Ontology type: schema:ScholarlyArticle Open Access: True
2017-11-22
AUTHORSLivia Giordano, Federica Gallo, Elisabetta Petracci, Giovanna Chiorino, Nereo Segnan, the Andromeda working group
ABSTRACTBackgroundIn recent years growing interest has been posed on alternative ways to screen women for breast cancer involving different imaging techniques or adjusting screening interval by breast cancer risk estimates. A new research area is studying circulating microRNAs as molecular biomarkers potentially useful for non invasive early detection together with the analysis of single-nucleotide polymorphisms (SNPs).The Andromeda study is a prospective cohort study on women attending breast cancer screening in a northern Italian area. The aims of the study are: 1) to define appropriate women risk-based stratifications for personalized screening considering different factors (reproductive, family and biopsy history, breast density, lifestyle habits); 2) to evaluate the diagnostic accuracy of selected circulating microRNAs in a case-control study nested within the above mentioned cohort.MethodsAbout 21,000 women aged 46–67 years compliant to screening mammography are expected to be enrolled. At enrolment, information on well-known breast cancer risk factors and life-styles habits are collected through self-admistered questionnaires. Information on breast density and anthropometric measurements (height, weight, body composition, and waist circumference) are recorded. In addition, women are requested to provide a blood sample for serum, plasma and buffy-coat storing for subsequent molecular analyses within the nested case-control study. This investigation will be performed on approximately 233 cases (screen-detected) and 699 matched controls to evaluate SNPs and circulating microRNAs. The whole study will last three years and the cohort will be followed up for ten years to observe the onset of new breast cancer cases.DiscussionNowadays women undergo the same screening protocol, independently of their breast density and their individual risk to develop breast cancer. New criteria to better stratify women in risk groups could enable the screening strategies to target high-risk women while reducing interventions in those at low-risk. In this frame the present study will contribute in identifying the feasibility and impact of implementing personalized breast cancer screening.Trial registrationNCT02618538 (retrospectively registered on 27–11-2015.) More... »
PAGES785
http://scigraph.springernature.com/pub.10.1186/s12885-017-3784-5
DOIhttp://dx.doi.org/10.1186/s12885-017-3784-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1092906095
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/29166878
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Oncology and Carcinogenesis",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Public Health and Health Services",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Biomarkers, Tumor",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Breast Neoplasms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Clinical Protocols",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Early Detection of Cancer",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Female",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Middle Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Predictive Value of Tests",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Prognosis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Prospective Studies",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Research Design",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Centre for Cancer Prevention (CPO Piemonte), Unit of Epidemiology and Screening, AOU Citt\u00e0 della Salute e della Scienza of Turin, Via Cavour 31, 10123, Turin, Italy",
"id": "http://www.grid.ac/institutes/grid.420240.0",
"name": [
"Centre for Cancer Prevention (CPO Piemonte), Unit of Epidemiology and Screening, AOU Citt\u00e0 della Salute e della Scienza of Turin, Via Cavour 31, 10123, Turin, Italy"
],
"type": "Organization"
},
"familyName": "Giordano",
"givenName": "Livia",
"id": "sg:person.0730535464.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730535464.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centre for Cancer Prevention (CPO Piemonte), Unit of Epidemiology and Screening, AOU Citt\u00e0 della Salute e della Scienza of Turin, Via Cavour 31, 10123, Turin, Italy",
"id": "http://www.grid.ac/institutes/grid.420240.0",
"name": [
"Centre for Cancer Prevention (CPO Piemonte), Unit of Epidemiology and Screening, AOU Citt\u00e0 della Salute e della Scienza of Turin, Via Cavour 31, 10123, Turin, Italy"
],
"type": "Organization"
},
"familyName": "Gallo",
"givenName": "Federica",
"id": "sg:person.01076106541.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076106541.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Unity of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori, IRCCS, Meldola, Italy",
"id": "http://www.grid.ac/institutes/grid.419563.c",
"name": [
"Unity of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori, IRCCS, Meldola, Italy"
],
"type": "Organization"
},
"familyName": "Petracci",
"givenName": "Elisabetta",
"id": "sg:person.01007711047.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007711047.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Edo & Elvo Tempia Foundation, Biella, Italy",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Edo & Elvo Tempia Foundation, Biella, Italy"
],
"type": "Organization"
},
"familyName": "Chiorino",
"givenName": "Giovanna",
"id": "sg:person.01227253023.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227253023.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centre for Cancer Prevention (CPO Piemonte), Unit of Epidemiology and Screening, AOU Citt\u00e0 della Salute e della Scienza of Turin, Via Cavour 31, 10123, Turin, Italy",
"id": "http://www.grid.ac/institutes/grid.420240.0",
"name": [
"Centre for Cancer Prevention (CPO Piemonte), Unit of Epidemiology and Screening, AOU Citt\u00e0 della Salute e della Scienza of Turin, Via Cavour 31, 10123, Turin, Italy"
],
"type": "Organization"
},
"familyName": "Segnan",
"givenName": "Nereo",
"id": "sg:person.0743542266.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743542266.47"
],
"type": "Person"
},
{
"familyName": "the Andromeda working group",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1186/bcr3428",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025002574",
