Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Luca Cozzi, Nicola Dinapoli, Antonella Fogliata, Wei-Chung Hsu, Giacomo Reggiori, Francesca Lobefalo, Margarita Kirienko, Martina Sollini, Davide Franceschini, Tiziana Comito, Ciro Franzese, Marta Scorsetti, Po-Ming Wang

ABSTRACT

BACKGROUND: To appraise the ability of a radiomics based analysis to predict local response and overall survival for patients with hepatocellular carcinoma. METHODS: A set of 138 consecutive patients (112 males and 26 females, median age 66 years) presented with Barcelona Clinic Liver Cancer (BCLC) stage A to C were retrospectively studied. For a subset of these patients (106) complete information about treatment outcome, namely local control, was available. Radiomic features were computed for the clinical target volume. A total of 35 features were extracted and analyzed. Univariate analysis was used to identify clinical and radiomics significant features. Multivariate models by Cox-regression hazards model were built for local control and survival outcome. Models were evaluated by area under the curve (AUC) of receiver operating characteristic (ROC) curve. For the LC analysis, two models selecting two groups of uncorrelated features were analyzes while one single model was built for the OS analysis. RESULTS: The univariate analysis lead to the identification of 15 significant radiomics features but the analysis of cross correlation showed several cross related covariates. The un-correlated variables were used to build two separate models; both resulted into a single significant radiomic covariate: model-1: energy p < 0.05, AUC of ROC 0.6659, C.I.: 0.5585-0.7732; model-2: GLNU p < 0.05, AUC 0.6396, C.I.:0.5266-0.7526. The univariate analysis for covariates significant with respect to local control resulted in 9 clinical and 13 radiomics features with multiple and complex cross-correlations. After elastic net regularization, the most significant covariates were compacity and BCLC stage, with only compacity significant to Cox model fitting (Cox model likelihood ratio test p < 0.0001, compacity p < 0.00001; AUC of the model is 0.8014 (C.I. = 0.7232-0.8797)). CONCLUSION: A robust radiomic signature, made by one single feature was finally identified. A validation phases, based on independent set of patients is scheduled to be performed to confirm the results. More... »

PAGES

829

References to SciGraph publications

  • 2013-01. Predicting outcomes in radiation oncology—multifactorial decision support systems in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2014-12. Feasibility of stereotactic body radiation therapy with volumetric modulated arc therapy and high intensity photon beams for hepatocellular carcinoma patients in RADIATION ONCOLOGY
  • 2015-10. CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes in ABDOMINAL RADIOLOGY
  • 2015-07. The challenge of inoperable hepatocellular carcinoma (HCC): results of a single-institutional experience on stereotactic body radiation therapy (SBRT) in JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY
  • 2012-12. Radiation treatment with volumetric modulated arc therapy of hepatocellular carcinoma patients. Early clinical outcome and toxicity profile from a retrospective analysis of 138 patients in RADIATION ONCOLOGY
  • 2017-12. PET Radiomics in NSCLC: state of the art and a proposal for harmonization of methodology in SCIENTIFIC REPORTS
  • 2017-09. Computed Tomography Image Texture: A Noninvasive Prognostic Marker of Hepatic Recurrence After Hepatectomy for Metastatic Colorectal Cancer in ANNALS OF SURGICAL ONCOLOGY
  • 2014-12. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach in NATURE COMMUNICATIONS
  • 2011-12. Volumetric intensity-modulated Arc (RapidArc) therapy for primary hepatocellular carcinoma: comparison with intensity-modulated radiotherapy and 3-D conformal radiotherapy in RADIATION ONCOLOGY
  • 2013-04. Radiotherapy with volumetric modulated arc therapy for hepatocellular carcinoma patients ineligible for surgery or ablative treatments in STRAHLENTHERAPIE UND ONKOLOGIE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12885-017-3847-7

    DOI

    http://dx.doi.org/10.1186/s12885-017-3847-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1099699810

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29207975


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Area Under Curve", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Hepatocellular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Liver", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Liver Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multivariate Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proportional Hazards Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "ROC Curve", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiotherapy, Intensity-Modulated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, X-Ray Computed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Treatment Outcome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Humanitas Research Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417728.f", 
              "name": [
