Identification of methylation sites and signature genes with prognostic value for luminal breast cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Bin Xiao, Lidan Chen, Yongli Ke, Jianfeng Hang, Ling Cao, Rong Zhang, Weiyun Zhang, Yang Liao, Yang Gao, Jianyun Chen, Li Li, Wenbo Hao, Zhaohui Sun, Linhai Li

ABSTRACT

BACKGROUND: Robust and precise molecular prognostic predictors for luminal breast cancer are required. This study aimed to identify key methylation sites in luminal breast cancer, as well as precise molecular tools for predicting prognosis. METHODS: We compared methylation levels of normal and luminal breast cancer samples from The Cancer Genome Atlas dataset. The relationships among differentially methylated sites, corresponding mRNA expression levels and prognosis were further analysed. Differentially expressed genes in normal and cancerous samples were analysed, followed by the identification of prognostic signature genes. Samples were divided into low- and high-risk groups based on the signature genes. Prognoses of low- and high-risk groups were compared. The Gene Expression Omnibus dataset were used to validate signature genes for prognosis prediction. Prognosis of low- and high-risk groups in Luminal A and Luminal B samples from the TCGA and the Metabric cohort dataset were analyzed. We also analysed the correlation between clinical features of low- and high- risk groups as well as their differences in gene expression. RESULTS: Fourteen methylation sites were considered to be related to luminal breast cancer prognosis because their methylation levels, mRNA expression and prognoses were closely related to each other. The methylation level of SOSTDC1 was used to divide samples into hypo- and hyper-methylation groups. We also identified an mRNA signature, comprising eight transcripts, ESCO2, PACSIN1, CDCA2, PIGR, PTN, RGMA, KLK4 and CENPA, which was used to divide samples into low- and high-risk groups. The low-risk group showed significantly better prognosis than the high-risk group. A correlation analysis revealed that the risk score was an independent prognostic factor. Low- and high- risk groups significantly correlated with the survival ratio in Luminal A samples, but not in Luminal B samples on the basis of the TCGA and the Metabric cohort dataset. Further functional annotation demonstrated that the differentially expressed genes were mainly involved in cell cycle and cancer progression. CONCLUSIONS: We identified several key methylation sites and an mRNA signature for predicting luminal breast cancer prognosis. The signature exhibited effective and precise prediction of prognosis and may serve as a prognostic and diagnostic marker for luminal breast cancer. More... »

PAGES

405

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12885-018-4314-9

DOI

http://dx.doi.org/10.1186/s12885-018-4314-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103149206

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29642861


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Methylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epigenesis, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kaplan-Meier Estimate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "General Hospital of Guangzhou Military Command", 
          "id": "https://www.grid.ac/institutes/grid.413435.4", 
          "name": [
            "Department of Laboratory Medicine, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Bin", 
        "id": "sg:person.01220525255.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220525255.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Hospital of Guangzhou Military Command", 
          "id": "https://www.grid.ac/institutes/grid.413435.4", 
          "name": [
            "Department of Laboratory Medicine, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Lidan", 
        "id": "sg:person.011223122615.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011223122615.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Hospital of Guangzhou Military Command", 
          "id": "https://www.grid.ac/institutes/grid.413435.4", 
          "name": [
            "Department of Breast Surgery, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ke", 
        "givenName": "Yongli", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Hospital of Guangzhou Military Command", 
          "id": "https://www.grid.ac/institutes/grid.413435.4", 
          "name": [
            "Department of Laboratory Medicine, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hang", 
        "givenName": "Jianfeng", 
        "id": "sg:person.010472205664.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472205664.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Hospital of Guangzhou Military Command", 
          "id": "https://www.grid.ac/institutes/grid.413435.4", 
          "name": [
            "Department of Laboratory Medicine, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Ling", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Hospital of Guangzhou Military Command", 
          "id": "https://www.grid.ac/institutes/grid.413435.4", 
          "name": [
            "Department of Laboratory Medicine, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Rong", 
        "id": "sg:person.012065146664.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012065146664.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Hospital of Guangzhou Military Command", 
          "id": "https://www.grid.ac/institutes/grid.413435.4", 
          "name": [
