Novel biomarker-based model for the prediction of sorafenib response and overall survival in advanced hepatocellular carcinoma: a prospective cohort study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-03-20

AUTHORS

Hwi Young Kim, Dong Hyeon Lee, Jeong-Hoon Lee, Young Youn Cho, Eun Ju Cho, Su Jong Yu, Yoon Jun Kim, Jung-Hwan Yoon

ABSTRACT

BACKGROUND: Prediction of the outcome of sorafenib therapy using biomarkers is an unmet clinical need in patients with advanced hepatocellular carcinoma (HCC). The aim was to develop and validate a biomarker-based model for predicting sorafenib response and overall survival (OS). METHODS: This prospective cohort study included 124 consecutive HCC patients (44 with disease control, 80 with progression) with Child-Pugh class A liver function, who received sorafenib. Potential serum biomarkers (namely, hepatocyte growth factor [HGF], fibroblast growth factor [FGF], vascular endothelial growth factor receptor-1, CD117, and angiopoietin-2) were tested. After identifying independent predictors of tumor response, a risk scoring system for predicting OS was developed and 3-fold internal validation was conducted. RESULTS: A risk scoring system was developed with six covariates: etiology, platelet count, Barcelona Clinic Liver Cancer stage, protein induced by vitamin K absence-II, HGF, and FGF. When patients were stratified into low-risk (score ≤ 5), intermediate-risk (score 6), and high-risk (score ≥ 7) groups, the model provided good discriminant functions on tumor response (concordance [c]-index, 0.884) and 12-month survival (area under the curve [AUC], 0.825). The median OS was 19.0, 11.2, and 6.1 months in the low-, intermediate-, and high-risk group, respectively (P < 0.001). In internal validation, the model maintained good discriminant functions on tumor response (c-index, 0.825) and 12-month survival (AUC, 0.803), and good calibration functions (all P > 0.05 between expected and observed values). CONCLUSIONS: This new model including serum FGF and HGF showed good performance in predicting the response to sorafenib and survival in patients with advanced HCC. More... »

PAGES

307

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12885-018-4211-2

DOI

http://dx.doi.org/10.1186/s12885-018-4211-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101621345