                "Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Rozzano, Italy", 
                "Department of Biomedical Sciences Humanitas University, Rozzano, Italy", 
                "Humanitas Cancer Center and Research Hospital, Via Manzoni 56, 20089, Rozzano, Milano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cozzi", 
            "givenName": "Luca", 
            "id": "sg:person.01024140341.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024140341.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agostino Gemelli University Polyclinic", 
              "id": "https://www.grid.ac/institutes/grid.411075.6", 
              "name": [
                "Polo Scienze Oncologiche ed Ematologiche, Fondazione Policlinico, Universitario Agostino Gemelli, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dinapoli", 
            "givenName": "Nicola", 
            "id": "sg:person.0605512344.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605512344.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Humanitas Research Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417728.f", 
              "name": [
                "Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Rozzano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fogliata", 
            "givenName": "Antonella", 
            "id": "sg:person.01072253541.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072253541.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiation Oncology, Cheng-Ching General Hospital, Taichung, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hsu", 
            "givenName": "Wei-Chung", 
            "id": "sg:person.0725110504.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725110504.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Humanitas Research Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417728.f", 
              "name": [
                "Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Rozzano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reggiori", 
            "givenName": "Giacomo", 
            "id": "sg:person.01204624360.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204624360.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Humanitas Research Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417728.f", 
              "name": [
                "Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Rozzano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lobefalo", 
            "givenName": "Francesca", 
            "id": "sg:person.0643556103.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643556103.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Humanitas Research Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417728.f", 
              "name": [
                "Nuclear Medicine Department, Humanitas Clinical and Research Hospital, Rozzano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kirienko", 
            "givenName": "Margarita", 
            "id": "sg:person.01316527454.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316527454.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Humanitas Research Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417728.f", 
              "name": [
                "Nuclear Medicine Department, Humanitas Clinical and Research Hospital, Rozzano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sollini", 
            "givenName": "Martina", 
            "id": "sg:person.0666556321.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666556321.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Humanitas Research Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417728.f", 
              "name": [
                "Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Rozzano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Franceschini", 
            "givenName": "Davide", 
            "id": "sg:person.0720377501.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720377501.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Humanitas Research Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417728.f", 
              "name": [
                "Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Rozzano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Comito", 
            "givenName": "Tiziana", 
            "id": "sg:person.01012770741.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012770741.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Humanitas Research Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417728.f", 
              "name": [
                "Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Rozzano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Franzese", 
            "givenName": "Ciro", 
            "id": "sg:person.01146531026.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146531026.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Humanitas University", 
              "id": "https://www.grid.ac/institutes/grid.452490.e", 
              "name": [
                "Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Rozzano, Italy", 
                "Department of Biomedical Sciences Humanitas University, Rozzano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scorsetti", 
