Body composition among Sri Lankan infants by 18O dilution method and the validity of anthropometric equations to predict body fat ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Thushari Bandara, Manjula Hettiarachchi, Chandrani Liyanage, Sujeewa Amarasena, William Wai-Lun Wong

ABSTRACT

BACKGROUND: Body composition indicators provide a better guidance for growth and nutritional status of the infants. This study was designed to (1) measure the body composition of the Sri Lankan infants using a reference method, the (18)O dilution method; (2) calculate the body fat content of the infants using published skinfold prediction equations; and (3) evaluate the applicability of the skinfold equations to predict body fat among Sri Lankan infants against the (18)O dilution method. METHODS: Twenty five healthy, exclusively breast-fed infants were randomly recruited at well-baby clinics, for this cross-sectional study. Body composition was measured using (18)O dilution. Infant body weight, length, skinfold thicknesses and mid upper-arm circumference were measured using standard procedures. The Bland and Atlman pair-wise comparison method was used to evaluate the agreement of body fat generated using the anthropometric prediction equations against the (18)O dilution values as the reference. RESULTS: Mean (SD) body weight and length of the infants were 6.5 kg (0.9) and 64.7 cm (2.8) respectively. Mean total body water, fat free mass, fat mass and % fat mass as measured by (18)O dilution method were 58.8% (5.0), 4.6 kg (0.8), 1.9 (0.5) and 29.5% (6.1). Total body water and fat free mass were significantly higher in boys when compared to girls. With the exception of three prediction equations (Bandana et al., Goran et al. and Durnin and Wormsley), most of the other commonly used anthropometry-based prediction equations yielded a bias which was not constant but a function of the % fat mass. CONCLUSIONS: Body composition of Sri Lankan infants is comparable to the normative data available from the industrialized countries. Most of the commonly used anthropometric prediction equations generated a bias which varies with the size of the body fat. Only three prediction equations (Bandana, Goran, Durnin & Wormsley) yield a constant bias. The Durnin & Wormsely equation showed the smallest bias when compared to the (18)O dilution values with the narrowest limits of agreement. Accuracy of some of the prediction equations is a function of gender. More... »

PAGES

52

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12887-015-0371-2

DOI

http://dx.doi.org/10.1186/s12887-015-0371-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019018885