            "Department of Laboratory Medicine, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Weiyun", 
        "id": "sg:person.012616063615.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012616063615.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Hospital of Guangzhou Military Command", 
          "id": "https://www.grid.ac/institutes/grid.413435.4", 
          "name": [
            "Department of Laboratory Medicine, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Yang", 
        "id": "sg:person.01046053231.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046053231.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Medical University", 
          "id": "https://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, China", 
            "State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, China", 
            "Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Yang", 
        "id": "sg:person.0751307733.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751307733.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Hospital of Guangzhou Military Command", 
          "id": "https://www.grid.ac/institutes/grid.413435.4", 
          "name": [
            "Department of Laboratory Medicine, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jianyun", 
        "id": "sg:person.014211024615.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211024615.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Hospital of Guangzhou Military Command", 
          "id": "https://www.grid.ac/institutes/grid.413435.4", 
          "name": [
            "Department of Breast Surgery, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Medical University", 
          "id": "https://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, China", 
            "State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, China", 
            "Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Wenbo", 
        "id": "sg:person.0773300037.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773300037.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Hospital of Guangzhou Military Command", 
          "id": "https://www.grid.ac/institutes/grid.413435.4", 
          "name": [
            "Department of Laboratory Medicine, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Zhaohui", 
        "id": "sg:person.01362577053.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362577053.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Hospital of Guangzhou Military Command", 
          "id": "https://www.grid.ac/institutes/grid.413435.4", 
          "name": [
            "Department of Laboratory Medicine, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Linhai", 
        "id": "sg:person.010425542215.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010425542215.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02256332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002442498", 
          "https://doi.org/10.1007/bf02256332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02256332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002442498", 
          "https://doi.org/10.1007/bf02256332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chembiol.2016.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004555565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcb.24128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006270989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-8935-8-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006956775", 
          "https://doi.org/10.1186/1756-8935-8-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/epi.14.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010854839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3835(03)00450-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011349612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.10.2.501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012610247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr2590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012669684", 
          "https://doi.org/10.1186/bcr2590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(13)70567-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013908235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2013.54.1870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014540362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0056381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014607176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014607335", 
          "https://doi.org/10.1038/nature10983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-011-1895-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015183874", 
          "https://doi.org/10.1007/s10549-011-1895-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015302967", 
          "https://doi.org/10.1038/ng1089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015302967", 
          "https://doi.org/10.1038/ng1089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016098431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.272.27.16733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017129778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13058-016-0685-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018830943", 