            "givenName": "Marta", 
            "id": "sg:person.01100401653.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100401653.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiation Oncology, Cheng-Ching General Hospital, Taichung, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Po-Ming", 
            "id": "sg:person.0656775304.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656775304.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.3389/fonc.2015.00272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000390901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00066-012-0298-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007752720", 
              "https://doi.org/10.1007/s00066-012-0298-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1748-717x-6-76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009128509", 
              "https://doi.org/10.1186/1748-717x-6-76"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009469125", 
              "https://doi.org/10.1038/ncomms5006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.jmi.2.4.041011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010842561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0360-3016(03)00091-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011553285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0360-3016(03)00091-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011553285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrobp.2009.06.092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015294133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.3679858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016104405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrobp.2008.06.1496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020478339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jrr/rrs068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030468093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0360-3016(94)00418-k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033032320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00261-015-0438-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034375211", 
              "https://doi.org/10.1007/s00261-015-0438-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1748-717x-9-18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034379024", 
              "https://doi.org/10.1186/1748-717x-9-18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2008.20.7753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035713209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2016/3516089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037651059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18632/oncotarget.7467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039433160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fonc.2016.00071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040319901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00432-015-1929-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041609518", 
              "https://doi.org/10.1007/s00432-015-1929-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0360-3016(02)02864-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041823191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rct.0000000000000217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042303709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rct.0000000000000217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042303709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2005.00503.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043971564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1748-717x-7-207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045231161", 
              "https://doi.org/10.1186/1748-717x-7-207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm199903113401001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046766119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0145063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047540412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0145063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047540412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.crad.2016.09.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048404572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.semradonc.2005.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049567902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2012.196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051910091", 
              "https://doi.org/10.1038/nrclinonc.2012.196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/21.44046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061122207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1973.4309314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061792707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1259/bjr.20160642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064566182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1259/bjr.20160665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064566189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/annonc/mdx034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083687856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejrad.2017.02.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083900352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-00426-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084130559", 
