Selection of three miRNA signatures with prognostic value in non-M3 acute myeloid leukemia View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yao Xue, Yuqiu Ge, Meiyun Kang, Cong Wu, Yaping Wang, Liucheng Rong, Yongjun Fang

ABSTRACT

BACKGROUND: MiRNAs that are potential biomarkers for predicting prognosis for acute myeloid leukemia (AML) have been identified. However, comprehensive analyses investigating the association between miRNA expression profiles and AML survival remain relatively deficient. METHOD: In the present study, we performed multivariate Cox's analysis and principal component analysis (PCA) using data from The Cancer Genome Atlas (TCGA) to identify potential molecular signatures for predicting non-M3 AML prognosis. RESULT: We found that patients who were still living were significantly younger at diagnosis than those who had died (P = 0.001). In addition, there was a marked difference in living status among different risk category groups (P = 0.022). A multivariate Cox model suggested that three miRNAs were potential biomarkers of non-M3 AML prognosis, including miR-181a-2, miR-25 and miR-362. Subsequently, PCA analyses were conducted to comprehensively represent the expression levels of these three miRNAs in each patient with a PCA value. According to the log-rank test, AML outcome for patients with lower PCA values was significantly different from those with higher PCA values (P < 0.001). Further bioinformatic analysis revealed the biological functions of the selected miRNAs. CONCLUSION: We conducted a comprehensive analysis of TCGA non-M3 AML data, identifying three miRNAs that are significantly correlated with AML survival. PCA values for the identified miRNAs are valuable for predicting AML prognosis. More... »

PAGES

109

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12885-019-5315-z

DOI

http://dx.doi.org/10.1186/s12885-019-5315-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111775066