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29558905


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Hepatocellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Niacinamide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenylurea Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sorafenib", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.255649.9", 
          "name": [
            "Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hwi Young", 
        "id": "sg:person.01211231267.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211231267.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.412479.d", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea", 
            "Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Hyeon", 
        "id": "sg:person.013204130620.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204130620.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.410540.4", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea", 
            "Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jeong-Hoon", 
        "id": "sg:person.013357120320.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013357120320.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Young Youn", 
        "id": "sg:person.0721161002.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721161002.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Eun Ju", 
        "id": "sg:person.01071723517.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071723517.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Su Jong", 
        "id": "sg:person.01141310262.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141310262.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Yoon Jun", 
        "id": "sg:person.01172255222.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172255222.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Jung-Hwan", 
        "id": "sg:person.0666661531.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666661531.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030001320", 
          "https://doi.org/10.1038/nature06913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-14-351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029297120", 
          "https://doi.org/10.1186/1471-2407-14-351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-11-435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043992556", 
          "https://doi.org/10.1186/1471-2407-11-435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048794721", 
          "https://doi.org/10.1038/nrc1739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd3651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035734250", 
          "https://doi.org/10.1038/nrd3651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00535-016-1204-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033353257", 
          "https://doi.org/10.1007/s00535-016-1204-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1205248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024480100", 
          "https://doi.org/10.1038/sj.onc.1205248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038997035", 
          "https://doi.org/10.1038/nrd2130"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03-20", 
    "datePublishedReg": "2018-03-20", 
    "description": "BACKGROUND: Prediction of the outcome of sorafenib therapy using biomarkers is an unmet clinical need in patients with advanced hepatocellular carcinoma (HCC). The aim was to develop and validate a biomarker-based model for predicting sorafenib response and overall survival (OS).\nMETHODS: This prospective cohort study included 124 consecutive HCC patients (44 with disease control, 80 with progression) with Child-Pugh class A liver function, who received sorafenib. Potential serum biomarkers (namely, hepatocyte growth factor [HGF], fibroblast growth factor [FGF], vascular endothelial growth factor receptor-1, CD117, and angiopoietin-2) were tested. After identifying independent predictors of tumor response, a risk scoring system for predicting OS was developed and 3-fold internal validation was conducted.\nRESULTS: A risk scoring system was developed with six covariates: etiology, platelet count, Barcelona Clinic Liver Cancer stage, protein induced by vitamin K absence-II, HGF, and FGF. When patients were stratified into low-risk (score\u2009\u2264\u20095), intermediate-risk (score 6), and high-risk (score\u2009\u2265\u20097) groups, the model provided good discriminant functions on tumor response (concordance [c]-index, 0.884) and 12-month survival (area under the curve [AUC], 0.825). The median OS was 19.0, 11.2, and 6.1\u00a0months in the low-, intermediate-, and high-risk group, respectively (P\u2009<\u20090.001). In internal validation, the model maintained good discriminant functions on tumor response (c-index, 0.825) and 12-month survival (AUC, 0.803), and good calibration functions (all P\u2009>\u20090.05 between expected and observed values).\nCONCLUSIONS: This new model including serum FGF and HGF showed good performance in predicting the response to sorafenib and survival in patients with advanced HCC.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12885-018-4211-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024632", 
        "issn": [
          "1471-2407"
        ], 
        "name": "BMC Cancer", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "advanced hepatocellular carcinoma", 
      "prospective cohort study", 
      "overall survival", 
      "high-risk group", 
      "biomarker-based model", 
      "hepatocellular carcinoma", 
      "tumor response", 
      "cohort study", 
      "sorafenib response", 
      "Barcelona Clinic Liver Cancer stage", 
      "vitamin K absence-II", 
      "consecutive HCC patients", 
      "Liver Cancer stage", 
      "median overall survival", 
      "Child-Pugh class", 
      "internal validation", 
      "potential serum biomarkers", 
      "unmet clinical need", 
      "sorafenib therapy", 
      "independent predictors", 
      "liver function", 
      "platelet count", 
      "serum biomarkers", 
      "HCC patients", 
      "cancer stage", 
      "best discriminant function", 
      "patients", 
      "clinical need", 
      "survival", 
      "carcinoma", 
      "sorafenib", 
      "biomarkers", 
      "HGF", 
      "risk", 
      "response", 
      "FGF", 
      "group", 
      "therapy", 
      "etiology", 
      "months", 
      "outcomes", 
      "predictors", 
      "study", 
      "covariates", 
      "count", 
      "discriminant function", 
      "function", 
      "best calibration function", 
      "aim", 
      "protein", 
      "validation", 
      "need", 
      "stage", 
      "model", 
      "system", 
      "class", 
      "prediction", 
      "new model", 
      "intermediates", 
      "performance", 
      "better performance", 
      "calibration function", 
      "Clinic Liver Cancer stage", 
      "K absence-II", 
      "absence-II", 
      "serum FGF", 
      "Novel biomarker-based model"
    ], 
    "name": "Novel biomarker-based model for the prediction of sorafenib response and overall survival in advanced hepatocellular carcinoma: a prospective cohort study", 
    "pagination": "307", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101621345"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12885-018-4211-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29558905"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12885-018-4211-2", 
      "https://app.dimensions.ai/details/publication/pub.1101621345"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_774.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12885-018-4211-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12885-018-4211-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12885-018-4211-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12885-018-4211-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12885-018-4211-2'


 

This table displays all metadata directly associated to this object as RDF triples.