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25943377


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anthropometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Fat Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Height", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Indicator Dilution Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen Isotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Skinfold Thickness", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ruhuna", 
          "id": "https://www.grid.ac/institutes/grid.412759.c", 
          "name": [
            "Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bandara", 
        "givenName": "Thushari", 
        "id": "sg:person.01310470521.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310470521.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ruhuna", 
          "id": "https://www.grid.ac/institutes/grid.412759.c", 
          "name": [
            "Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hettiarachchi", 
        "givenName": "Manjula", 
        "id": "sg:person.01323637037.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323637037.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ruhuna", 
          "id": "https://www.grid.ac/institutes/grid.412759.c", 
          "name": [
            "Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liyanage", 
        "givenName": "Chandrani", 
        "id": "sg:person.01310751023.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310751023.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ruhuna", 
          "id": "https://www.grid.ac/institutes/grid.412759.c", 
          "name": [
            "Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amarasena", 
        "givenName": "Sujeewa", 
        "id": "sg:person.01115546076.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115546076.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Baylor College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.39382.33", 
          "name": [
            "USDA/ARS Children\u2019s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wai-Lun Wong", 
        "givenName": "William", 
        "id": "sg:person.010332145232.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332145232.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1136/adc.2004.067538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006776855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/03014460.2012.660989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006811970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19740060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008236494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19740060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008236494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19670070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015402240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19670070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015402240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0029665107005691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019051635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/oby.2011.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021071143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajhb.20030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026348933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19900116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031181700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19900116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031181700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1203/00006450-201011001-00404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037286744", 
          "https://doi.org/10.1203/00006450-201011001-00404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10256016.2010.521823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037539443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/adc.46.246.182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039571350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00599.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047713684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0969-8043(93)90170-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049949782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3329/jhpn.v28i3.5548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053170137", 
          "https://doi.org/10.3329/jhpn.v28i3.5548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3329/jhpn.v28i3.5548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053170137", 
          "https://doi.org/10.3329/jhpn.v28i3.5548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1203/00006450-200005000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064217259", 
          "https://doi.org/10.1203/00006450-200005000-00004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/76.5.1096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075180044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physrev.1953.33.3.245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075447681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1962.17.6.967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076172131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076684923", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/85.1.