          "https://doi.org/10.1186/s13058-016-0685-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2008.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020525578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/2229-3485.86872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022740468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.4978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031716783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35021093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033846543", 
          "https://doi.org/10.1038/35021093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.191367098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034333528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m709493200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034533941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1602253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036168635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.5421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036221150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0000594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040083982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13402-014-0204-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042108912", 
          "https://doi.org/10.1007/s13402-014-0204-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1754-07.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043235791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.13718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043759058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2008.18.1370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045851448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/93.9.691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047096266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.canlet.2012.11.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048273595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mc.21881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049326226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cns.12171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050576207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/emboj.2011.381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051525977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-010-1261-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053295076", 
          "https://doi.org/10.1007/s10549-010-1261-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.03.3845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064204218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/ijo.2011.1251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071512527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4149/neo_2010_01_035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072262236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075309826", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14670/hh-20.645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077013694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079070207", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1615133114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083687743"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Robust and precise molecular prognostic predictors for luminal breast cancer are required. This study aimed to identify key methylation sites in luminal breast cancer, as well as precise molecular tools for predicting prognosis.\nMETHODS: We compared methylation levels of normal and luminal breast cancer samples from The Cancer Genome Atlas dataset. The relationships among differentially methylated sites, corresponding mRNA expression levels and prognosis were further analysed. Differentially expressed genes in normal and cancerous samples were analysed, followed by the identification of prognostic signature genes. Samples were divided into low- and high-risk groups based on the signature genes. Prognoses of low- and high-risk groups were compared. The Gene Expression Omnibus dataset were used to validate signature genes for prognosis prediction. Prognosis of low- and high-risk groups in Luminal A and Luminal B samples from the TCGA and the Metabric cohort dataset were analyzed. We also analysed the correlation between clinical features of low- and high- risk groups as well as their differences in gene expression.\nRESULTS: Fourteen methylation sites were considered to be related to luminal breast cancer prognosis because their methylation levels, mRNA expression and prognoses were closely related to each other. The methylation level of SOSTDC1 was used to divide samples into hypo- and hyper-methylation groups. We also identified an mRNA signature, comprising eight transcripts, ESCO2, PACSIN1, CDCA2, PIGR, PTN, RGMA, KLK4 and CENPA, which was used to divide samples into low- and high-risk groups. The low-risk group showed significantly better prognosis than the high-risk group. A correlation analysis revealed that the risk score was an independent prognostic factor. Low- and high- risk groups significantly correlated with the survival ratio in Luminal A samples, but not in Luminal B samples on the basis of the TCGA and the Metabric cohort dataset. Further functional annotation demonstrated that the differentially expressed genes were mainly involved in cell cycle and cancer progression.\nCONCLUSIONS: We identified several key methylation sites and an mRNA signature for predicting luminal breast cancer prognosis. The signature exhibited effective and precise prediction of prognosis and may serve as a prognostic and diagnostic marker for luminal breast cancer.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12885-018-4314-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024632", 
