Predicting high risk births with contraceptive prevalence and contraceptive method-mix in an ecologic analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11

AUTHORS

Jamie Perin, Agbessi Amouzou, Neff Walker

ABSTRACT

BACKGROUND: Increased contraceptive use has been associated with a decrease in high parity births, births that occur close together in time, and births to very young or to older women. These types of births are also associated with high risk of under-five mortality. Previous studies have looked at the change in the level of contraception use and the average change in these types of high-risk births. We aim to predict the distribution of births in a specific country when there is a change in the level and method of modern contraception. METHODS: We used data from full birth histories and modern contraceptive use from 207 nationally representative Demographic and Health Surveys covering 71 countries to describe the distribution of births in each survey based on birth order, preceding birth space, and mother's age at birth. We estimated the ecologic associations between the prevalence and method-mix of modern contraceptives and the proportion of births in each category. Hierarchical modelling was applied to these aggregated cross sectional proportions, so that random effects were estimated for countries with multiple surveys. We use these results to predict the change in type of births associated with scaling up modern contraception in three different scenarios. RESULTS: We observed marked differences between regions, in the absolute rates of contraception, the types of contraceptives in use, and in the distribution of type of birth. Contraceptive method-mix was a significant determinant of proportion of high-risk births, especially for birth spacing, but also for mother's age and parity. Increased use of modern contraceptives is especially predictive of reduced parity and more births with longer preceding space. However, increased contraception alone is not associated with fewer births to women younger than 18 years or a decrease in short-spaced births. CONCLUSIONS: Both the level and the type of contraception are important factors in determining the effects of family planning on changes in distribution of high-risk births. The best predictions for how birth risk changes with increased modern contraception and for different contraception methods allow for more nuanced predictions specific to each country and can aid better planning for the scaling up of modern contraception. More... »

PAGES

786

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12889-017-4741-6

DOI

http://dx.doi.org/10.1186/s12889-017-4741-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092584471