              "https://doi.org/10.1038/s41598-017-00426-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-017-5896-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085716918", 
              "https://doi.org/10.1245/s10434-017-5896-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-017-5896-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085716918", 
              "https://doi.org/10.1245/s10434-017-5896-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.semradonc.2017.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091428080"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "BACKGROUND: To appraise the ability of a radiomics based analysis to predict local response and overall survival for patients with hepatocellular carcinoma.\nMETHODS: A set of 138 consecutive patients (112 males and 26 females, median age 66\u00a0years) presented with Barcelona Clinic Liver Cancer (BCLC) stage A to C were retrospectively studied. For a subset of these patients (106) complete information about treatment outcome, namely local control, was available. Radiomic features were computed for the clinical target volume. A total of 35 features were extracted and analyzed. Univariate analysis was used to identify clinical and radiomics significant features. Multivariate models by Cox-regression hazards model were built for local control and survival outcome. Models were evaluated by area under the curve (AUC) of receiver operating characteristic (ROC) curve. For the LC analysis, two models selecting two groups of uncorrelated features were analyzes while one single model was built for the OS analysis.\nRESULTS: The univariate analysis lead to the identification of 15 significant radiomics features but the analysis of cross correlation showed several cross related covariates. The un-correlated variables were used to build two separate models; both resulted into a single significant radiomic covariate: model-1: energy p\u2009<\u20090.05, AUC of ROC 0.6659, C.I.: 0.5585-0.7732; model-2: GLNU p\u2009<\u20090.05, AUC 0.6396, C.I.:0.5266-0.7526. The univariate analysis for covariates significant with respect to local control resulted in 9 clinical and 13 radiomics features with multiple and complex cross-correlations. After elastic net regularization, the most significant covariates were compacity and BCLC stage, with only compacity significant to Cox model fitting (Cox model likelihood ratio test p\u2009<\u20090.0001, compacity p\u2009<\u20090.00001; AUC of the model is 0.8014 (C.I. = 0.7232-0.8797)).\nCONCLUSION: A robust radiomic signature, made by one single feature was finally identified. A validation phases, based on independent set of patients is scheduled to be performed to confirm the results.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12885-017-3847-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1024632", 
            "issn": [
              "1471-2407"
            ], 
            "name": "BMC Cancer", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy", 
        "pagination": "829", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a21d90c8019cd282e5695197389e8a5b3b6f874d8ad1edbaa7cb5a282dba074e"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29207975"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100967800"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12885-017-3847-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1099699810"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12885-017-3847-7", 
          "https://app.dimensions.ai/details/publication/pub.1099699810"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000552.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186/s12885-017-3847-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12885-017-3847-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12885-017-3847-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12885-017-3847-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12885-017-3847-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    356 TRIPLES      21 PREDICATES      83 URIs      39 LITERALS      27 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12885-017-3847-7 schema:about N026fecbf93254313a76dff6a46cbea8f
    2 N1730d2574ec44a71a5bd24ae5fcc22ab
    3 N17863b7327914dcca7cdaa2195fe38a4
    4 N1f4e73bfa91d4fe7b5c472f127233eec
    5 N2d10006a4e444903bd6cbe48419f100c
    6 N32f4000a34a84ceaa0ee54a6f80e9eaf
    7 N34c7c0394307421a952ed853c8966932
    8 N44db09075d4649f2aa44dec1b95c1082
    9 N4a02a3ded958430f8f83d2bffe8dce85
    10 N731a245ae7ca4f1dbe5238f4faf68e09
    11 N74bfd057d79c4258921d946289a21d1b
    12 N7b1f990ef81a434799179f2cef1bef5e
    13 N8ac72468a0f54eb49fd46dc3cb10b619
    14 Na8f4cb6b6f214281bee1e32206ad73e6
    15 Nb5a039d456d641fca2b674324f9f8e62
    16 Nd1771da71e7741bf92f38e272e84bdab