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30700251


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing Medical University", 
          "id": "https://www.grid.ac/institutes/grid.89957.3a", 
          "name": [
            "Department of Hematology and Oncology, Children\u2019s Hospital of Nanjing Medical University, Nanjing, China", 
            "Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Yao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ge", 
        "givenName": "Yuqiu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Medical University", 
          "id": "https://www.grid.ac/institutes/grid.89957.3a", 
          "name": [
            "Department of Hematology and Oncology, Children\u2019s Hospital of Nanjing Medical University, Nanjing, China", 
            "Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Meiyun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Posts and Telecommunications", 
          "id": "https://www.grid.ac/institutes/grid.453246.2", 
          "name": [
            "Engineering Research Center of Wideband Wireless Communication Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Cong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Medical University", 
          "id": "https://www.grid.ac/institutes/grid.89957.3a", 
          "name": [
            "Department of Hematology and Oncology, Children\u2019s Hospital of Nanjing Medical University, Nanjing, China", 
            "Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yaping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Medical University", 
          "id": "https://www.grid.ac/institutes/grid.89957.3a", 
          "name": [
            "Department of Hematology and Oncology, Children\u2019s Hospital of Nanjing Medical University, Nanjing, China", 
            "Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rong", 
        "givenName": "Liucheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Medical University", 
          "id": "https://www.grid.ac/institutes/grid.89957.3a", 
          "name": [
            "Department of Hematology and Oncology, Children\u2019s Hospital of Nanjing Medical University, Nanjing, China", 
            "Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Yongjun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/ejh.12811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004632940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.28129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005749115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajh.23834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009689547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2016.332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015358508", 
          "https://doi.org/10.1038/leu.2016.332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bcmd.2009.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016751072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13046-015-0184-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019467467", 
          "https://doi.org/10.1186/s13046-015-0184-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13046-015-0184-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019467467", 
          "https://doi.org/10.1186/s13046-015-0184-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.leukres.2013.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025450373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1301689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025463655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-14-1041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027184048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2012-05-428573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036392471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.blre.2016.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039521133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2010.29.2953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039547075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40164-016-0033-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048501210", 
          "https://doi.org/10.1186/s40164-016-0033-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2014.333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048664207", 
          "https://doi.org/10.1038/leu.2014.333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0215(1998)78:11+<35::aid-ijc11>3.0.co;2-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049163196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00432-011-1137-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049228027", 
          "https://doi.org/10.1007/s00432-011-1137-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/erm.2013.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049507351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m502380200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052857122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m502380200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052857122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/2162402x.2014.996475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058420409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2016-08-733196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064123306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6004/jnccn.2013.0197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078734501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6004/jnccn.2013.0197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078734501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1084/jem.20161595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090860453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.canlet.2017.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090915609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2016-10-697698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090917837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/cbm-170205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091422286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/cddis.2017.440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091496146", 
