The association between air pollution and preterm birth and low birth weight in Guangdong, China View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Ying Liu, Jihong Xu, Dian Chen, Pei Sun, Xu Ma

ABSTRACT

BACKGROUND: A mountain of evidence has shown that people's physical and mental health can be affected by various air pollutions. Poor pregnancy outcomes are associated with exposure to air pollution. Therefore, this study aims to investigate the association between air pollutions (PM2.5, PM10, SO2, NO2, CO, and O3) and preterm birth/low birth weight in Guangdong province, China. METHOD: All maternal data and birth data from January 1, 2014 to December 31, 2015 were selected from a National Free Pre-pregnancy Check-ups system, and the daily air quality data of Guangdong Province was collected from China National Environmental Monitoring Center. 1784 women with either preterm birth information (n = 687) or low birth weight information (n = 1097) were used as experimental group. Control group included 1766 women with healthy birth information. Logistic regression models were employed to evaluate the effects of air pollutants on the risk of preterm birth and low birth weight. RESULTS: The pollution levels of PM2.5, PM10, SO2, NO2, CO, and O3 in Guangdong province were all lower than the national air pollution concentrations. The concentrations of PM2.5, PM10, SO2, NO2 and CO had obvious seasonal trends with the highest in winter and the lowest in summer. O3 concentrations in September (65.72 μg/m3) and October (84.18 μg/m3) were relatively higher. After controlling for the impact of confounding factors, the increases in the risk of preterm birth were associated with each 10 μg/m3 increase in PM2.5 (OR 1.043, 95% CI 1.01-1.09) and PM10 (OR 1.039, 95% CI 1.01~1.14) during the first trimester and in PM2.5 (OR 1.038, 95% CI 1.01~1.12), PM10 (OR 1.024, 95% CI 1.02~1.09), SO2 (OR 1.081, 95% CI 1.01~1.29), and O3 (OR 1.016, 95% CI 1.004~1.35) during the third trimester. The increase in the risk of low birth weight was associated with PM2.5, PM10, NO2, and O3 in the first month and the last month. CONCLUSION: This study provides further evidence for the relationships between air pollutions and preterm birth/low birth weight. Pregnant women are recommended to reduce or avoid exposure to air pollutions during pregnancy, especially in the early and late stages of pregnancy. More... »

PAGES

3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12889-018-6307-7

DOI

http://dx.doi.org/10.1186/s12889-018-6307-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111097031

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30606145


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Air Pollutants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Air Pollution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Low Birth Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Newborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pregnancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Premature Birth", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seasons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute of Psychology Continuing Education College, University of the Chinese Academy of Sciences, National Research Institute for Family Planning, No.12, Dahuisi Road, Hai Dian District, 100081, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Ying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Health and Family Planning Commission", 
          "id": "https://www.grid.ac/institutes/grid.453135.5", 
          "name": [
            "Research Center for Mental Health and Behavior Big Data, National Research Institute for Family Planning, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Jihong", 
        "id": "sg:person.0607076575.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607076575.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Psychology, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Dian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Psychology, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Pei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Health and Family Planning Commission", 
          "id": "https://www.grid.ac/institutes/grid.453135.5", 
          "name": [
            "Research Center for Mental Health and Behavior Big Data, National Research Institute for Family Planning, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Xu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1289/ehp.7646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001131708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.8733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003341134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2012.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003883925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2213-2600(13)70192-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007251362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.11.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009354602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/oem.60.8.612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019465489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/oem.60.8.612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019465489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjopen-2012-001955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022583854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)60820-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025793568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-069x-5-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029831223", 