    17 Nd27b71113ad547f1bf2d4b9e4fd8695f
    18 Ne2c2d71a34e34592935bca16e8fbb507
    19 anzsrc-for:11
    20 anzsrc-for:1112
    21 schema:author N143d9cbab2cf4e37be6d770d270ac091
    22 schema:citation sg:pub.10.1007/s00066-012-0298-6
    23 sg:pub.10.1007/s00261-015-0438-4
    24 sg:pub.10.1007/s00432-015-1929-y
    25 sg:pub.10.1038/ncomms5006
    26 sg:pub.10.1038/nrclinonc.2012.196
    27 sg:pub.10.1038/s41598-017-00426-y
    28 sg:pub.10.1186/1748-717x-6-76
    29 sg:pub.10.1186/1748-717x-7-207
    30 sg:pub.10.1186/1748-717x-9-18
    31 sg:pub.10.1245/s10434-017-5896-1
    32 https://doi.org/10.1016/0360-3016(94)00418-k
    33 https://doi.org/10.1016/j.crad.2016.09.013
    34 https://doi.org/10.1016/j.ejrad.2017.02.035
    35 https://doi.org/10.1016/j.ijrobp.2008.06.1496
    36 https://doi.org/10.1016/j.ijrobp.2009.06.092
    37 https://doi.org/10.1016/j.semradonc.2005.04.005
    38 https://doi.org/10.1016/j.semradonc.2017.04.002
    39 https://doi.org/10.1016/s0360-3016(02)02864-x
    40 https://doi.org/10.1016/s0360-3016(03)00091-9
    41 https://doi.org/10.1056/nejm199903113401001
    42 https://doi.org/10.1093/annonc/mdx034
    43 https://doi.org/10.1093/jrr/rrs068
    44 https://doi.org/10.1097/rct.0000000000000217
    45 https://doi.org/10.1109/21.44046
    46 https://doi.org/10.1109/tsmc.1973.4309314
    47 https://doi.org/10.1111/j.1467-9868.2005.00503.x
    48 https://doi.org/10.1117/1.jmi.2.4.041011
    49 https://doi.org/10.1118/1.3679858
    50 https://doi.org/10.1155/2016/3516089
    51 https://doi.org/10.1200/jco.2008.20.7753
    52 https://doi.org/10.1259/bjr.20160642
    53 https://doi.org/10.1259/bjr.20160665
    54 https://doi.org/10.1371/journal.pone.0145063
    55 https://doi.org/10.18632/oncotarget.7467
    56 https://doi.org/10.3389/fonc.2015.00272
    57 https://doi.org/10.3389/fonc.2016.00071
    58 schema:datePublished 2017-12
    59 schema:datePublishedReg 2017-12-01
    60 schema:description BACKGROUND: To appraise the ability of a radiomics based analysis to predict local response and overall survival for patients with hepatocellular carcinoma. METHODS: A set of 138 consecutive patients (112 males and 26 females, median age 66 years) presented with Barcelona Clinic Liver Cancer (BCLC) stage A to C were retrospectively studied. For a subset of these patients (106) complete information about treatment outcome, namely local control, was available. Radiomic features were computed for the clinical target volume. A total of 35 features were extracted and analyzed. Univariate analysis was used to identify clinical and radiomics significant features. Multivariate models by Cox-regression hazards model were built for local control and survival outcome. Models were evaluated by area under the curve (AUC) of receiver operating characteristic (ROC) curve. For the LC analysis, two models selecting two groups of uncorrelated features were analyzes while one single model was built for the OS analysis. RESULTS: The univariate analysis lead to the identification of 15 significant radiomics features but the analysis of cross correlation showed several cross related covariates. The un-correlated variables were used to build two separate models; both resulted into a single significant radiomic covariate: model-1: energy p < 0.05, AUC of ROC 0.6659, C.I.: 0.5585-0.7732; model-2: GLNU p < 0.05, AUC 0.6396, C.I.:0.5266-0.7526. The univariate analysis for covariates significant with respect to local control resulted in 9 clinical and 13 radiomics features with multiple and complex cross-correlations. After elastic net regularization, the most significant covariates were compacity and BCLC stage, with only compacity significant to Cox model fitting (Cox model likelihood ratio test p < 0.0001, compacity p < 0.00001; AUC of the model is 0.8014 (C.I. = 0.7232-0.8797)). CONCLUSION: A robust radiomic signature, made by one single feature was finally identified. A validation phases, based on independent set of patients is scheduled to be performed to confirm the results.
    61 schema:genre research_article
    62 schema:inLanguage en
    63 schema:isAccessibleForFree true
    64 schema:isPartOf N0dc9c06fbef54257addbfc5c5fbd0ee3
    65 N6cb84d9270a74be88f39e9637e23b6bc
    66 sg:journal.1024632
    67 schema:name Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy
    68 schema:pagination 829
    69 schema:productId N78337bb85bbf4dde88d20230c00228fc
    70 N81e9f6cdf84c424fbdf7f54d23330d08
    71 N9518b8c9f28e4a3bbaf5753b39ccab2b
    72 Na142f9a768994a1d82924e83cfa00a67
    73 Nb3530750925d437a9fbd18facf884076
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099699810
    75 https://doi.org/10.1186/s12885-017-3847-7
    76 schema:sdDatePublished 2019-04-10T18:27
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher N8d34bec1c7814912ad83f0fe2dd9aff6
    79 schema:url http://link.springer.com/10.1186/s12885-017-3847-7
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N026fecbf93254313a76dff6a46cbea8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Radiotherapy, Intensity-Modulated
    85 rdf:type schema:DefinedTerm
    86 N0dc9c06fbef54257addbfc5c5fbd0ee3 schema:volumeNumber 17