          "https://doi.org/10.1038/cddis.2017.440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22088/acadpub.bums.6.2.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091617921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0184094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091779890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1010428317714634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091931124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1010428317714634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091931124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/dna.2017.3829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091931287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12967-018-1445-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101531680", 
          "https://doi.org/10.1186/s12967-018-1445-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12967-018-1445-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101531680", 
          "https://doi.org/10.1186/s12967-018-1445-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12967-018-1445-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101531680", 
          "https://doi.org/10.1186/s12967-018-1445-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12967-018-1445-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101531680", 
          "https://doi.org/10.1186/s12967-018-1445-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12967-018-1445-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101531680", 
          "https://doi.org/10.1186/s12967-018-1445-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10245332.2018.1475860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104125777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10245332.2018.1475860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104125777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/mmr.2018.9066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104211630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11033-018-4416-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107768011", 
          "https://doi.org/10.1007/s11033-018-4416-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: MiRNAs that are potential biomarkers for predicting prognosis for acute myeloid leukemia (AML) have been identified. However, comprehensive analyses investigating the association between miRNA expression profiles and AML survival remain relatively deficient.\nMETHOD: In the present study, we performed multivariate Cox's analysis and principal component analysis (PCA) using data from The Cancer Genome Atlas (TCGA) to identify potential molecular signatures for predicting non-M3 AML prognosis.\nRESULT: We found that patients who were still living were significantly younger at diagnosis than those who had died (P\u2009=\u20090.001). In addition, there was a marked difference in living status among different risk category groups (P\u2009=\u20090.022). A multivariate Cox model suggested that three miRNAs were potential biomarkers of non-M3 AML prognosis, including miR-181a-2, miR-25 and miR-362. Subsequently, PCA analyses were conducted to comprehensively represent the expression levels of these three miRNAs in each patient with a PCA value. According to the log-rank test, AML outcome for patients with lower PCA values was significantly different from those with higher PCA values (P\u2009<\u20090.001). Further bioinformatic analysis revealed the biological functions of the selected miRNAs.\nCONCLUSION: We conducted a comprehensive analysis of TCGA non-M3 AML data, identifying three miRNAs that are significantly correlated with AML survival. PCA values for the identified miRNAs are valuable for predicting AML prognosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12885-019-5315-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024632", 
        "issn": [
          "1471-2407"
        ], 
        "name": "BMC Cancer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Selection of three miRNA signatures with prognostic value in non-M3 acute myeloid leukemia", 
    "pagination": "109", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7df88d54a3beff85d61074a89ebd1ff134d36fe78c5c094c5fb17f7256da13a1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30700251"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100967800"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12885-019-5315-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111775066"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12885-019-5315-z", 
      "https://app.dimensions.ai/details/publication/pub.1111775066"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68471_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12885-019-5315-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12885-019-5315-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12885-019-5315-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12885-019-5315-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12885-019-5315-z'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12885-019-5315-z schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author Ncaab2b46e87145ef96863a9588469f2d
4 schema:citation sg:pub.10.1007/s00432-011-1137-3
5 sg:pub.10.1007/s11033-018-4416-0
6 sg:pub.10.1038/cddis.2017.440
7 sg:pub.10.1038/leu.2014.333
8 sg:pub.10.1038/leu.2016.332
9 sg:pub.10.1186/s12967-018-1445-3
10 sg:pub.10.1186/s13046-015-0184-z
11 sg:pub.10.1186/s40164-016-0033-6
12 https://doi.org/10.1002/(sici)1097-0215(1998)78:11+<35::aid-ijc11>3.0.co;2-i
13 https://doi.org/10.1002/ajh.23834
14 https://doi.org/10.1002/cncr.28129
15 https://doi.org/10.1016/j.bcmd.2009.12.010
16 https://doi.org/10.1016/j.blre.2016.08.005
17 https://doi.org/10.1016/j.canlet.2017.07.020
18 https://doi.org/10.1016/j.leukres.2013.11.013