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077345206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079624094", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/45.5.905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079832091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/33.12.2686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081954579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/35.5.1169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082140167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/63.3.299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082876482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2987937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102979304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2987937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102979304"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: Body composition indicators provide a better guidance for growth and nutritional status of the infants. This study was designed to (1) measure the body composition of the Sri Lankan infants using a reference method, the (18)O dilution method; (2) calculate the body fat content of the infants using published skinfold prediction equations; and (3) evaluate the applicability of the skinfold equations to predict body fat among Sri Lankan infants against the (18)O dilution method.\nMETHODS: Twenty five healthy, exclusively breast-fed infants were randomly recruited at well-baby clinics, for this cross-sectional study. Body composition was measured using (18)O dilution. Infant body weight, length, skinfold thicknesses and mid upper-arm circumference were measured using standard procedures. The Bland and Atlman pair-wise comparison method was used to evaluate the agreement of body fat generated using the anthropometric prediction equations against the (18)O dilution values as the reference.\nRESULTS: Mean (SD) body weight and length of the infants were 6.5\u00a0kg (0.9) and 64.7\u00a0cm (2.8) respectively. Mean total body water, fat free mass, fat mass and % fat mass as measured by (18)O dilution method were 58.8% (5.0), 4.6\u00a0kg (0.8), 1.9 (0.5) and 29.5% (6.1). Total body water and fat free mass were significantly higher in boys when compared to girls. With the exception of three prediction equations (Bandana et al., Goran et al. and Durnin and Wormsley), most of the other commonly used anthropometry-based prediction equations yielded a bias which was not constant but a function of the % fat mass.\nCONCLUSIONS: Body composition of Sri Lankan infants is comparable to the normative data available from the industrialized countries. Most of the commonly used anthropometric prediction equations generated a bias which varies with the size of the body fat. Only three prediction equations (Bandana, Goran, Durnin & Wormsley) yield a constant bias. The Durnin & Wormsely equation showed the smallest bias when compared to the (18)O dilution values with the narrowest limits of agreement. Accuracy of some of the prediction equations is a function of gender.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12887-015-0371-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024635", 
        "issn": [
          "1471-2431"
        ], 
        "name": "BMC Pediatrics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Body composition among Sri Lankan infants by 18O dilution method and the validity of anthropometric equations to predict body fat against 18O dilution", 
    "pagination": "52", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5a9e565542169b26d8bf2d16ba22843087048c877bbcfc3258202d382d3fcf72"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25943377"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100967804"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12887-015-0371-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019018885"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12887-015-0371-2", 
      "https://app.dimensions.ai/details/publication/pub.1019018885"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89822_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12887-015-0371-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12887-015-0371-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12887-015-0371-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12887-015-0371-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12887-015-0371-2'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      69 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12887-015-0371-2 schema:about N0b85aa9197a84d49b5e3ad6e39096ae6
2 N0f5905d0aa854cf2b41bfe983c26f006
3 N2511b0b349014d66b3cd5a2226b2891e
4 N332cd3bbb89d453a98b62314da4dc6f7
5 N41ea35c88e854884add152a10b6af56b
6 N4f9224f499584b4085e89b01dcbdfbc8
7 N5c10b62264994e008917262c0daa5afd
8 N5f6149feda9844f1b45be687bf3217ef
9 N66b5720902d041a69434d3b1eface8e2
10 N9b24c486ebeb48fb976b16bd5f9f3781
11 Na71485b031494ef6971c736b408633f6
12 Na7d3db9b044d4f42ab559030c666f599
13 Ne98336a30a934c71a0cf319057f44f11
14 Nec8e598c35cc45d8bdbcc638c69ee22f
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author N8cb39d7d06ea4db980ba8d925bcd1953
18 schema:citation sg:pub.10.1203/00006450-200005000-00004
19 sg:pub.10.1203/00006450-201011001-00404
20 sg:pub.10.3329/jhpn.v28i3.5548
21 https://app.dimensions.ai/details/publication/pub.1076684923
22 https://app.dimensions.ai/details/publication/pub.1079624094
23 https://doi.org/10.1002/ajhb.20030
24 https://doi.org/10.1016/0969-8043(93)90170-f
25 https://doi.org/10.1017/s0029665107005691
26 https://doi.org/10.1038/oby.2011.11
27 https://doi.org/10.1079/bjn19670070
28 https://doi.org/10.1079/bjn19740060
29 https://doi.org/10.1079/bjn19900116
30 https://doi.org/10.1080/10256016.2010.521823
31 https://doi.org/10.1093/ajcn/33.12.2686
32 https://doi.org/10.1093/ajcn/35.5.1169
33 https://doi.org/10.1093/ajcn/45.5.905
34 https://doi.org/10.1093/ajcn/63.3.299
35 https://doi.org/10.1093/ajcn/76.5.1096
36 https://doi.org/10.1093/ajcn/85.1.90
37 https://doi.org/10.1136/adc.2004.067538
38 https://doi.org/10.1136/adc.46.246.182
39 https://doi.org/10.1152/ajpendo.00599.2005
40 https://doi.org/10.1152/jappl.1962.17.6.967
41 https://doi.org/10.1152/physrev.1953.33.3.245
42 https://doi.org/10.2307/2987937
43 https://doi.org/10.3109/03014460.2012.660989
44 schema:datePublished 2015-12
45 schema:datePublishedReg 2015-12-01