    87 rdf:type schema:PublicationVolume
    88 N12dc5b23d8354d55a5c6fca1aa668f01 rdf:first sg:person.0605512344.25
    89 rdf:rest N8de0782f861d40eb80263af3ab216191
    90 N143d9cbab2cf4e37be6d770d270ac091 rdf:first sg:person.01024140341.27
    91 rdf:rest N12dc5b23d8354d55a5c6fca1aa668f01
    92 N1730d2574ec44a71a5bd24ae5fcc22ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Liver
    94 rdf:type schema:DefinedTerm
    95 N17863b7327914dcca7cdaa2195fe38a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Liver Neoplasms
    97 rdf:type schema:DefinedTerm
    98 N1ca2d2a447d64d0c93b399dba347f21d rdf:first sg:person.01100401653.00
    99 rdf:rest N26415865e41d44b5ae8eb05adca9ce01
    100 N1f4e73bfa91d4fe7b5c472f127233eec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Carcinoma, Hepatocellular
    102 rdf:type schema:DefinedTerm
    103 N24cc9ac8ec0348d7916bac9d88cf1cfa rdf:first sg:person.01012770741.30
    104 rdf:rest N6290326291384d239b31a0052605c6ef
    105 N26415865e41d44b5ae8eb05adca9ce01 rdf:first sg:person.0656775304.68
    106 rdf:rest rdf:nil
    107 N2d10006a4e444903bd6cbe48419f100c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Middle Aged
    109 rdf:type schema:DefinedTerm
    110 N32f4000a34a84ceaa0ee54a6f80e9eaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name ROC Curve
    112 rdf:type schema:DefinedTerm
    113 N34c7c0394307421a952ed853c8966932 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Retrospective Studies
    115 rdf:type schema:DefinedTerm
    116 N44db09075d4649f2aa44dec1b95c1082 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Treatment Outcome
    118 rdf:type schema:DefinedTerm
    119 N47c65e8324a04f20884ef2134b0f57c4 rdf:first sg:person.0725110504.76
    120 rdf:rest N5cc70ce685874145bc48840de524cb2e
    121 N4a02a3ded958430f8f83d2bffe8dce85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Female
    123 rdf:type schema:DefinedTerm
    124 N5cc70ce685874145bc48840de524cb2e rdf:first sg:person.01204624360.40
    125 rdf:rest N779597ae64d943dc8053f987cbf64f08
    126 N6185775dfc0b4b26bf5c063dbe2de07d rdf:first sg:person.0720377501.57
    127 rdf:rest N24cc9ac8ec0348d7916bac9d88cf1cfa
    128 N6290326291384d239b31a0052605c6ef rdf:first sg:person.01146531026.52
    129 rdf:rest N1ca2d2a447d64d0c93b399dba347f21d
    130 N6cb84d9270a74be88f39e9637e23b6bc schema:issueNumber 1
    131 rdf:type schema:PublicationIssue
    132 N731a245ae7ca4f1dbe5238f4faf68e09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Aged
    134 rdf:type schema:DefinedTerm
    135 N74bfd057d79c4258921d946289a21d1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Tomography, X-Ray Computed
    137 rdf:type schema:DefinedTerm
    138 N779597ae64d943dc8053f987cbf64f08 rdf:first sg:person.0643556103.23
    139 rdf:rest Ncf7f33fe38be4fd393f49a8de1fd395c
    140 N78337bb85bbf4dde88d20230c00228fc schema:name nlm_unique_id
    141 schema:value 100967800
    142 rdf:type schema:PropertyValue
    143 N7b1f990ef81a434799179f2cef1bef5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Area Under Curve
    145 rdf:type schema:DefinedTerm
    146 N81e9f6cdf84c424fbdf7f54d23330d08 schema:name doi
    147 schema:value 10.1186/s12885-017-3847-7
    148 rdf:type schema:PropertyValue
    149 N8ac72468a0f54eb49fd46dc3cb10b619 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Male
    151 rdf:type schema:DefinedTerm
    152 N8d34bec1c7814912ad83f0fe2dd9aff6 schema:name Springer Nature - SN SciGraph project
    153 rdf:type schema:Organization
    154 N8d856235e05c4a2ea1d378b58724c865 schema:name Department of Radiation Oncology, Cheng-Ching General Hospital, Taichung, Taiwan
    155 rdf:type schema:Organization
    156 N8de0782f861d40eb80263af3ab216191 rdf:first sg:person.01072253541.17
    157 rdf:rest N47c65e8324a04f20884ef2134b0f57c4
    158 N9518b8c9f28e4a3bbaf5753b39ccab2b schema:name dimensions_id
    159 schema:value pub.1099699810
    160 rdf:type schema:PropertyValue
    161 Na142f9a768994a1d82924e83cfa00a67 schema:name readcube_id
    162 schema:value a21d90c8019cd282e5695197389e8a5b3b6f874d8ad1edbaa7cb5a282dba074e
    163 rdf:type schema:PropertyValue
    164 Na8f4cb6b6f214281bee1e32206ad73e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Humans
    166 rdf:type schema:DefinedTerm
    167 Nacbac44c869147faa88c02efeec50541 schema:name Department of Radiation Oncology, Cheng-Ching General Hospital, Taichung, Taiwan
    168 rdf:type schema:Organization
    169 Nb3530750925d437a9fbd18facf884076 schema:name pubmed_id
    170 schema:value 29207975
    171 rdf:type schema:PropertyValue
    172 Nb5a039d456d641fca2b674324f9f8e62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Multivariate Analysis
    174 rdf:type schema:DefinedTerm
    175 Ncf7f33fe38be4fd393f49a8de1fd395c rdf:first sg:person.01316527454.46
    176 rdf:rest Ne1cac71d42494ce5804c3551aca7a007
    177 Nd1771da71e7741bf92f38e272e84bdab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Adult
    179 rdf:type schema:DefinedTerm
    180 Nd27b71113ad547f1bf2d4b9e4fd8695f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Aged, 80 and over
    182 rdf:type schema:DefinedTerm
    183 Ne1cac71d42494ce5804c3551aca7a007 rdf:first sg:person.0666556321.15