          "https://doi.org/10.1186/1476-069x-5-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001648-200111000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030646329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001648-200111000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030646329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jech.58.1.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030849560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbagen.2016.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030970924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00039896.1995.9935976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031590547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2016.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036346194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/089583701753403962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036649240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.9759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042685444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2014.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043321337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwt216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043589286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1205862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045986294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064736833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.00108173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064736991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1409651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064741475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.6251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064741765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077589145", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078964004", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3760/cma.j.issn.0254-6450.2016.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079258516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2017.03.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085091901"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: A mountain of evidence has shown that people's physical and mental health can be affected by various air pollutions. Poor pregnancy outcomes are associated with exposure to air pollution. Therefore, this study aims to investigate the association between air pollutions (PM2.5, PM10, SO2, NO2, CO, and O3) and preterm birth/low birth weight in Guangdong province, China.\nMETHOD: All maternal data and birth data from January 1, 2014 to December 31, 2015 were selected from a National Free Pre-pregnancy Check-ups system, and the daily air quality data of Guangdong Province was collected from China National Environmental Monitoring Center. 1784 women with either preterm birth information (n\u2009=\u2009687) or low birth weight information (n\u2009=\u20091097) were used as experimental group. Control group included 1766 women with healthy birth information. Logistic regression models were employed to evaluate the effects of air pollutants on the risk of preterm birth and low birth weight.\nRESULTS: The pollution levels of PM2.5, PM10, SO2, NO2, CO, and O3 in Guangdong province were all lower than the national air pollution concentrations. The concentrations of PM2.5, PM10, SO2, NO2 and CO had obvious seasonal trends with the highest in winter and the lowest in summer. O3 concentrations in September (65.72 \u03bcg/m3) and October (84.18 \u03bcg/m3) were relatively higher. After controlling for the impact of confounding factors, the increases in the risk of preterm birth were associated with each 10\u2009\u03bcg/m3 increase in PM2.5 (OR 1.043, 95% CI 1.01-1.09) and PM10 (OR 1.039, 95% CI 1.01~1.14) during the first trimester and in PM2.5 (OR 1.038, 95% CI 1.01~1.12), PM10 (OR 1.024, 95% CI 1.02~1.09), SO2 (OR 1.081, 95% CI 1.01~1.29), and O3 (OR 1.016, 95% CI 1.004~1.35) during the third trimester. The increase in the risk of low birth weight was associated with PM2.5, PM10, NO2, and O3 in the first month and the last month.\nCONCLUSION: This study provides further evidence for the relationships between air pollutions and preterm birth/low birth weight. Pregnant women are recommended to reduce or avoid exposure to air pollutions during pregnancy, especially in the early and late stages of pregnancy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12889-018-6307-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024954", 