46 schema:description BACKGROUND: Body composition indicators provide a better guidance for growth and nutritional status of the infants. This study was designed to (1) measure the body composition of the Sri Lankan infants using a reference method, the (18)O dilution method; (2) calculate the body fat content of the infants using published skinfold prediction equations; and (3) evaluate the applicability of the skinfold equations to predict body fat among Sri Lankan infants against the (18)O dilution method. METHODS: Twenty five healthy, exclusively breast-fed infants were randomly recruited at well-baby clinics, for this cross-sectional study. Body composition was measured using (18)O dilution. Infant body weight, length, skinfold thicknesses and mid upper-arm circumference were measured using standard procedures. The Bland and Atlman pair-wise comparison method was used to evaluate the agreement of body fat generated using the anthropometric prediction equations against the (18)O dilution values as the reference. RESULTS: Mean (SD) body weight and length of the infants were 6.5 kg (0.9) and 64.7 cm (2.8) respectively. Mean total body water, fat free mass, fat mass and % fat mass as measured by (18)O dilution method were 58.8% (5.0), 4.6 kg (0.8), 1.9 (0.5) and 29.5% (6.1). Total body water and fat free mass were significantly higher in boys when compared to girls. With the exception of three prediction equations (Bandana et al., Goran et al. and Durnin and Wormsley), most of the other commonly used anthropometry-based prediction equations yielded a bias which was not constant but a function of the % fat mass. CONCLUSIONS: Body composition of Sri Lankan infants is comparable to the normative data available from the industrialized countries. Most of the commonly used anthropometric prediction equations generated a bias which varies with the size of the body fat. Only three prediction equations (Bandana, Goran, Durnin & Wormsley) yield a constant bias. The Durnin & Wormsely equation showed the smallest bias when compared to the (18)O dilution values with the narrowest limits of agreement. Accuracy of some of the prediction equations is a function of gender.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N6cfa5ae64d914f63b644afa5ae22e2f7
51 Nf68438751137422598d021c3b1e4c0ca
52 sg:journal.1024635
53 schema:name Body composition among Sri Lankan infants by 18O dilution method and the validity of anthropometric equations to predict body fat against 18O dilution
54 schema:pagination 52
55 schema:productId N04d9e969907349479845002367b731d5
56 N5fedee65f91049788a5d26389cb6653c
57 N633be4f1732b445a93bcfda3d2ddc657
58 N74f1f7d24b4b4883922adb57fcee012c
59 N9cd62d2dec5848a0850d58ce664b86ae
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019018885
61 https://doi.org/10.1186/s12887-015-0371-2
62 schema:sdDatePublished 2019-04-11T10:02
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N732a3ad0c84b44ed86e78d8a12924a6c
65 schema:url http://link.springer.com/10.1186%2Fs12887-015-0371-2
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N04d9e969907349479845002367b731d5 schema:name pubmed_id
70 schema:value 25943377
71 rdf:type schema:PropertyValue
72 N0b85aa9197a84d49b5e3ad6e39096ae6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Humans
74 rdf:type schema:DefinedTerm
75 N0f5905d0aa854cf2b41bfe983c26f006 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Female
77 rdf:type schema:DefinedTerm
78 N1010d69be9e34d5abcf7849fdc50afee rdf:first sg:person.010332145232.75
79 rdf:rest rdf:nil
80 N1f5945f170ee4106a89657c38063d31c rdf:first sg:person.01115546076.80
81 rdf:rest N1010d69be9e34d5abcf7849fdc50afee
82 N2511b0b349014d66b3cd5a2226b2891e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Skinfold Thickness
84 rdf:type schema:DefinedTerm
85 N332cd3bbb89d453a98b62314da4dc6f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Reproducibility of Results
87 rdf:type schema:DefinedTerm
88 N41ea35c88e854884add152a10b6af56b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Body Weight
90 rdf:type schema:DefinedTerm
91 N4f9224f499584b4085e89b01dcbdfbc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Male
93 rdf:type schema:DefinedTerm
94 N5c10b62264994e008917262c0daa5afd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Oxygen Isotopes
96 rdf:type schema:DefinedTerm
97 N5f6149feda9844f1b45be687bf3217ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Body Height
99 rdf:type schema:DefinedTerm
100 N5fedee65f91049788a5d26389cb6653c schema:name readcube_id
101 schema:value 5a9e565542169b26d8bf2d16ba22843087048c877bbcfc3258202d382d3fcf72
102 rdf:type schema:PropertyValue
103 N633be4f1732b445a93bcfda3d2ddc657 schema:name doi
104 schema:value 10.1186/s12887-015-0371-2
105 rdf:type schema:PropertyValue
106 N66b5720902d041a69434d3b1eface8e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Body Composition
108 rdf:type schema:DefinedTerm
109 N6cfa5ae64d914f63b644afa5ae22e2f7 schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 N732a3ad0c84b44ed86e78d8a12924a6c schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N74f1f7d24b4b4883922adb57fcee012c schema:name nlm_unique_id
114 schema:value 100967804
115 rdf:type schema:PropertyValue
116 N84841a84c9f049738c136603f43f34fa rdf:first sg:person.01323637037.50
117 rdf:rest Ncb37497832614cd8af78a7e866fbacf7
118 N8cb39d7d06ea4db980ba8d925bcd1953 rdf:first sg:person.01310470521.80
119 rdf:rest N84841a84c9f049738c136603f43f34fa
120 N9b24c486ebeb48fb976b16bd5f9f3781 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Body Fat Distribution
122 rdf:type schema:DefinedTerm
123 N9cd62d2dec5848a0850d58ce664b86ae schema:name dimensions_id
124 schema:value pub.1019018885
125 rdf:type schema:PropertyValue
126 Na71485b031494ef6971c736b408633f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Anthropometry
128 rdf:type schema:DefinedTerm
129 Na7d3db9b044d4f42ab559030c666f599 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Infant