        "issn": [
          "1471-2407"
        ], 
        "name": "BMC Cancer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Identification of methylation sites and signature genes with prognostic value for luminal breast cancer", 
    "pagination": "405", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12885-018-4314-9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "11fb42216b50bd568f0c962c6d71dec0b2ac90aaee125fd2e5f3c64f5be17945"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103149206"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100967800"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29642861"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12885-018-4314-9", 
      "https://app.dimensions.ai/details/publication/pub.1103149206"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56167_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12885-018-4314-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12885-018-4314-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12885-018-4314-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12885-018-4314-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12885-018-4314-9'


 

This table displays all metadata directly associated to this object as RDF triples.

359 TRIPLES      21 PREDICATES      87 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12885-018-4314-9 schema:about N02dfd9aafb6547da91f656e8477778f8
2 N0d33f4c684484dab8830dded80c75f0c
3 N0e5627fe5bdf4392b804f494994e7794
4 N21984b3e4a1e4a0aae8d7d8b12ff577f
5 N48eb1c29b0c246b485317990187390a9
6 N5bfd7c9aa1484ae687975e7203d86120
7 N646a71db38af42459453bd8a8a6852f8
8 N852a917d2a7248ff8bf69eded25541a7
9 N93e38089971748469bea2b9d64645302
10 N9572124b5fd44107b014bac222809084
11 N9d9cba29b03d44ba85d06410a1d9b841
12 Nd209cbd30ff54f79a1ffad559723a3eb
13 Nd33e3f14e5cb4b58bf1274eff062ed82
14 Nef6b1b8ddaf344e0bfd4f39746a0cb54
15 Nf04a8933e4404e0aa7665f8df3edd6e8
16 anzsrc-for:11
17 anzsrc-for:1112
18 schema:author Nc588470e946140859ddaeafcebdc84d3
19 schema:citation sg:pub.10.1007/bf02256332
20 sg:pub.10.1007/s10549-010-1261-9
21 sg:pub.10.1007/s10549-011-1895-2
22 sg:pub.10.1007/s13402-014-0204-6
23 sg:pub.10.1038/35021093
24 sg:pub.10.1038/nature10983
25 sg:pub.10.1038/ng1089
26 sg:pub.10.1186/1756-8935-8-2
27 sg:pub.10.1186/bcr2590
28 sg:pub.10.1186/s13058-016-0685-5
29 https://app.dimensions.ai/details/publication/pub.1075309826
30 https://app.dimensions.ai/details/publication/pub.1079070207
31 https://doi.org/10.1002/jcb.24128
32 https://doi.org/10.1002/mc.21881
33 https://doi.org/10.1016/j.bbrc.2008.05.056
34 https://doi.org/10.1016/j.canlet.2012.11.036
35 https://doi.org/10.1016/j.chembiol.2016.03.017
36 https://doi.org/10.1016/s0304-3835(03)00450-6
37 https://doi.org/10.1016/s1470-2045(13)70567-9
38 https://doi.org/10.1038/emboj.2011.381
39 https://doi.org/10.1056/nejmoa1602253
40 https://doi.org/10.1073/pnas.1615133114
41 https://doi.org/10.1073/pnas.191367098
42 https://doi.org/10.1074/jbc.272.27.16733
43 https://doi.org/10.1074/jbc.m709493200
44 https://doi.org/10.1091/mbc.10.2.501
45 https://doi.org/10.1093/jnci/93.9.691
46 https://doi.org/10.1093/nar/gkv007
47 https://doi.org/10.1111/cns.12171
48 https://doi.org/10.1200/jco.2005.03.3845
49 https://doi.org/10.1200/jco.2008.18.1370
50 https://doi.org/10.1200/jco.2013.54.1870
51 https://doi.org/10.1371/journal.pone.0000594
52 https://doi.org/10.1371/journal.pone.0056381
53 https://doi.org/10.14670/hh-20.645
54 https://doi.org/10.1523/jneurosci.1754-07.2008
55 https://doi.org/10.18632/oncotarget.13718
56 https://doi.org/10.18632/oncotarget.4978
57 https://doi.org/10.18632/oncotarget.5421
58 https://doi.org/10.2217/epi.14.59
59 https://doi.org/10.3892/ijo.2011.1251
60 https://doi.org/10.4103/2229-3485.86872
61 https://doi.org/10.4149/neo_2010_01_035
62 schema:datePublished 2018-12
63 schema:datePublishedReg 2018-12-01
64 schema:description BACKGROUND: Robust and precise molecular prognostic predictors for luminal breast cancer are required. This study aimed to identify key methylation sites in luminal breast cancer, as well as precise molecular tools for predicting prognosis. METHODS: We compared methylation levels of normal and luminal breast cancer samples from The Cancer Genome Atlas dataset. The relationships among differentially methylated sites, corresponding mRNA expression levels and prognosis were further analysed. Differentially expressed genes in normal and cancerous samples were analysed, followed by the identification of prognostic signature genes. Samples were divided into low- and high-risk groups based on the signature genes. Prognoses of low- and high-risk groups were compared. The Gene Expression Omnibus dataset were used to validate signature genes for prognosis prediction. Prognosis of low- and high-risk groups in Luminal A and Luminal B samples from the TCGA and the Metabric cohort dataset were analyzed. We also analysed the correlation between clinical features of low- and high- risk groups as well as their differences in gene expression. RESULTS: Fourteen methylation sites were considered to be related to luminal breast cancer prognosis because their methylation levels, mRNA expression and prognoses were closely related to each other. The methylation level of SOSTDC1 was used to divide samples into hypo- and hyper-methylation groups. We also identified an mRNA signature, comprising eight transcripts, ESCO2, PACSIN1, CDCA2, PIGR, PTN, RGMA, KLK4 and CENPA, which was used to divide samples into low- and high-risk groups. The low-risk group showed significantly better prognosis than the high-risk group. A correlation analysis revealed that the risk score was an independent prognostic factor. Low- and high- risk groups significantly correlated with the survival ratio in Luminal A samples, but not in Luminal B samples on the basis of the TCGA and the Metabric cohort dataset. Further functional annotation demonstrated that the differentially expressed genes were mainly involved in cell cycle and cancer progression. CONCLUSIONS: We identified several key methylation sites and an mRNA signature for predicting luminal breast cancer prognosis. The signature exhibited effective and precise prediction of prognosis and may serve as a prognostic and diagnostic marker for luminal breast cancer.