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29143633


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contraception", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contraception Behavior", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Developing Countries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Surveys", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Parturition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pregnancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perin", 
        "givenName": "Jamie", 
        "id": "sg:person.01210304131.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210304131.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amouzou", 
        "givenName": "Agbessi", 
        "id": "sg:person.01112246022.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112246022.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walker", 
        "givenName": "Neff", 
        "id": "sg:person.01011261364.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011261364.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/biom.12577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003981417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-13-s3-s6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005780335", 
          "https://doi.org/10.1186/1471-2458-13-s3-s6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-13-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012343828", 
          "https://doi.org/10.1186/1471-2458-13-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2214-109x(14)70227-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014177097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-13-s3-s4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023140491", 
          "https://doi.org/10.1186/1471-2458-13-s3-s4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/13-sts419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030177417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021932012000570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037391583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-13-s3-s2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038647935", 
          "https://doi.org/10.1186/1471-2458-13-s3-s2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-13-s3-s1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040573828", 
          "https://doi.org/10.1186/1471-2458-13-s3-s1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.295.15.1809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040817850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-13-s3-s7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042390401", 
          "https://doi.org/10.1186/1471-2458-13-s3-s7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1471-0528.12630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050282198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0032472031000141576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058280084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1990.10476214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1996.10476679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2105/ajph.71.8.810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068870209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1973197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069678307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074734309", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12889-017-4740-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092584470", 
          "https://doi.org/10.1186/s12889-017-4740-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511790942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098675208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2737284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102115713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108567229", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b17198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108567229"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "BACKGROUND: Increased contraceptive use has been associated with a decrease in high parity births, births that occur close together in time, and births to very young or to older women. These types of births are also associated with high risk of under-five mortality. Previous studies have looked at the change in the level of contraception use and the average change in these types of high-risk births. We aim to predict the distribution of births in a specific country when there is a change in the level and method of modern contraception.\nMETHODS: We used data from full birth histories and modern contraceptive use from 207 nationally representative Demographic and Health Surveys covering 71 countries to describe the distribution of births in each survey based on birth order, preceding birth space, and mother's age at birth. We estimated the ecologic associations between the prevalence and method-mix of modern contraceptives and the proportion of births in each category. Hierarchical modelling was applied to these aggregated cross sectional proportions, so that random effects were estimated for countries with multiple surveys. We use these results to predict the change in type of births associated with scaling up modern contraception in three different scenarios.\nRESULTS: We observed marked differences between regions, in the absolute rates of contraception, the types of contraceptives in use, and in the distribution of type of birth. Contraceptive method-mix was a significant determinant of proportion of high-risk births, especially for birth spacing, but also for mother's age and parity. Increased use of modern contraceptives is especially predictive of reduced parity and more births with longer preceding space. However, increased contraception alone is not associated with fewer births to women younger than 18\u00a0years or a decrease in short-spaced births.\nCONCLUSIONS: Both the level and the type of contraception are important factors in determining the effects of family planning on changes in distribution of high-risk births. The best predictions for how birth risk changes with increased modern contraception and for different contraception methods allow for more nuanced predictions specific to each country and can aid better planning for the scaling up of modern contraception.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12889-017-4741-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6582086", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024954", 
        "issn": [
          "1471-2458"
        ], 
        "name": "BMC Public Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Predicting high risk births with contraceptive prevalence and contraceptive method-mix in an ecologic analysis", 