288 TRIPLES      22 PREDICATES      118 URIs      102 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12885-018-4211-2 schema:about N1c5bfbd454854f0bae7567325560f351
2 N292a54f58b5548259ae9cf89d6e20ae4
3 N325660c5c24a4d6183cb77b23ae80b7a
4 N3b5d0add1ca9472d80e780a659755e62
5 N612eba5afa8d49e5b465b2bbab3f3fa3
6 N652ef608efb5429d806fce4b52870f69
7 N65bcbbb46aba45dab34c8e3683f7c29f
8 N738804ccfd5343e8a68803e53ad4c907
9 N7c4900be918b4c649e49b463ea91f715
10 N8c266f20aaf34334acec5d36c8ae9fd2
11 Naa8344e651d445edbc8ee399cf488e63
12 Nae3ea0d37d634f24b9f8ef198d1713bd
13 Nbd6257f21129422cbe4a837ebbc684dd
14 Nc52acd02855746dea0d897098948af36
15 Nd7f78e0f313d4186b53fa930f5371969
16 Neb18137768d649e2b9c22be000a3f50e
17 Nf3ffbe68aa7d421d898b53dd365eca86
18 anzsrc-for:11
19 anzsrc-for:1112
20 schema:author N4ad3f40067c94ec59c75a165fd3cbc61
21 schema:citation sg:pub.10.1007/s00535-016-1204-2
22 sg:pub.10.1038/nature06913
23 sg:pub.10.1038/nrc1739
24 sg:pub.10.1038/nrd2130
25 sg:pub.10.1038/nrd3651
26 sg:pub.10.1038/sj.onc.1205248
27 sg:pub.10.1186/1471-2407-11-435
28 sg:pub.10.1186/1471-2407-14-351
29 schema:datePublished 2018-03-20
30 schema:datePublishedReg 2018-03-20
31 schema:description BACKGROUND: Prediction of the outcome of sorafenib therapy using biomarkers is an unmet clinical need in patients with advanced hepatocellular carcinoma (HCC). The aim was to develop and validate a biomarker-based model for predicting sorafenib response and overall survival (OS). METHODS: This prospective cohort study included 124 consecutive HCC patients (44 with disease control, 80 with progression) with Child-Pugh class A liver function, who received sorafenib. Potential serum biomarkers (namely, hepatocyte growth factor [HGF], fibroblast growth factor [FGF], vascular endothelial growth factor receptor-1, CD117, and angiopoietin-2) were tested. After identifying independent predictors of tumor response, a risk scoring system for predicting OS was developed and 3-fold internal validation was conducted. RESULTS: A risk scoring system was developed with six covariates: etiology, platelet count, Barcelona Clinic Liver Cancer stage, protein induced by vitamin K absence-II, HGF, and FGF. When patients were stratified into low-risk (score ≤ 5), intermediate-risk (score 6), and high-risk (score ≥ 7) groups, the model provided good discriminant functions on tumor response (concordance [c]-index, 0.884) and 12-month survival (area under the curve [AUC], 0.825). The median OS was 19.0, 11.2, and 6.1 months in the low-, intermediate-, and high-risk group, respectively (P < 0.001). In internal validation, the model maintained good discriminant functions on tumor response (c-index, 0.825) and 12-month survival (AUC, 0.803), and good calibration functions (all P > 0.05 between expected and observed values). CONCLUSIONS: This new model including serum FGF and HGF showed good performance in predicting the response to sorafenib and survival in patients with advanced HCC.
32 schema:genre article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N4e0ba6f6c0fb4983bbca9878f4a032a0
36 N707a35d9daa243f299edf703fdd319a1
37 sg:journal.1024632
38 schema:keywords Barcelona Clinic Liver Cancer stage
39 Child-Pugh class
40 Clinic Liver Cancer stage
41 FGF
42 HCC patients
43 HGF
44 K absence-II
45 Liver Cancer stage
46 Novel biomarker-based model
47 absence-II
48 advanced hepatocellular carcinoma
49 aim
50 best calibration function
51 best discriminant function
52 better performance
53 biomarker-based model
54 biomarkers
55 calibration function
56 cancer stage
57 carcinoma
58 class
59 clinical need
60 cohort study
61 consecutive HCC patients
62 count
63 covariates
64 discriminant function
65 etiology
66 function
67 group
68 hepatocellular carcinoma
69 high-risk group
70 independent predictors
71 intermediates
72 internal validation
73 liver function
74 median overall survival
75 model
76 months
77 need
78 new model
79 outcomes
80 overall survival
81 patients
82 performance
83 platelet count
84 potential serum biomarkers
85 prediction
86 predictors
87 prospective cohort study
88 protein
89 response
90 risk
91 serum FGF
92 serum biomarkers
93 sorafenib
94 sorafenib response
95 sorafenib therapy
96 stage
97 study
98 survival
99 system
100 therapy
101 tumor response
102 unmet clinical need
103 validation
104 vitamin K absence-II
105 schema:name Novel biomarker-based model for the prediction of sorafenib response and overall survival in advanced hepatocellular carcinoma: a prospective cohort study