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree true
68 schema:isPartOf N9f0f8c06f77b44ce85c46926da16c5b2
69 Ndce1a812d2bd4c329d740f4304360906
70 sg:journal.1024632
71 schema:name Identification of methylation sites and signature genes with prognostic value for luminal breast cancer
72 schema:pagination 405
73 schema:productId N373c40e6443e4d4a96db41115fbd8d7a
74 N486fdff6c5714352b6a5c179a4149713
75 N57877762138c4cfa85dd0189997e3448
76 Nb78aaa48f0e24f33aac33f97e73c8cbc
77 Nf7237461b2324f1fb646a7ba4aaada32
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103149206
79 https://doi.org/10.1186/s12885-018-4314-9
80 schema:sdDatePublished 2019-04-15T09:15
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N2a98a025656a447e9a2c919cecf5b708
83 schema:url https://link.springer.com/10.1186%2Fs12885-018-4314-9
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N02dfd9aafb6547da91f656e8477778f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name DNA Methylation
89 rdf:type schema:DefinedTerm
90 N033aa602e1534d2f9f5803718eb3e67d rdf:first sg:person.014211024615.45
91 rdf:rest Nace3444a2ef148a3856dc71f9f65f5e0
92 N0d33f4c684484dab8830dded80c75f0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Humans
94 rdf:type schema:DefinedTerm
95 N0e5627fe5bdf4392b804f494994e7794 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Gene Expression Regulation, Neoplastic
97 rdf:type schema:DefinedTerm
98 N17fb43f9e7564e02896d8cae62ab752e rdf:first sg:person.011223122615.89
99 rdf:rest Nd809cf36845d42efa72d81835fd2db13
100 N21984b3e4a1e4a0aae8d7d8b12ff577f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Aged
102 rdf:type schema:DefinedTerm
103 N2a98a025656a447e9a2c919cecf5b708 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N31221e2b68094cdd939317f20df1217f rdf:first sg:person.0751307733.93
106 rdf:rest N033aa602e1534d2f9f5803718eb3e67d
107 N35d3a2969b4140729f5a7bff096f9763 rdf:first sg:person.01362577053.94
108 rdf:rest N4874bfba656e4b78a20cea2001c7446d
109 N373c40e6443e4d4a96db41115fbd8d7a schema:name readcube_id
110 schema:value 11fb42216b50bd568f0c962c6d71dec0b2ac90aaee125fd2e5f3c64f5be17945
111 rdf:type schema:PropertyValue
112 N486fdff6c5714352b6a5c179a4149713 schema:name dimensions_id
113 schema:value pub.1103149206
114 rdf:type schema:PropertyValue
115 N4874bfba656e4b78a20cea2001c7446d rdf:first sg:person.010425542215.92
116 rdf:rest rdf:nil
117 N48eb1c29b0c246b485317990187390a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Epigenesis, Genetic
119 rdf:type schema:DefinedTerm
120 N57877762138c4cfa85dd0189997e3448 schema:name doi
121 schema:value 10.1186/s12885-018-4314-9
122 rdf:type schema:PropertyValue
123 N5bfd7c9aa1484ae687975e7203d86120 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Breast Neoplasms
125 rdf:type schema:DefinedTerm
126 N646a71db38af42459453bd8a8a6852f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Reproducibility of Results
128 rdf:type schema:DefinedTerm
129 N816aaffded8d4935a4b56529e4145ea6 rdf:first sg:person.012065146664.45
130 rdf:rest Nefb6a3853e904102900c55a163e794a1
131 N823f522c3559408ca921b74abf752775 rdf:first sg:person.010472205664.38
132 rdf:rest Ndf6b4e4f2bfd453d975aef5bcd8d1332
133 N852a917d2a7248ff8bf69eded25541a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Proportional Hazards Models
135 rdf:type schema:DefinedTerm
136 N8f48ea64d2f64979b7734eeedba4c92c schema:affiliation https://www.grid.ac/institutes/grid.413435.4
137 schema:familyName Cao
138 schema:givenName Ling
139 rdf:type schema:Person
140 N93e38089971748469bea2b9d64645302 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Kaplan-Meier Estimate
142 rdf:type schema:DefinedTerm
143 N9572124b5fd44107b014bac222809084 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Proteins
145 rdf:type schema:DefinedTerm
146 N97e14831a6454f699fa8973e772d983f schema:affiliation https://www.grid.ac/institutes/grid.413435.4
147 schema:familyName Li
148 schema:givenName Li
149 rdf:type schema:Person
150 N9b48df1fdf83439686ace5f7df65ce87 schema:affiliation https://www.grid.ac/institutes/grid.413435.4
151 schema:familyName Ke
152 schema:givenName Yongli
153 rdf:type schema:Person
154 N9d9cba29b03d44ba85d06410a1d9b841 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Prognosis
156 rdf:type schema:DefinedTerm
157 N9f0f8c06f77b44ce85c46926da16c5b2 schema:volumeNumber 18
158 rdf:type schema:PublicationVolume
159 Nace3444a2ef148a3856dc71f9f65f5e0 rdf:first N97e14831a6454f699fa8973e772d983f
160 rdf:rest Nde549044cee94063950a36026ea5a05e
161 Nb78aaa48f0e24f33aac33f97e73c8cbc schema:name nlm_unique_id
162 schema:value 100967800
163 rdf:type schema:PropertyValue
164 Nc588470e946140859ddaeafcebdc84d3 rdf:first sg:person.01220525255.45
165 rdf:rest N17fb43f9e7564e02896d8cae62ab752e
