ndec2ff358ae04e2c861aff0da0769a31 schema:volumeNumber 19
144 rdf:type schema:PublicationVolume
145 Neb75ac69001e44c9bc701460862c57f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Female
147 rdf:type schema:DefinedTerm
148 Nf59c56c4d70d4ee8b025ffe5bca81bfc schema:issueNumber 1
149 rdf:type schema:PublicationIssue
150 Nf8c851ed6a094284930e7856b1ed3973 schema:affiliation https://www.grid.ac/institutes/grid.453135.5
151 schema:familyName Ma
152 schema:givenName Xu
153 rdf:type schema:Person
154 Nfc1c4f98d2b44b448db66b0102adab53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Infant, Newborn
156 rdf:type schema:DefinedTerm
157 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
158 schema:name Medical and Health Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
161 schema:name Public Health and Health Services
162 rdf:type schema:DefinedTerm
163 sg:journal.1024954 schema:issn 1471-2458
164 schema:name BMC Public Health
165 rdf:type schema:Periodical
166 sg:person.0607076575.03 schema:affiliation https://www.grid.ac/institutes/grid.453135.5
167 schema:familyName Xu
168 schema:givenName Jihong
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607076575.03
170 rdf:type schema:Person
171 sg:pub.10.1186/1476-069x-5-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029831223
172 https://doi.org/10.1186/1476-069x-5-3
173 rdf:type schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1077589145 schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1078964004 schema:CreativeWork
176 https://doi.org/10.1016/j.bbagen.2016.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030970924
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.envpol.2017.03.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085091901
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.envres.2012.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003883925
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.envres.2014.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043321337
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.envres.2016.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036346194
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.scitotenv.2016.11.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009354602
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0140-6736(12)60820-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025793568
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s2213-2600(13)70192-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007251362
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1080/00039896.1995.9935976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031590547
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1080/089583701753403962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036649240
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/aje/kwt216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043589286
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1097/00001648-200111000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030646329
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1136/bmjopen-2012-001955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022583854
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1136/jech.58.1.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030849560
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1136/oem.60.8.612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019465489
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1289/ehp.00108173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064736991
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1289/ehp.1205862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045986294
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1289/ehp.1409651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064741475
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1289/ehp.6251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064741765
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1289/ehp.7646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001131708
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1289/ehp.8733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003341134
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1289/ehp.9759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042685444
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1289/ehp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064736833
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3760/cma.j.issn.0254-6450.2016.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079258516
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
225 schema:name Department of Psychology, Tsinghua University, Beijing, China
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.453135.5 schema:alternateName National Health and Family Planning Commission
228 schema:name Research Center for Mental Health and Behavior Big Data, National Research Institute for Family Planning, Beijing, China
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...