        "issn": [
          "1471-2458"
        ], 
        "name": "BMC Public Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "The association between air pollution and preterm birth and low birth weight in Guangdong, China", 
    "pagination": "3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a007a63d16cd519c041b8b3a475d15666ab7b63977f8c7600021003beafbd1bd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30606145"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968562"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12889-018-6307-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111097031"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12889-018-6307-7", 
      "https://app.dimensions.ai/details/publication/pub.1111097031"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113650_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12889-018-6307-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12889-018-6307-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12889-018-6307-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12889-018-6307-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12889-018-6307-7'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      69 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12889-018-6307-7 schema:about N05d56c35ddfe4e4996b89b9b80310e92
2 N2c7fb84374e346c58f40879c7392c329
3 N369d25be8bf44234b28ba82a932dabaf
4 N49d332b568634ac6b5b1cf97df149aa8
5 N63f208b246a9402ba67b74c60dc8733b
6 N890cdab680644293bcf29e1361dd4216
7 N90c6614959b04f7d85e30fbe7efa8f26
8 N997350511e204697aaf168e21f4a62c1
9 N9d6293461474450a8213538e7012a2aa
10 Nac3c042926d34e50a8a144736f5d0845
11 Nd29a3ee9d34e42d9951a717d91f24688
12 Nf71b0b20967f45c28d847c441569e1c6
13 Nfe1d965162c54ba7901a262c39ecf9ef
14 anzsrc-for:11
15 anzsrc-for:1117
16 schema:author Nb71bc5bf380b4b7693453c43fc04d442
17 schema:citation sg:pub.10.1186/1476-069x-5-3
18 https://app.dimensions.ai/details/publication/pub.1077589145
19 https://app.dimensions.ai/details/publication/pub.1078964004
20 https://doi.org/10.1016/j.bbagen.2016.03.019
21 https://doi.org/10.1016/j.envpol.2017.03.055
22 https://doi.org/10.1016/j.envres.2012.05.007
23 https://doi.org/10.1016/j.envres.2014.08.002
24 https://doi.org/10.1016/j.envres.2016.04.026
25 https://doi.org/10.1016/j.scitotenv.2016.11.100
26 https://doi.org/10.1016/s0140-6736(12)60820-4
27 https://doi.org/10.1016/s2213-2600(13)70192-9
28 https://doi.org/10.1080/00039896.1995.9935976
29 https://doi.org/10.1080/089583701753403962
30 https://doi.org/10.1093/aje/kwt216
31 https://doi.org/10.1097/00001648-200111000-00011
32 https://doi.org/10.1136/bmjopen-2012-001955
33 https://doi.org/10.1136/jech.58.1.11
34 https://doi.org/10.1136/oem.60.8.612
35 https://doi.org/10.1289/ehp.00108173
36 https://doi.org/10.1289/ehp.1205862
37 https://doi.org/10.1289/ehp.1409651
38 https://doi.org/10.1289/ehp.6251
39 https://doi.org/10.1289/ehp.7646
40 https://doi.org/10.1289/ehp.8733
41 https://doi.org/10.1289/ehp.9759
42 https://doi.org/10.1289/ehp200
43 https://doi.org/10.3760/cma.j.issn.0254-6450.2016.04.027
44 schema:datePublished 2019-12
45 schema:datePublishedReg 2019-12-01
46 schema:description BACKGROUND: A mountain of evidence has shown that people's physical and mental health can be affected by various air pollutions. Poor pregnancy outcomes are associated with exposure to air pollution. Therefore, this study aims to investigate the association between air pollutions (PM2.5, PM10, SO2, NO2, CO, and O3) and preterm birth/low birth weight in Guangdong province, China. METHOD: All maternal data and birth data from January 1, 2014 to December 31, 2015 were selected from a National Free Pre-pregnancy Check-ups system, and the daily air quality data of Guangdong Province was collected from China National Environmental Monitoring Center. 1784 women with either preterm birth information (n = 687) or low birth weight information (n = 1097) were used as experimental group. Control group included 1766 women with healthy birth information. Logistic regression models were employed to evaluate the effects of air pollutants on the risk of preterm birth and low birth weight. RESULTS: The pollution levels of PM2.5, PM10, SO2, NO2, CO, and O3 in Guangdong province were all lower than the national air pollution concentrations. The concentrations of PM2.5, PM10, SO2, NO2 and CO had obvious seasonal trends with the highest in winter and the lowest in summer. O3 concentrations in September (65.72 μg/m3) and October (84.18 μg/m3) were relatively higher. After controlling for the impact of confounding factors, the increases in the risk of preterm birth were associated with each 10 μg/m3 increase in PM2.5 (OR 1.043, 95% CI 1.01-1.09) and PM10 (OR 1.039, 95% CI 1.01~1.14) during the first trimester and in PM2.5 (OR 1.038, 95% CI 1.01~1.12), PM10 (OR 1.024, 95% CI 1.02~1.09), SO2 (OR 1.081, 95% CI 1.01~1.29), and O3 (OR 1.016, 95% CI 1.004~1.35) during the third trimester. The increase in the risk of low birth weight was associated with PM2.5, PM10, NO2, and O3 in the first month and the last month. CONCLUSION: This study provides further evidence for the relationships between air pollutions and preterm birth/low birth weight. Pregnant women are recommended to reduce or avoid exposure to air pollutions during pregnancy, especially in the early and late stages of pregnancy.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N4f37252a22db41769c14f8e5922a4634