166 Nd209cbd30ff54f79a1ffad559723a3eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Gene Expression Profiling
168 rdf:type schema:DefinedTerm
169 Nd33e3f14e5cb4b58bf1274eff062ed82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Female
171 rdf:type schema:DefinedTerm
172 Nd809cf36845d42efa72d81835fd2db13 rdf:first N9b48df1fdf83439686ace5f7df65ce87
173 rdf:rest N823f522c3559408ca921b74abf752775
174 Ndc7a0b6f44254c05a941d2ce2ab2a86f rdf:first sg:person.01046053231.42
175 rdf:rest N31221e2b68094cdd939317f20df1217f
176 Ndce1a812d2bd4c329d740f4304360906 schema:issueNumber 1
177 rdf:type schema:PublicationIssue
178 Nde549044cee94063950a36026ea5a05e rdf:first sg:person.0773300037.52
179 rdf:rest N35d3a2969b4140729f5a7bff096f9763
180 Ndf6b4e4f2bfd453d975aef5bcd8d1332 rdf:first N8f48ea64d2f64979b7734eeedba4c92c
181 rdf:rest N816aaffded8d4935a4b56529e4145ea6
182 Nef6b1b8ddaf344e0bfd4f39746a0cb54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Middle Aged
184 rdf:type schema:DefinedTerm
185 Nefb6a3853e904102900c55a163e794a1 rdf:first sg:person.012616063615.23
186 rdf:rest Ndc7a0b6f44254c05a941d2ce2ab2a86f
187 Nf04a8933e4404e0aa7665f8df3edd6e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Adult
189 rdf:type schema:DefinedTerm
190 Nf7237461b2324f1fb646a7ba4aaada32 schema:name pubmed_id
191 schema:value 29642861
192 rdf:type schema:PropertyValue
193 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
194 schema:name Medical and Health Sciences
195 rdf:type schema:DefinedTerm
196 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
197 schema:name Oncology and Carcinogenesis
198 rdf:type schema:DefinedTerm
199 sg:journal.1024632 schema:issn 1471-2407
200 schema:name BMC Cancer
201 rdf:type schema:Periodical
202 sg:person.010425542215.92 schema:affiliation https://www.grid.ac/institutes/grid.413435.4
203 schema:familyName Li
204 schema:givenName Linhai
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010425542215.92
206 rdf:type schema:Person
207 sg:person.01046053231.42 schema:affiliation https://www.grid.ac/institutes/grid.413435.4
208 schema:familyName Liao
209 schema:givenName Yang
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046053231.42
211 rdf:type schema:Person
212 sg:person.010472205664.38 schema:affiliation https://www.grid.ac/institutes/grid.413435.4
213 schema:familyName Hang
214 schema:givenName Jianfeng
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472205664.38
216 rdf:type schema:Person
217 sg:person.011223122615.89 schema:affiliation https://www.grid.ac/institutes/grid.413435.4
218 schema:familyName Chen
219 schema:givenName Lidan
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011223122615.89
221 rdf:type schema:Person
222 sg:person.012065146664.45 schema:affiliation https://www.grid.ac/institutes/grid.413435.4
223 schema:familyName Zhang
224 schema:givenName Rong
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012065146664.45
226 rdf:type schema:Person
227 sg:person.01220525255.45 schema:affiliation https://www.grid.ac/institutes/grid.413435.4
228 schema:familyName Xiao
229 schema:givenName Bin
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220525255.45
231 rdf:type schema:Person
232 sg:person.012616063615.23 schema:affiliation https://www.grid.ac/institutes/grid.413435.4
233 schema:familyName Zhang
234 schema:givenName Weiyun
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012616063615.23
236 rdf:type schema:Person
237 sg:person.01362577053.94 schema:affiliation https://www.grid.ac/institutes/grid.413435.4
238 schema:familyName Sun
239 schema:givenName Zhaohui
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362577053.94
241 rdf:type schema:Person
242 sg:person.014211024615.45 schema:affiliation https://www.grid.ac/institutes/grid.413435.4
243 schema:familyName Chen
244 schema:givenName Jianyun
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211024615.45
246 rdf:type schema:Person
247 sg:person.0751307733.93 schema:affiliation https://www.grid.ac/institutes/grid.284723.8
248 schema:familyName Gao
249 schema:givenName Yang
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751307733.93
251 rdf:type schema:Person
252 sg:person.0773300037.52 schema:affiliation https://www.grid.ac/institutes/grid.284723.8
253 schema:familyName Hao
254 schema:givenName Wenbo
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773300037.52
256 rdf:type schema:Person
257 sg:pub.10.1007/bf02256332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002442498
258 https://doi.org/10.1007/bf02256332
259 rdf:type schema:CreativeWork
260 sg:pub.10.1007/s10549-010-1261-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053295076
261 https://doi.org/10.1007/s10549-010-1261-9
262 rdf:type schema:CreativeWork
263 sg:pub.10.1007/s10549-011-1895-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015183874
264 https://doi.org/10.1007/s10549-011-1895-2
265 rdf:type schema:CreativeWork
266 sg:pub.10.1007/s13402-014-0204-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042108912
267 https://doi.org/10.1007/s13402-014-0204-6
268 rdf:type schema:CreativeWork
269 sg:pub.10.1038/35021093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033846543
270 https://doi.org/10.1038/35021093
271 rdf:type schema:CreativeWork
272 sg:pub.10.1038/nature10983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014607335
273 https://doi.org/10.1038/nature10983
274 rdf:type schema:CreativeWork
275 sg:pub.10.1038/ng1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015302967
276 https://doi.org/10.1038/ng1089
277 rdf:type schema:CreativeWork