19 https://doi.org/10.1017/erm.2013.16
20 https://doi.org/10.1056/nejmoa1301689
21 https://doi.org/10.1074/jbc.m502380200
22 https://doi.org/10.1080/10245332.2018.1475860
23 https://doi.org/10.1080/2162402x.2014.996475
24 https://doi.org/10.1084/jem.20161595
25 https://doi.org/10.1089/dna.2017.3829
26 https://doi.org/10.1111/ejh.12811
27 https://doi.org/10.1158/0008-5472.can-14-1041
28 https://doi.org/10.1177/1010428317714634
29 https://doi.org/10.1182/blood-2012-05-428573
30 https://doi.org/10.1182/blood-2016-08-733196
31 https://doi.org/10.1182/blood-2016-10-697698
32 https://doi.org/10.1200/jco.2010.29.2953
33 https://doi.org/10.1371/journal.pone.0184094
34 https://doi.org/10.22088/acadpub.bums.6.2.2
35 https://doi.org/10.3233/cbm-170205
36 https://doi.org/10.3892/mmr.2018.9066
37 https://doi.org/10.6004/jnccn.2013.0197
38 schema:datePublished 2019-12
39 schema:datePublishedReg 2019-12-01
40 schema:description BACKGROUND: MiRNAs that are potential biomarkers for predicting prognosis for acute myeloid leukemia (AML) have been identified. However, comprehensive analyses investigating the association between miRNA expression profiles and AML survival remain relatively deficient. METHOD: In the present study, we performed multivariate Cox's analysis and principal component analysis (PCA) using data from The Cancer Genome Atlas (TCGA) to identify potential molecular signatures for predicting non-M3 AML prognosis. RESULT: We found that patients who were still living were significantly younger at diagnosis than those who had died (P = 0.001). In addition, there was a marked difference in living status among different risk category groups (P = 0.022). A multivariate Cox model suggested that three miRNAs were potential biomarkers of non-M3 AML prognosis, including miR-181a-2, miR-25 and miR-362. Subsequently, PCA analyses were conducted to comprehensively represent the expression levels of these three miRNAs in each patient with a PCA value. According to the log-rank test, AML outcome for patients with lower PCA values was significantly different from those with higher PCA values (P < 0.001). Further bioinformatic analysis revealed the biological functions of the selected miRNAs. CONCLUSION: We conducted a comprehensive analysis of TCGA non-M3 AML data, identifying three miRNAs that are significantly correlated with AML survival. PCA values for the identified miRNAs are valuable for predicting AML prognosis.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N5a3aee10f0194032a3d325a30649f704
45 Nd38dd8c1ec324d4f950711333b386a83
46 sg:journal.1024632
47 schema:name Selection of three miRNA signatures with prognostic value in non-M3 acute myeloid leukemia
48 schema:pagination 109
49 schema:productId N17d64c20cf494173b149e9ac24e2a3b2
50 N2b6cd8270f0f4464b6057a4a90b29eb2
51 N3bd57fc08fb24b47b107dc1171b24faa
52 N7329656524924c41a8863b5a2e2aa220
53 Ne616da63466f49c18be4fc63bd7c5136
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111775066
55 https://doi.org/10.1186/s12885-019-5315-z
56 schema:sdDatePublished 2019-04-11T08:58
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N72081137bc914e3f99b50a6c7b1d2715
59 schema:url https://link.springer.com/10.1186%2Fs12885-019-5315-z
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N17d64c20cf494173b149e9ac24e2a3b2 schema:name pubmed_id
64 schema:value 30700251
65 rdf:type schema:PropertyValue
66 N1af98036b9ad48b094fc05d61b524b3b rdf:first N40de1e7ca6cd423ea03eabc31d04db92
67 rdf:rest N1df459e39ec04f1899d8b976dab72de4
68 N1df459e39ec04f1899d8b976dab72de4 rdf:first Ne33cb452b935487ab005f9c8f0898447
69 rdf:rest rdf:nil
70 N2b6cd8270f0f4464b6057a4a90b29eb2 schema:name nlm_unique_id
71 schema:value 100967800
72 rdf:type schema:PropertyValue
73 N36579e5483a942a086a2ae932a3a83a1 schema:affiliation https://www.grid.ac/institutes/grid.258151.a
74 schema:familyName Ge
75 schema:givenName Yuqiu
76 rdf:type schema:Person
77 N3bd57fc08fb24b47b107dc1171b24faa schema:name readcube_id
78 schema:value 7df88d54a3beff85d61074a89ebd1ff134d36fe78c5c094c5fb17f7256da13a1
79 rdf:type schema:PropertyValue
80 N40de1e7ca6cd423ea03eabc31d04db92 schema:affiliation https://www.grid.ac/institutes/grid.89957.3a
81 schema:familyName Rong
82 schema:givenName Liucheng
83 rdf:type schema:Person
84 N5a3aee10f0194032a3d325a30649f704 schema:volumeNumber 19
85 rdf:type schema:PublicationVolume
86 N6d83c44dec6c441ab4617d9b4c81f5d8 rdf:first Nefda4234ea3a4b9aa02f6ac52a40520f
87 rdf:rest Ne5a6068b239b43a4b8a6d31403a1528b
88 N72081137bc914e3f99b50a6c7b1d2715 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N7329656524924c41a8863b5a2e2aa220 schema:name doi
91 schema:value 10.1186/s12885-019-5315-z
92 rdf:type schema:PropertyValue
93 Na3ba897432404d1684aca6fceb1a2005 rdf:first N36579e5483a942a086a2ae932a3a83a1
94 rdf:rest Na86705a875914bfa87d973349f8cab0a
95 Na86705a875914bfa87d973349f8cab0a rdf:first Nd4d9c087867f4e77a0faeac39dae1360
96 rdf:rest N6d83c44dec6c441ab4617d9b4c81f5d8
97 Nb7d9a9dab4c04f44a2ae0bd2b5b56435 schema:affiliation https://www.grid.ac/institutes/grid.89957.3a
98 schema:familyName Wang
99 schema:givenName Yaping
100 rdf:type schema:Person
101 Ncaab2b46e87145ef96863a9588469f2d rdf:first Nfdc15ea44d70474cb52406b73e53e19d
102 rdf:rest Na3ba897432404d1684aca6fceb1a2005
103 Nd38dd8c1ec324d4f950711333b386a83 schema:issueNumber 1
104 rdf:type schema:PublicationIssue
105 Nd4d9c087867f4e77a0faeac39dae1360 schema:affiliation https://www.grid.ac/institutes/grid.89957.3a
106 schema:familyName Kang
107 schema:givenName Meiyun
108 rdf:type schema:Person
109 Ne33cb452b935487ab005f9c8f0898447 schema:affiliation https://www.grid.ac/institutes/grid.89957.3a
110 schema:familyName Fang
111 schema:givenName Yongjun
112 rdf:type schema:Person
113 Ne5a6068b239b43a4b8a6d31403a1528b rdf:first Nb7d9a9dab4c04f44a2ae0bd2b5b56435
114 rdf:rest N1af98036b9ad48b094fc05d61b524b3b
115 Ne616da63466f49c18be4fc63bd7c5136 schema:name dimensions_id
116 schema:value pub.1111775066
117 rdf:type schema:PropertyValue
118 Nefda4234ea3a4b9aa02f6ac52a40520f schema:affiliation https://www.grid.ac/institutes/grid.453246.2
119 schema:familyName Wu