131 rdf:type schema:DefinedTerm
132 Ncb37497832614cd8af78a7e866fbacf7 rdf:first sg:person.01310751023.53
133 rdf:rest N1f5945f170ee4106a89657c38063d31c
134 Ne98336a30a934c71a0cf319057f44f11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Indicator Dilution Techniques
136 rdf:type schema:DefinedTerm
137 Nec8e598c35cc45d8bdbcc638c69ee22f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Cross-Sectional Studies
139 rdf:type schema:DefinedTerm
140 Nf68438751137422598d021c3b1e4c0ca schema:volumeNumber 15
141 rdf:type schema:PublicationVolume
142 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
143 schema:name Medical and Health Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
146 schema:name Clinical Sciences
147 rdf:type schema:DefinedTerm
148 sg:journal.1024635 schema:issn 1471-2431
149 schema:name BMC Pediatrics
150 rdf:type schema:Periodical
151 sg:person.010332145232.75 schema:affiliation https://www.grid.ac/institutes/grid.39382.33
152 schema:familyName Wai-Lun Wong
153 schema:givenName William
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332145232.75
155 rdf:type schema:Person
156 sg:person.01115546076.80 schema:affiliation https://www.grid.ac/institutes/grid.412759.c
157 schema:familyName Amarasena
158 schema:givenName Sujeewa
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115546076.80
160 rdf:type schema:Person
161 sg:person.01310470521.80 schema:affiliation https://www.grid.ac/institutes/grid.412759.c
162 schema:familyName Bandara
163 schema:givenName Thushari
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310470521.80
165 rdf:type schema:Person
166 sg:person.01310751023.53 schema:affiliation https://www.grid.ac/institutes/grid.412759.c
167 schema:familyName Liyanage
168 schema:givenName Chandrani
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310751023.53
170 rdf:type schema:Person
171 sg:person.01323637037.50 schema:affiliation https://www.grid.ac/institutes/grid.412759.c
172 schema:familyName Hettiarachchi
173 schema:givenName Manjula
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323637037.50
175 rdf:type schema:Person
176 sg:pub.10.1203/00006450-200005000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064217259
177 https://doi.org/10.1203/00006450-200005000-00004
178 rdf:type schema:CreativeWork
179 sg:pub.10.1203/00006450-201011001-00404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037286744
180 https://doi.org/10.1203/00006450-201011001-00404
181 rdf:type schema:CreativeWork
182 sg:pub.10.3329/jhpn.v28i3.5548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053170137
183 https://doi.org/10.3329/jhpn.v28i3.5548
184 rdf:type schema:CreativeWork
185 https://app.dimensions.ai/details/publication/pub.1076684923 schema:CreativeWork
186 https://app.dimensions.ai/details/publication/pub.1079624094 schema:CreativeWork
187 https://doi.org/10.1002/ajhb.20030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026348933
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/0969-8043(93)90170-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1049949782
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1017/s0029665107005691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019051635
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1038/oby.2011.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021071143
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1079/bjn19670070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015402240
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1079/bjn19740060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008236494
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1079/bjn19900116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031181700
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1080/10256016.2010.521823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037539443
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/ajcn/33.12.2686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081954579
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/ajcn/35.5.1169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082140167
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/ajcn/45.5.905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079832091
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/ajcn/63.3.299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082876482
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/ajcn/76.5.1096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075180044
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/ajcn/85.1.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077345206
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1136/adc.2004.067538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006776855
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1136/adc.46.246.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039571350
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1152/ajpendo.00599.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047713684
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1152/jappl.1962.17.6.967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076172131
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1152/physrev.1953.33.3.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075447681
224 rdf:type schema:CreativeWork
225 https://doi.org/10.2307/2987937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102979304
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3109/03014460.2012.660989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006811970
228 rdf:type schema:CreativeWork
229 https://www.grid.ac/institutes/grid.39382.33 schema:alternateName Baylor College of Medicine
230 schema:name USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.412759.c schema:alternateName University of Ruhuna
233 schema:name Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...