51 N7589cc8866394cbfafe929f18da9a48c
52 sg:journal.1024954
53 schema:name The association between air pollution and preterm birth and low birth weight in Guangdong, China
54 schema:pagination 3
55 schema:productId N4d7feffa06f44fba921b8a6e1db2a4cc
56 N51e3c1952450464d89c82172ce0740f9
57 N8306c9ea398a4a96a84fb9bd0d548e55
58 Nf15820f9a02a4eb69f31003a5fc1b013
59 Nffbf5d18bf9e4a5a99352c9a8a961ebe
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111097031
61 https://doi.org/10.1186/s12889-018-6307-7
62 schema:sdDatePublished 2019-04-11T10:31
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nc34becac9458407bb1bf9fc8f717b1e2
65 schema:url https://link.springer.com/10.1186%2Fs12889-018-6307-7
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N05d56c35ddfe4e4996b89b9b80310e92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Seasons
71 rdf:type schema:DefinedTerm
72 N0d9346d375a14873ab81ddc861d5ff68 rdf:first N314a776d478d40e7a9f1789bcb183bf9
73 rdf:rest Ne4c0c43a44304b5d95a00cb435c46961
74 N2c7fb84374e346c58f40879c7392c329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Infant, Newborn
76 rdf:type schema:DefinedTerm
77 N314a776d478d40e7a9f1789bcb183bf9 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
78 schema:familyName Chen
79 schema:givenName Dian
80 rdf:type schema:Person
81 N369d25be8bf44234b28ba82a932dabaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Humans
83 rdf:type schema:DefinedTerm
84 N49d332b568634ac6b5b1cf97df149aa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Infant, Low Birth Weight
86 rdf:type schema:DefinedTerm
87 N4d7feffa06f44fba921b8a6e1db2a4cc schema:name dimensions_id
88 schema:value pub.1111097031
89 rdf:type schema:PropertyValue
90 N4f37252a22db41769c14f8e5922a4634 schema:volumeNumber 19
91 rdf:type schema:PublicationVolume
92 N51e3c1952450464d89c82172ce0740f9 schema:name pubmed_id
93 schema:value 30606145
94 rdf:type schema:PropertyValue
95 N629a63823e78417fa848fca4aec6e2c7 rdf:first Nb71dce3f1bbb492eae810c3e4e822e5b
96 rdf:rest rdf:nil
97 N63f208b246a9402ba67b74c60dc8733b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Air Pollutants
99 rdf:type schema:DefinedTerm
100 N7589cc8866394cbfafe929f18da9a48c schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 N8306c9ea398a4a96a84fb9bd0d548e55 schema:name readcube_id
103 schema:value a007a63d16cd519c041b8b3a475d15666ab7b63977f8c7600021003beafbd1bd
104 rdf:type schema:PropertyValue
105 N890cdab680644293bcf29e1361dd4216 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Air Pollution
107 rdf:type schema:DefinedTerm
108 N8e5ea993412a4a65a5a0fddb79aa00cf schema:affiliation Ne6d1995842c14da3a1684d9547f8980e
109 schema:familyName Liu
110 schema:givenName Ying
111 rdf:type schema:Person
112 N90c6614959b04f7d85e30fbe7efa8f26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Pregnancy
114 rdf:type schema:DefinedTerm
115 N997350511e204697aaf168e21f4a62c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Premature Birth
117 rdf:type schema:DefinedTerm
118 N9d6293461474450a8213538e7012a2aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Female
120 rdf:type schema:DefinedTerm
121 Nac3c042926d34e50a8a144736f5d0845 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name China
123 rdf:type schema:DefinedTerm
124 Nb71bc5bf380b4b7693453c43fc04d442 rdf:first N8e5ea993412a4a65a5a0fddb79aa00cf
125 rdf:rest Nc76a733a3ea74515b38e27fa43deefe1
126 Nb71dce3f1bbb492eae810c3e4e822e5b schema:affiliation https://www.grid.ac/institutes/grid.453135.5
127 schema:familyName Ma
128 schema:givenName Xu
129 rdf:type schema:Person
130 Nc34becac9458407bb1bf9fc8f717b1e2 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 Nc35139660236483fb57a7a56d3b34976 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
133 schema:familyName Sun
134 schema:givenName Pei
135 rdf:type schema:Person
136 Nc76a733a3ea74515b38e27fa43deefe1 rdf:first sg:person.0607076575.03
137 rdf:rest N0d9346d375a14873ab81ddc861d5ff68
138 Nd29a3ee9d34e42d9951a717d91f24688 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Young Adult
140 rdf:type schema:DefinedTerm
141 Ne4c0c43a44304b5d95a00cb435c46961 rdf:first Nc35139660236483fb57a7a56d3b34976
142 rdf:rest N629a63823e78417fa848fca4aec6e2c7
143 Ne6d1995842c14da3a1684d9547f8980e schema:name Institute of Psychology Continuing Education College, University of the Chinese Academy of Sciences, National Research Institute for Family Planning, No.12, Dahuisi Road, Hai Dian District, 100081, Beijing, China