    "pagination": "786", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b745d67e963fbb2ee9cd241e95058ff97b1a75b630aac6f87111fb7fdcc567a2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29143633"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968562"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12889-017-4741-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092584471"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12889-017-4741-6", 
      "https://app.dimensions.ai/details/publication/pub.1092584471"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12889-017-4741-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12889-017-4741-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12889-017-4741-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12889-017-4741-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12889-017-4741-6'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      68 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12889-017-4741-6 schema:about N0fba664a45a74363a08b3aeaa69684a8
2 N255d8d48ecbf4d5cb6d58860eb2dea41
3 N27068cb0be4449639de85e52d7e41b99
4 N3abda8e0d7f9464987d9cd0692e41902
5 N3b3307c6de56430cab8a567c576574bb
6 N411049b5a6de4c6ebcb39f6fb4944701
7 N443b343e68314d029ec9e1c73540bcd0
8 N44e5160dfbad4ea9a41dfc27d60c0389
9 N610097ee0b774cb5be816efe63311e16
10 N6ec477db71eb4444a09f1e7db0f00e73
11 N741e34e648644886ae2753f0fe2ffab6
12 N760b953026cb475699953c6a3fd31cac
13 N90a7a6b7f0c44caa9336b8096f3a5cc3
14 Na616c3d38854447baa06e18c117af04d
15 Nac90e745a8e546a19355fd3eda74491c
16 Nd2c4ad93c7e6432a827e54961879284f
17 anzsrc-for:11
18 anzsrc-for:1117
19 schema:author N0a674cef6a5e4cc48cc274e58b03e097
20 schema:citation sg:pub.10.1186/1471-2458-13-1
21 sg:pub.10.1186/1471-2458-13-s3-s1
22 sg:pub.10.1186/1471-2458-13-s3-s2
23 sg:pub.10.1186/1471-2458-13-s3-s4
24 sg:pub.10.1186/1471-2458-13-s3-s6
25 sg:pub.10.1186/1471-2458-13-s3-s7
26 sg:pub.10.1186/s12889-017-4740-7
27 https://app.dimensions.ai/details/publication/pub.1074734309
28 https://app.dimensions.ai/details/publication/pub.1108567229
29 https://doi.org/10.1001/jama.295.15.1809
30 https://doi.org/10.1016/s2214-109x(14)70227-x
31 https://doi.org/10.1017/cbo9780511790942
32 https://doi.org/10.1017/s0021932012000570
33 https://doi.org/10.1080/0032472031000141576
34 https://doi.org/10.1080/01621459.1990.10476214
35 https://doi.org/10.1080/01621459.1996.10476679
36 https://doi.org/10.1111/1471-0528.12630
37 https://doi.org/10.1111/biom.12577
38 https://doi.org/10.1201/b17198
39 https://doi.org/10.1214/13-sts419
40 https://doi.org/10.2105/ajph.71.8.810
41 https://doi.org/10.2307/1973197
42 https://doi.org/10.2307/2737284
43 schema:datePublished 2017-11
44 schema:datePublishedReg 2017-11-01
45 schema:description BACKGROUND: Increased contraceptive use has been associated with a decrease in high parity births, births that occur close together in time, and births to very young or to older women. These types of births are also associated with high risk of under-five mortality. Previous studies have looked at the change in the level of contraception use and the average change in these types of high-risk births. We aim to predict the distribution of births in a specific country when there is a change in the level and method of modern contraception. METHODS: We used data from full birth histories and modern contraceptive use from 207 nationally representative Demographic and Health Surveys covering 71 countries to describe the distribution of births in each survey based on birth order, preceding birth space, and mother's age at birth. We estimated the ecologic associations between the prevalence and method-mix of modern contraceptives and the proportion of births in each category. Hierarchical modelling was applied to these aggregated cross sectional proportions, so that random effects were estimated for countries with multiple surveys. We use these results to predict the change in type of births associated with scaling up modern contraception in three different scenarios. RESULTS: We observed marked differences between regions, in the absolute rates of contraception, the types of contraceptives in use, and in the distribution of type of birth. Contraceptive method-mix was a significant determinant of proportion of high-risk births, especially for birth spacing, but also for mother's age and parity. Increased use of modern contraceptives is especially predictive of reduced parity and more births with longer preceding space. However, increased contraception alone is not associated with fewer births to women younger than 18 years or a decrease in short-spaced births. CONCLUSIONS: Both the level and the type of contraception are important factors in determining the effects of family planning on changes in distribution of high-risk births. The best predictions for how birth risk changes with increased modern contraception and for different contraception methods allow for more nuanced predictions specific to each country and can aid better planning for the scaling up of modern contraception.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N10cba9b545b448d294729e467574f24c
50 N62686287ad5943efb927349ce302405f
51 sg:journal.1024954
52 schema:name Predicting high risk births with contraceptive prevalence and contraceptive method-mix in an ecologic analysis
53 schema:pagination 786
54 schema:productId N25e2b419ca624fcdad41882796d1f178
55 N6c0e2ed89246498b84801e7e56bb68ee
56 N901fbe47e9df47e4a75a6fddcab33112
57 Na209bace051d4e49a03cc2cbf9bde7d0
58 Ndf97a279217a42e4ba11d4924966898d
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092584471
60 https://doi.org/10.1186/s12889-017-4741-6
61 schema:sdDatePublished 2019-04-10T16:55
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Ne16285a117f34f31a8d728e0e83c3870
64 schema:url https://link.springer.com/10.1186%2Fs12889-017-4741-6
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0a674cef6a5e4cc48cc274e58b03e097 rdf:first sg:person.01210304131.20
69 rdf:rest Nd9a6f66b69aa477bbb6dcb01b790b28d
70 N0fba664a45a74363a08b3aeaa69684a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Computer Simulation
72 rdf:type schema:DefinedTerm
73 N10cba9b545b448d294729e467574f24c schema:volumeNumber 17
74 rdf:type schema:PublicationVolume
75 N255d8d48ecbf4d5cb6d58860eb2dea41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Prevalence
77 rdf:type schema:DefinedTerm
78 N25e2b419ca624fcdad41882796d1f178 schema:name doi
79 schema:value 10.1186/s12889-017-4741-6
80 rdf:type schema:PropertyValue
81 N27068cb0be4449639de85e52d7e41b99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Developing Countries
83 rdf:type schema:DefinedTerm
84 N272bbeb3493840ec9430bd3935596017 rdf:first sg:person.01011261364.92
85 rdf:rest rdf:nil
86 N3abda8e0d7f9464987d9cd0692e41902 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Contraception Behavior
88 rdf:type schema:DefinedTerm
89 N3b3307c6de56430cab8a567c576574bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Health Surveys