"https://doi.org/10.1186/bcr3428"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep25997",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043763731",
"https://doi.org/10.1038/srep25997"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10555-012-9414-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013778432",
"https://doi.org/10.1007/s10555-012-9414-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/bcr3493",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000009450",
"https://doi.org/10.1186/bcr3493"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/bcr3110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032911992",
"https://doi.org/10.1186/bcr3110"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng.2563",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001447315",
"https://doi.org/10.1038/ng.2563"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng.586",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006256853",
"https://doi.org/10.1038/ng.586"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/bjc.2011.118",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026293422",
"https://doi.org/10.1038/bjc.2011.118"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-11-22",
"datePublishedReg": "2017-11-22",
"description": "BackgroundIn recent years growing interest has been posed on alternative ways to screen women for breast cancer involving different imaging techniques or adjusting screening interval by breast cancer risk estimates. A new research area is studying circulating microRNAs as molecular biomarkers potentially useful for non invasive early detection together with the analysis of single-nucleotide polymorphisms (SNPs).The Andromeda study is a prospective cohort study on women attending breast cancer screening in a northern Italian area. The aims of the study are: 1) to define appropriate women risk-based stratifications for personalized screening considering different factors (reproductive, family and biopsy history, breast density, lifestyle habits); 2) to evaluate the diagnostic accuracy of selected circulating microRNAs in a case-control study nested within the above mentioned cohort.MethodsAbout 21,000 women aged 46\u201367\u00a0years compliant to screening mammography are expected to be enrolled. At enrolment, information on well-known breast cancer risk factors and life-styles habits are collected through self-admistered questionnaires. Information on breast density and anthropometric measurements (height, weight, body composition, and waist circumference) are recorded. In addition, women are requested to provide a blood sample for serum, plasma and buffy-coat storing for subsequent molecular analyses within the nested case-control study. This investigation will be performed on approximately 233 cases (screen-detected) and 699 matched controls to evaluate SNPs and circulating microRNAs. The whole study will last three years and the cohort will be followed up for ten years to observe the onset of new breast cancer cases.DiscussionNowadays women undergo the same screening protocol, independently of their breast density and their individual risk to develop breast cancer. New criteria to better stratify women in risk groups could enable the screening strategies to target high-risk women while reducing interventions in those at low-risk. In this frame the present study will contribute in identifying the feasibility and impact of implementing personalized breast cancer screening.Trial registrationNCT02618538 (retrospectively registered on 27\u201311-2015.)",
"genre": "article",
"id": "sg:pub.10.1186/s12885-017-3784-5",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1024632",
"issn": [
"1471-2407"
],
"name": "BMC Cancer",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "17"
}
],
"keywords": [
"prospective cohort study",
"case-control study",
"breast cancer screening",
"breast cancer",
"cohort study",
"cancer screening",
"single nucleotide polymorphisms",
"breast density",
"breast cancer risk estimates",
"breast cancer risk factors",
"new breast cancer cases",
"high-risk women",
"cancer risk factors",
"life style habits",
"non-invasive early detection",
"breast cancer cases",
"risk-based stratification",
"cancer risk estimates",
"BackgroundIn recent years",
"ANDROMEDA study",
"risk factors",
"study protocol",
"risk groups",
"cancer cases",
"anthropometric measurements",
"blood samples",
"personalized screening",
"predictive value",
"different imaging techniques",
"diagnostic accuracy",
"risk estimates",
"early detection",
"Northern Italian area",
"molecular biomarkers",
"individual risk",
"screening protocol",
"women",
"cancer",
"subsequent molecular analysis",
"cohort",
"present study",
"screening",
"imaging techniques",
"Italian areas",
"microRNAs",
"years",
"whole study",
"MethodsAbout",
"molecular analysis",
"study",
"biomarkers",
"serum",
"intervention",
"mammography",
"factors",
"enrollment",
"risk",
"criteria",
"cases",
"onset",
"markers",
"protocol",
"questionnaire",
"polymorphism",
"group",
"aim",
"stratification",
"habits",
"interval",
"different factors",
"plasma",
"control",
"analysis",
"recent years",
"area",
"new criterion",
"information",
"samples",
"addition",
"strategies",
"detection",
"feasibility",
"impact",
"investigation",
"new opportunities",
"values",
"technique",
"opportunities",
"measurements",
"estimates",
"interest",
"density",
"alternative way",
"accuracy",
"new research area",
"way",
"frame",
"research area",
"storing"
],
"name": "The ANDROMEDA prospective cohort study: predictive value of combined criteria to tailor breast cancer screening and new opportunities from circulating markers: study protocol",
"pagination": "785",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1092906095"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s12885-017-3784-5"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"29166878"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s12885-017-3784-5",
"https://app.dimensions.ai/details/publication/pub.1092906095"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:17",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_721.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s12885-017-3784-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12885-017-3784-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12885-017-3784-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12885-017-3784-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12885-017-3784-5'
This table displays all metadata directly associated to this object as RDF triples.