144 rdf:type schema:Organization
145 Nf15820f9a02a4eb69f31003a5fc1b013 schema:name nlm_unique_id
146 schema:value 100968562
147 rdf:type schema:PropertyValue
148 Nf71b0b20967f45c28d847c441569e1c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Middle Aged
150 rdf:type schema:DefinedTerm
151 Nfe1d965162c54ba7901a262c39ecf9ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Adult
153 rdf:type schema:DefinedTerm
154 Nffbf5d18bf9e4a5a99352c9a8a961ebe schema:name doi
155 schema:value 10.1186/s12889-018-6307-7
156 rdf:type schema:PropertyValue
157 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
158 schema:name Medical and Health Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
161 schema:name Public Health and Health Services
162 rdf:type schema:DefinedTerm
163 sg:journal.1024954 schema:issn 1471-2458
164 schema:name BMC Public Health
165 rdf:type schema:Periodical
166 sg:person.0607076575.03 schema:affiliation https://www.grid.ac/institutes/grid.453135.5
167 schema:familyName Xu
168 schema:givenName Jihong
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607076575.03
170 rdf:type schema:Person
171 sg:pub.10.1186/1476-069x-5-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029831223
172 https://doi.org/10.1186/1476-069x-5-3
173 rdf:type schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1077589145 schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1078964004 schema:CreativeWork
176 https://doi.org/10.1016/j.bbagen.2016.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030970924
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.envpol.2017.03.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085091901
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.envres.2012.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003883925
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.envres.2014.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043321337
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.envres.2016.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036346194
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.scitotenv.2016.11.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009354602
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0140-6736(12)60820-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025793568
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s2213-2600(13)70192-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007251362
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1080/00039896.1995.9935976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031590547
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1080/089583701753403962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036649240
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/aje/kwt216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043589286
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1097/00001648-200111000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030646329
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1136/bmjopen-2012-001955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022583854
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1136/jech.58.1.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030849560
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1136/oem.60.8.612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019465489
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1289/ehp.00108173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064736991
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1289/ehp.1205862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045986294
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1289/ehp.1409651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064741475
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1289/ehp.6251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064741765
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1289/ehp.7646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001131708
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1289/ehp.8733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003341134
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1289/ehp.9759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042685444
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1289/ehp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064736833
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3760/cma.j.issn.0254-6450.2016.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079258516
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
225 schema:name Department of Psychology, Tsinghua University, Beijing, China
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.453135.5 schema:alternateName National Health and Family Planning Commission
228 schema:name Research Center for Mental Health and Behavior Big Data, National Research Institute for Family Planning, Beijing, China
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...