91 rdf:type schema:DefinedTerm
92 N411049b5a6de4c6ebcb39f6fb4944701 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Cross-Sectional Studies
94 rdf:type schema:DefinedTerm
95 N443b343e68314d029ec9e1c73540bcd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Female
97 rdf:type schema:DefinedTerm
98 N44e5160dfbad4ea9a41dfc27d60c0389 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Adolescent
100 rdf:type schema:DefinedTerm
101 N610097ee0b774cb5be816efe63311e16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Adult
103 rdf:type schema:DefinedTerm
104 N62686287ad5943efb927349ce302405f schema:issueNumber Suppl 4
105 rdf:type schema:PublicationIssue
106 N6c0e2ed89246498b84801e7e56bb68ee schema:name nlm_unique_id
107 schema:value 100968562
108 rdf:type schema:PropertyValue
109 N6ec477db71eb4444a09f1e7db0f00e73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Contraception
111 rdf:type schema:DefinedTerm
112 N741e34e648644886ae2753f0fe2ffab6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Ecology
114 rdf:type schema:DefinedTerm
115 N760b953026cb475699953c6a3fd31cac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Pregnancy
117 rdf:type schema:DefinedTerm
118 N901fbe47e9df47e4a75a6fddcab33112 schema:name dimensions_id
119 schema:value pub.1092584471
120 rdf:type schema:PropertyValue
121 N90a7a6b7f0c44caa9336b8096f3a5cc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Humans
123 rdf:type schema:DefinedTerm
124 Na209bace051d4e49a03cc2cbf9bde7d0 schema:name pubmed_id
125 schema:value 29143633
126 rdf:type schema:PropertyValue
127 Na616c3d38854447baa06e18c117af04d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Young Adult
129 rdf:type schema:DefinedTerm
130 Nac90e745a8e546a19355fd3eda74491c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Risk Assessment
132 rdf:type schema:DefinedTerm
133 Nd2c4ad93c7e6432a827e54961879284f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Parturition
135 rdf:type schema:DefinedTerm
136 Nd9a6f66b69aa477bbb6dcb01b790b28d rdf:first sg:person.01112246022.74
137 rdf:rest N272bbeb3493840ec9430bd3935596017
138 Ndf97a279217a42e4ba11d4924966898d schema:name readcube_id
139 schema:value b745d67e963fbb2ee9cd241e95058ff97b1a75b630aac6f87111fb7fdcc567a2
140 rdf:type schema:PropertyValue
141 Ne16285a117f34f31a8d728e0e83c3870 schema:name Springer Nature - SN SciGraph project
142 rdf:type schema:Organization
143 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
144 schema:name Medical and Health Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
147 schema:name Public Health and Health Services
148 rdf:type schema:DefinedTerm
149 sg:grant.6582086 http://pending.schema.org/fundedItem sg:pub.10.1186/s12889-017-4741-6
150 rdf:type schema:MonetaryGrant
151 sg:journal.1024954 schema:issn 1471-2458
152 schema:name BMC Public Health
153 rdf:type schema:Periodical
154 sg:person.01011261364.92 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
155 schema:familyName Walker
156 schema:givenName Neff
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011261364.92
158 rdf:type schema:Person
159 sg:person.01112246022.74 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
160 schema:familyName Amouzou
161 schema:givenName Agbessi
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112246022.74
163 rdf:type schema:Person
164 sg:person.01210304131.20 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
165 schema:familyName Perin
166 schema:givenName Jamie
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210304131.20
168 rdf:type schema:Person
169 sg:pub.10.1186/1471-2458-13-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012343828
170 https://doi.org/10.1186/1471-2458-13-1
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2458-13-s3-s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040573828
173 https://doi.org/10.1186/1471-2458-13-s3-s1
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2458-13-s3-s2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038647935
176 https://doi.org/10.1186/1471-2458-13-s3-s2
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1471-2458-13-s3-s4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023140491
179 https://doi.org/10.1186/1471-2458-13-s3-s4
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1471-2458-13-s3-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005780335
182 https://doi.org/10.1186/1471-2458-13-s3-s6
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1471-2458-13-s3-s7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042390401
185 https://doi.org/10.1186/1471-2458-13-s3-s7
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/s12889-017-4740-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092584470
188 https://doi.org/10.1186/s12889-017-4740-7
189 rdf:type schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1074734309 schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1108567229 schema:CreativeWork
192 https://doi.org/10.1001/jama.295.15.1809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040817850
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s2214-109x(14)70227-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014177097
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1017/cbo9780511790942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098675208
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1017/s0021932012000570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037391583
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1080/0032472031000141576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058280084
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/01621459.1990.10476214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303993
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1080/01621459.1996.10476679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304962
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1111/1471-0528.12630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050282198
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1111/biom.12577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003981417
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1201/b17198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108567229
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1214/13-sts419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030177417
213 rdf:type schema:CreativeWork
214 https://doi.org/10.2105/ajph.71.8.810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068870209
215 rdf:type schema:CreativeWork
216 https://doi.org/10.2307/1973197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069678307
217 rdf:type schema:CreativeWork
218 https://doi.org/10.2307/2737284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102115713
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
221 schema:name Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, USA
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...