282 TRIPLES
22 PREDICATES
146 URIs
129 LITERALS
19 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/s12885-017-3784-5 | schema:about | N063686f79dd647fb976635ec9313fe03 |
2 | ″ | ″ | N2588269783094abfb89db0c4a76d7a3d |
3 | ″ | ″ | N37adf4e53a414bc0b183591d8d07981c |
4 | ″ | ″ | N53c9b586fe39420ab489e7d31be4e505 |
5 | ″ | ″ | N5a6ba9accc4e4212ae74ee0ee91dcd58 |
6 | ″ | ″ | N6575ccb8c18a4d6fbf139acc502383f1 |
7 | ″ | ″ | N6eb64abf06974137af652ba96aa88556 |
8 | ″ | ″ | N7b096e34762a4a41b8aa376071d8bdc9 |
9 | ″ | ″ | Nd3756e88e17e46a08a055bec620dbb02 |
10 | ″ | ″ | Ne2aab58c8ae2430e969aaee5902f016f |
11 | ″ | ″ | Ne302508e70c646f4a16ae0d3467f484f |
12 | ″ | ″ | Nf9069c2f5a5b4c998e8aff0edeed0867 |
13 | ″ | ″ | anzsrc-for:11 |
14 | ″ | ″ | anzsrc-for:1112 |
15 | ″ | ″ | anzsrc-for:1117 |
16 | ″ | schema:author | N6ec3caa8bc574966962f228ba0460fdf |
17 | ″ | schema:citation | sg:pub.10.1007/s10555-012-9414-4 |
18 | ″ | ″ | sg:pub.10.1038/bjc.2011.118 |
19 | ″ | ″ | sg:pub.10.1038/ng.2563 |
20 | ″ | ″ | sg:pub.10.1038/ng.586 |
21 | ″ | ″ | sg:pub.10.1038/srep25997 |
22 | ″ | ″ | sg:pub.10.1186/bcr3110 |
23 | ″ | ″ | sg:pub.10.1186/bcr3428 |
24 | ″ | ″ | sg:pub.10.1186/bcr3493 |
25 | ″ | schema:datePublished | 2017-11-22 |
26 | ″ | schema:datePublishedReg | 2017-11-22 |
27 | ″ | schema:description | BackgroundIn recent years growing interest has been posed on alternative ways to screen women for breast cancer involving different imaging techniques or adjusting screening interval by breast cancer risk estimates. A new research area is studying circulating microRNAs as molecular biomarkers potentially useful for non invasive early detection together with the analysis of single-nucleotide polymorphisms (SNPs).The Andromeda study is a prospective cohort study on women attending breast cancer screening in a northern Italian area. The aims of the study are: 1) to define appropriate women risk-based stratifications for personalized screening considering different factors (reproductive, family and biopsy history, breast density, lifestyle habits); 2) to evaluate the diagnostic accuracy of selected circulating microRNAs in a case-control study nested within the above mentioned cohort.MethodsAbout 21,000 women aged 46–67 years compliant to screening mammography are expected to be enrolled. At enrolment, information on well-known breast cancer risk factors and life-styles habits are collected through self-admistered questionnaires. Information on breast density and anthropometric measurements (height, weight, body composition, and waist circumference) are recorded. In addition, women are requested to provide a blood sample for serum, plasma and buffy-coat storing for subsequent molecular analyses within the nested case-control study. This investigation will be performed on approximately 233 cases (screen-detected) and 699 matched controls to evaluate SNPs and circulating microRNAs. The whole study will last three years and the cohort will be followed up for ten years to observe the onset of new breast cancer cases.DiscussionNowadays women undergo the same screening protocol, independently of their breast density and their individual risk to develop breast cancer. New criteria to better stratify women in risk groups could enable the screening strategies to target high-risk women while reducing interventions in those at low-risk. In this frame the present study will contribute in identifying the feasibility and impact of implementing personalized breast cancer screening.Trial registrationNCT02618538 (retrospectively registered on 27–11-2015.) |