106 schema:pagination 307
107 schema:productId N1f4f10c3497f4638935ddb1748b7ec01
108 N4a1bba84ae104ff99197ae244adf13d3
109 Neb556241677f49348c0aeff47f79ba71
110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101621345
111 https://doi.org/10.1186/s12885-018-4211-2
112 schema:sdDatePublished 2022-01-01T18:47
113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
114 schema:sdPublisher Nabcafd428d9f4cd4ab00ae6cb3851fe0
115 schema:url https://doi.org/10.1186/s12885-018-4211-2
116 sgo:license sg:explorer/license/
117 sgo:sdDataset articles
118 rdf:type schema:ScholarlyArticle
119 N1c5bfbd454854f0bae7567325560f351 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Phenylurea Compounds
121 rdf:type schema:DefinedTerm
122 N1e0a5325e5394d728a6ba7f7580582af rdf:first sg:person.01071723517.04
123 rdf:rest N39121ca953ac40f686351a7f1eb7fc6d
124 N1f4f10c3497f4638935ddb1748b7ec01 schema:name dimensions_id
125 schema:value pub.1101621345
126 rdf:type schema:PropertyValue
127 N292a54f58b5548259ae9cf89d6e20ae4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Antineoplastic Agents
129 rdf:type schema:DefinedTerm
130 N325660c5c24a4d6183cb77b23ae80b7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Prospective Studies
132 rdf:type schema:DefinedTerm
133 N39121ca953ac40f686351a7f1eb7fc6d rdf:first sg:person.01141310262.41
134 rdf:rest Nc209cc28d23449ffbcad5c2e61fbc2b6
135 N3b5d0add1ca9472d80e780a659755e62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Models, Statistical
137 rdf:type schema:DefinedTerm
138 N4a1bba84ae104ff99197ae244adf13d3 schema:name pubmed_id
139 schema:value 29558905
140 rdf:type schema:PropertyValue
141 N4ad3f40067c94ec59c75a165fd3cbc61 rdf:first sg:person.01211231267.81
142 rdf:rest Nf0aff02a59e842678de9dc2671b3ced4
143 N4e0ba6f6c0fb4983bbca9878f4a032a0 schema:issueNumber 1
144 rdf:type schema:PublicationIssue
145 N542d1d762ed3400fa6de07305f1bf1ad rdf:first sg:person.013357120320.84
146 rdf:rest N71f398387ac84fffb3feefe23f46563a
147 N612eba5afa8d49e5b465b2bbab3f3fa3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Biomarkers
149 rdf:type schema:DefinedTerm
150 N652ef608efb5429d806fce4b52870f69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Follow-Up Studies
152 rdf:type schema:DefinedTerm
153 N65bcbbb46aba45dab34c8e3683f7c29f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Sorafenib
155 rdf:type schema:DefinedTerm
156 N707a35d9daa243f299edf703fdd319a1 schema:volumeNumber 18
157 rdf:type schema:PublicationVolume
158 N71f398387ac84fffb3feefe23f46563a rdf:first sg:person.0721161002.22
159 rdf:rest N1e0a5325e5394d728a6ba7f7580582af
160 N738804ccfd5343e8a68803e53ad4c907 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Survival Rate
162 rdf:type schema:DefinedTerm
163 N7c4900be918b4c649e49b463ea91f715 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Female
165 rdf:type schema:DefinedTerm
166 N8c266f20aaf34334acec5d36c8ae9fd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Carcinoma, Hepatocellular
168 rdf:type schema:DefinedTerm
169 Na6fd975a1c1342d1a88844740c2ea25c rdf:first sg:person.0666661531.30
170 rdf:rest rdf:nil
171 Naa8344e651d445edbc8ee399cf488e63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Middle Aged
173 rdf:type schema:DefinedTerm
174 Nabcafd428d9f4cd4ab00ae6cb3851fe0 schema:name Springer Nature - SN SciGraph project
175 rdf:type schema:Organization
176 Nae3ea0d37d634f24b9f8ef198d1713bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Humans
178 rdf:type schema:DefinedTerm
179 Nbd6257f21129422cbe4a837ebbc684dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Prognosis
181 rdf:type schema:DefinedTerm
182 Nc209cc28d23449ffbcad5c2e61fbc2b6 rdf:first sg:person.01172255222.44
183 rdf:rest Na6fd975a1c1342d1a88844740c2ea25c
184 Nc52acd02855746dea0d897098948af36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Liver Neoplasms
186 rdf:type schema:DefinedTerm
187 Nd7f78e0f313d4186b53fa930f5371969 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Niacinamide
189 rdf:type schema:DefinedTerm
190 Neb18137768d649e2b9c22be000a3f50e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Disease Progression
192 rdf:type schema:DefinedTerm
193 Neb556241677f49348c0aeff47f79ba71 schema:name doi
194 schema:value 10.1186/s12885-018-4211-2
195 rdf:type schema:PropertyValue
196 Nf0aff02a59e842678de9dc2671b3ced4 rdf:first sg:person.013204130620.88
197 rdf:rest N542d1d762ed3400fa6de07305f1bf1ad
198 Nf3ffbe68aa7d421d898b53dd365eca86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Male