278 sg:pub.10.1186/1756-8935-8-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006956775
279 https://doi.org/10.1186/1756-8935-8-2
280 rdf:type schema:CreativeWork
281 sg:pub.10.1186/bcr2590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012669684
282 https://doi.org/10.1186/bcr2590
283 rdf:type schema:CreativeWork
284 sg:pub.10.1186/s13058-016-0685-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018830943
285 https://doi.org/10.1186/s13058-016-0685-5
286 rdf:type schema:CreativeWork
287 https://app.dimensions.ai/details/publication/pub.1075309826 schema:CreativeWork
288 https://app.dimensions.ai/details/publication/pub.1079070207 schema:CreativeWork
289 https://doi.org/10.1002/jcb.24128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006270989
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1002/mc.21881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049326226
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1016/j.bbrc.2008.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020525578
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1016/j.canlet.2012.11.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048273595
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1016/j.chembiol.2016.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004555565
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1016/s0304-3835(03)00450-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011349612
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1016/s1470-2045(13)70567-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013908235
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1038/emboj.2011.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051525977
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1056/nejmoa1602253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036168635
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1073/pnas.1615133114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083687743
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1073/pnas.191367098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034333528
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1074/jbc.272.27.16733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017129778
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1074/jbc.m709493200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034533941
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1091/mbc.10.2.501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012610247
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1093/jnci/93.9.691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047096266
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1093/nar/gkv007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016098431
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1111/cns.12171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050576207
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1200/jco.2005.03.3845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064204218
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1200/jco.2008.18.1370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045851448
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1200/jco.2013.54.1870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014540362
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1371/journal.pone.0000594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040083982
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1371/journal.pone.0056381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014607176
332 rdf:type schema:CreativeWork
333 https://doi.org/10.14670/hh-20.645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077013694
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1523/jneurosci.1754-07.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043235791
336 rdf:type schema:CreativeWork
337 https://doi.org/10.18632/oncotarget.13718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043759058
338 rdf:type schema:CreativeWork
339 https://doi.org/10.18632/oncotarget.4978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031716783
340 rdf:type schema:CreativeWork
341 https://doi.org/10.18632/oncotarget.5421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036221150
342 rdf:type schema:CreativeWork
343 https://doi.org/10.2217/epi.14.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010854839
344 rdf:type schema:CreativeWork
345 https://doi.org/10.3892/ijo.2011.1251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071512527
346 rdf:type schema:CreativeWork
347 https://doi.org/10.4103/2229-3485.86872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022740468
348 rdf:type schema:CreativeWork
349 https://doi.org/10.4149/neo_2010_01_035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072262236
350 rdf:type schema:CreativeWork
351 https://www.grid.ac/institutes/grid.284723.8 schema:alternateName Southern Medical University
352 schema:name Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
353 Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, China
354 State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, China
355 rdf:type schema:Organization
356 https://www.grid.ac/institutes/grid.413435.4 schema:alternateName General Hospital of Guangzhou Military Command
357 schema:name Department of Breast Surgery, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China
358 Department of Laboratory Medicine, General Hospital of Guangzhou Military Command of PLA, 510010, Guangzhou, Guangdong, China
359 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...