120 schema:givenName Cong
121 rdf:type schema:Person
122 Nfdc15ea44d70474cb52406b73e53e19d schema:affiliation https://www.grid.ac/institutes/grid.89957.3a
123 schema:familyName Xue
124 schema:givenName Yao
125 rdf:type schema:Person
126 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
127 schema:name Medical and Health Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
130 schema:name Oncology and Carcinogenesis
131 rdf:type schema:DefinedTerm
132 sg:journal.1024632 schema:issn 1471-2407
133 schema:name BMC Cancer
134 rdf:type schema:Periodical
135 sg:pub.10.1007/s00432-011-1137-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049228027
136 https://doi.org/10.1007/s00432-011-1137-3
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s11033-018-4416-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107768011
139 https://doi.org/10.1007/s11033-018-4416-0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/cddis.2017.440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091496146
142 https://doi.org/10.1038/cddis.2017.440
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/leu.2014.333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048664207
145 https://doi.org/10.1038/leu.2014.333
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/leu.2016.332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015358508
148 https://doi.org/10.1038/leu.2016.332
149 rdf:type schema:CreativeWork
150 sg:pub.10.1186/s12967-018-1445-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101531680
151 https://doi.org/10.1186/s12967-018-1445-3
152 rdf:type schema:CreativeWork
153 sg:pub.10.1186/s13046-015-0184-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019467467
154 https://doi.org/10.1186/s13046-015-0184-z
155 rdf:type schema:CreativeWork
156 sg:pub.10.1186/s40164-016-0033-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048501210
157 https://doi.org/10.1186/s40164-016-0033-6
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/(sici)1097-0215(1998)78:11+<35::aid-ijc11>3.0.co;2-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1049163196
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/ajh.23834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009689547
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/cncr.28129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005749115
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.bcmd.2009.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016751072
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.blre.2016.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039521133
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.canlet.2017.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090915609
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.leukres.2013.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025450373
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1017/erm.2013.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049507351
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1056/nejmoa1301689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025463655
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1074/jbc.m502380200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052857122
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1080/10245332.2018.1475860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104125777
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1080/2162402x.2014.996475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058420409
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1084/jem.20161595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090860453
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1089/dna.2017.3829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091931287
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1111/ejh.12811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004632940
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1158/0008-5472.can-14-1041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027184048
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1177/1010428317714634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091931124
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1182/blood-2012-05-428573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036392471
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1182/blood-2016-08-733196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064123306
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1182/blood-2016-10-697698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090917837
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1200/jco.2010.29.2953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039547075
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1371/journal.pone.0184094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091779890
202 rdf:type schema:CreativeWork
203 https://doi.org/10.22088/acadpub.bums.6.2.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091617921
204 rdf:type schema:CreativeWork
205 https://doi.org/10.3233/cbm-170205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091422286
206 rdf:type schema:CreativeWork
207 https://doi.org/10.3892/mmr.2018.9066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104211630
208 rdf:type schema:CreativeWork
209 https://doi.org/10.6004/jnccn.2013.0197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078734501
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.258151.a schema:alternateName Jiangnan University
212 schema:name Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.453246.2 schema:alternateName Nanjing University of Posts and Telecommunications
215 schema:name Engineering Research Center of Wideband Wireless Communication Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing, China
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.89957.3a schema:alternateName Nanjing Medical University
218 schema:name Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
219 Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...