    184 rdf:rest N6185775dfc0b4b26bf5c063dbe2de07d
    185 Ne2c2d71a34e34592935bca16e8fbb507 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Proportional Hazards Models
    187 rdf:type schema:DefinedTerm
    188 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Medical and Health Sciences
    190 rdf:type schema:DefinedTerm
    191 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    192 schema:name Oncology and Carcinogenesis
    193 rdf:type schema:DefinedTerm
    194 sg:journal.1024632 schema:issn 1471-2407
    195 schema:name BMC Cancer
    196 rdf:type schema:Periodical
    197 sg:person.01012770741.30 schema:affiliation https://www.grid.ac/institutes/grid.417728.f
    198 schema:familyName Comito
    199 schema:givenName Tiziana
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012770741.30
    201 rdf:type schema:Person
    202 sg:person.01024140341.27 schema:affiliation https://www.grid.ac/institutes/grid.417728.f
    203 schema:familyName Cozzi
    204 schema:givenName Luca
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024140341.27
    206 rdf:type schema:Person
    207 sg:person.01072253541.17 schema:affiliation https://www.grid.ac/institutes/grid.417728.f
    208 schema:familyName Fogliata
    209 schema:givenName Antonella
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072253541.17
    211 rdf:type schema:Person
    212 sg:person.01100401653.00 schema:affiliation https://www.grid.ac/institutes/grid.452490.e
    213 schema:familyName Scorsetti
    214 schema:givenName Marta
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100401653.00
    216 rdf:type schema:Person
    217 sg:person.01146531026.52 schema:affiliation https://www.grid.ac/institutes/grid.417728.f
    218 schema:familyName Franzese
    219 schema:givenName Ciro
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146531026.52
    221 rdf:type schema:Person
    222 sg:person.01204624360.40 schema:affiliation https://www.grid.ac/institutes/grid.417728.f
    223 schema:familyName Reggiori
    224 schema:givenName Giacomo
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204624360.40
    226 rdf:type schema:Person
    227 sg:person.01316527454.46 schema:affiliation https://www.grid.ac/institutes/grid.417728.f
    228 schema:familyName Kirienko
    229 schema:givenName Margarita
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316527454.46
    231 rdf:type schema:Person
    232 sg:person.0605512344.25 schema:affiliation https://www.grid.ac/institutes/grid.411075.6
    233 schema:familyName Dinapoli
    234 schema:givenName Nicola
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605512344.25
    236 rdf:type schema:Person
    237 sg:person.0643556103.23 schema:affiliation https://www.grid.ac/institutes/grid.417728.f
    238 schema:familyName Lobefalo
    239 schema:givenName Francesca
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643556103.23
    241 rdf:type schema:Person
    242 sg:person.0656775304.68 schema:affiliation N8d856235e05c4a2ea1d378b58724c865
    243 schema:familyName Wang
    244 schema:givenName Po-Ming
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656775304.68
    246 rdf:type schema:Person
    247 sg:person.0666556321.15 schema:affiliation https://www.grid.ac/institutes/grid.417728.f
    248 schema:familyName Sollini
    249 schema:givenName Martina
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666556321.15
    251 rdf:type schema:Person
    252 sg:person.0720377501.57 schema:affiliation https://www.grid.ac/institutes/grid.417728.f
    253 schema:familyName Franceschini
    254 schema:givenName Davide
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720377501.57
    256 rdf:type schema:Person
    257 sg:person.0725110504.76 schema:affiliation Nacbac44c869147faa88c02efeec50541
    258 schema:familyName Hsu
    259 schema:givenName Wei-Chung
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725110504.76
    261 rdf:type schema:Person
    262 sg:pub.10.1007/s00066-012-0298-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007752720
    263 https://doi.org/10.1007/s00066-012-0298-6
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/s00261-015-0438-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034375211
    266 https://doi.org/10.1007/s00261-015-0438-4
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1007/s00432-015-1929-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041609518
    269 https://doi.org/10.1007/s00432-015-1929-y
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/ncomms5006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009469125
    272 https://doi.org/10.1038/ncomms5006
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nrclinonc.2012.196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051910091
    275 https://doi.org/10.1038/nrclinonc.2012.196
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/s41598-017-00426-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084130559
    278 https://doi.org/10.1038/s41598-017-00426-y
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1186/1748-717x-6-76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009128509
    281 https://doi.org/10.1186/1748-717x-6-76