200 rdf:type schema:DefinedTerm
201 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
202 schema:name Medical and Health Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
205 schema:name Oncology and Carcinogenesis
206 rdf:type schema:DefinedTerm
207 sg:journal.1024632 schema:issn 1471-2407
208 schema:name BMC Cancer
209 schema:publisher Springer Nature
210 rdf:type schema:Periodical
211 sg:person.01071723517.04 schema:affiliation grid-institutes:grid.31501.36
212 schema:familyName Cho
213 schema:givenName Eun Ju
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071723517.04
215 rdf:type schema:Person
216 sg:person.01141310262.41 schema:affiliation grid-institutes:grid.31501.36
217 schema:familyName Yu
218 schema:givenName Su Jong
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141310262.41
220 rdf:type schema:Person
221 sg:person.01172255222.44 schema:affiliation grid-institutes:grid.31501.36
222 schema:familyName Kim
223 schema:givenName Yoon Jun
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172255222.44
225 rdf:type schema:Person
226 sg:person.01211231267.81 schema:affiliation grid-institutes:grid.255649.9
227 schema:familyName Kim
228 schema:givenName Hwi Young
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211231267.81
230 rdf:type schema:Person
231 sg:person.013204130620.88 schema:affiliation grid-institutes:grid.412479.d
232 schema:familyName Lee
233 schema:givenName Dong Hyeon
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204130620.88
235 rdf:type schema:Person
236 sg:person.013357120320.84 schema:affiliation grid-institutes:grid.410540.4
237 schema:familyName Lee
238 schema:givenName Jeong-Hoon
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013357120320.84
240 rdf:type schema:Person
241 sg:person.0666661531.30 schema:affiliation grid-institutes:grid.31501.36
242 schema:familyName Yoon
243 schema:givenName Jung-Hwan
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666661531.30
245 rdf:type schema:Person
246 sg:person.0721161002.22 schema:affiliation grid-institutes:grid.31501.36
247 schema:familyName Cho
248 schema:givenName Young Youn
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721161002.22
250 rdf:type schema:Person
251 sg:pub.10.1007/s00535-016-1204-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033353257
252 https://doi.org/10.1007/s00535-016-1204-2
253 rdf:type schema:CreativeWork
254 sg:pub.10.1038/nature06913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001320
255 https://doi.org/10.1038/nature06913
256 rdf:type schema:CreativeWork
257 sg:pub.10.1038/nrc1739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048794721
258 https://doi.org/10.1038/nrc1739
259 rdf:type schema:CreativeWork
260 sg:pub.10.1038/nrd2130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038997035
261 https://doi.org/10.1038/nrd2130
262 rdf:type schema:CreativeWork
263 sg:pub.10.1038/nrd3651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035734250
264 https://doi.org/10.1038/nrd3651
265 rdf:type schema:CreativeWork
266 sg:pub.10.1038/sj.onc.1205248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024480100
267 https://doi.org/10.1038/sj.onc.1205248
268 rdf:type schema:CreativeWork
269 sg:pub.10.1186/1471-2407-11-435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043992556
270 https://doi.org/10.1186/1471-2407-11-435
271 rdf:type schema:CreativeWork
272 sg:pub.10.1186/1471-2407-14-351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029297120
273 https://doi.org/10.1186/1471-2407-14-351
274 rdf:type schema:CreativeWork
275 grid-institutes:grid.255649.9 schema:alternateName Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
276 schema:name Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
277 rdf:type schema:Organization
278 grid-institutes:grid.31501.36 schema:alternateName Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
279 schema:name Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
280 rdf:type schema:Organization
281 grid-institutes:grid.410540.4 schema:alternateName Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
282 schema:name Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
283 Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
284 rdf:type schema:Organization
285 grid-institutes:grid.412479.d schema:alternateName Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
286 schema:name Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
287 Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
288 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...