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1186/1748-717x-7-207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045231161
    284 https://doi.org/10.1186/1748-717x-7-207
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1186/1748-717x-9-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034379024
    287 https://doi.org/10.1186/1748-717x-9-18
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1245/s10434-017-5896-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085716918
    290 https://doi.org/10.1245/s10434-017-5896-1
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1016/0360-3016(94)00418-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1033032320
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1016/j.crad.2016.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048404572
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1016/j.ejrad.2017.02.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083900352
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1016/j.ijrobp.2008.06.1496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020478339
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1016/j.ijrobp.2009.06.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015294133
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1016/j.semradonc.2005.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049567902
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1016/j.semradonc.2017.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091428080
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1016/s0360-3016(02)02864-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041823191
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1016/s0360-3016(03)00091-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011553285
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1056/nejm199903113401001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046766119
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1093/annonc/mdx034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083687856
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1093/jrr/rrs068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030468093
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1097/rct.0000000000000217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042303709
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1109/21.44046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122207
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1109/tsmc.1973.4309314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792707
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1111/j.1467-9868.2005.00503.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043971564
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1117/1.jmi.2.4.041011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010842561
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1118/1.3679858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016104405
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1155/2016/3516089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037651059
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1200/jco.2008.20.7753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035713209
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1259/bjr.20160642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064566182
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1259/bjr.20160665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064566189
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1371/journal.pone.0145063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047540412
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.18632/oncotarget.7467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039433160
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.3389/fonc.2015.00272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000390901
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.3389/fonc.2016.00071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040319901
    343 rdf:type schema:CreativeWork
    344 https://www.grid.ac/institutes/grid.411075.6 schema:alternateName Agostino Gemelli University Polyclinic
    345 schema:name Polo Scienze Oncologiche ed Ematologiche, Fondazione Policlinico, Universitario Agostino Gemelli, Rome, Italy
    346 rdf:type schema:Organization
    347 https://www.grid.ac/institutes/grid.417728.f schema:alternateName Humanitas Research Hospital
    348 schema:name Department of Biomedical Sciences Humanitas University, Rozzano, Italy
    349 Humanitas Cancer Center and Research Hospital, Via Manzoni 56, 20089, Rozzano, Milano, Italy
    350 Nuclear Medicine Department, Humanitas Clinical and Research Hospital, Rozzano, Italy
    351 Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Rozzano, Italy
    352 rdf:type schema:Organization
    353 https://www.grid.ac/institutes/grid.452490.e schema:alternateName Humanitas University
    354 schema:name Department of Biomedical Sciences Humanitas University, Rozzano, Italy
    355 Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Rozzano, Italy
    356 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...