28 | ″ | schema:genre | article |
29 | ″ | schema:inLanguage | en |
30 | ″ | schema:isAccessibleForFree | true |
31 | ″ | schema:isPartOf | N8701e7b8cb1e46a48e263e867ff57e01 |
32 | ″ | ″ | Nbc4eed36f65a4a63b7f09252de61f520 |
33 | ″ | ″ | sg:journal.1024632 |
34 | ″ | schema:keywords | ANDROMEDA study |
35 | ″ | ″ | BackgroundIn recent years |
36 | ″ | ″ | Italian areas |
37 | ″ | ″ | MethodsAbout |
38 | ″ | ″ | Northern Italian area |
39 | ″ | ″ | accuracy |
40 | ″ | ″ | addition |
41 | ″ | ″ | aim |
42 | ″ | ″ | alternative way |
43 | ″ | ″ | analysis |
44 | ″ | ″ | anthropometric measurements |
45 | ″ | ″ | area |
46 | ″ | ″ | biomarkers |
47 | ″ | ″ | blood samples |
48 | ″ | ″ | breast cancer |
49 | ″ | ″ | breast cancer cases |
50 | ″ | ″ | breast cancer risk estimates |
51 | ″ | ″ | breast cancer risk factors |
52 | ″ | ″ | breast cancer screening |
53 | ″ | ″ | breast density |
54 | ″ | ″ | cancer |
55 | ″ | ″ | cancer cases |
56 | ″ | ″ | cancer risk estimates |
57 | ″ | ″ | cancer risk factors |
58 | ″ | ″ | cancer screening |
59 | ″ | ″ | case-control study |
60 | ″ | ″ | cases |
61 | ″ | ″ | cohort |
62 | ″ | ″ | cohort study |
63 | ″ | ″ | control |
64 | ″ | ″ | criteria |
65 | ″ | ″ | density |
66 | ″ | ″ | detection |
67 | ″ | ″ | diagnostic accuracy |
68 | ″ | ″ | different factors |
69 | ″ | ″ | different imaging techniques |
70 | ″ | ″ | early detection |
71 | ″ | ″ | enrollment |
72 | ″ | ″ | estimates |
73 | ″ | ″ | factors |
74 | ″ | ″ | feasibility |
75 | ″ | ″ | frame |
76 | ″ | ″ | group |
77 | ″ | ″ | habits |
78 | ″ | ″ | high-risk women |
79 | ″ | ″ | imaging techniques |
80 | ″ | ″ | impact |
81 | ″ | ″ | individual risk |
82 | ″ | ″ | information |
83 | ″ | ″ | interest |
84 | ″ | ″ | interval |
85 | ″ | ″ | intervention |
86 | ″ | ″ | investigation |
87 | ″ | ″ | life style habits |
88 | ″ | ″ | mammography |
89 | ″ | ″ | markers |
90 | ″ | ″ | measurements |
91 | ″ | ″ | microRNAs |
92 | ″ | ″ | molecular analysis |
93 | ″ | ″ | molecular biomarkers |
94 | ″ | ″ | new breast cancer cases |
95 | ″ | ″ | new criterion |
96 | ″ | ″ | new opportunities |
97 | ″ | ″ | new research area |
98 | ″ | ″ | non-invasive early detection |
99 | ″ | ″ | onset |
100 | ″ | ″ | opportunities |
101 | ″ | ″ | personalized screening |
102 | ″ | ″ | plasma |
103 | ″ | ″ | polymorphism |
104 | ″ | ″ | predictive value |
105 | ″ | ″ | present study |
106 | ″ | ″ | prospective cohort study |
107 | ″ | ″ | protocol |
108 | ″ | ″ | questionnaire |
109 | ″ | ″ | recent years |
110 | ″ | ″ | research area |
111 | ″ | ″ | risk |
112 | ″ | ″ | risk estimates |
113 | ″ | ″ | risk factors |
114 | ″ | ″ | risk groups |
115 | ″ | ″ | risk-based stratification |
116 | ″ | ″ | samples |
117 | ″ | ″ | screening |
118 | ″ | ″ | screening protocol |
119 | ″ | ″ | serum |
120 | ″ | ″ | single nucleotide polymorphisms |
121 | ″ | ″ | storing |
122 | ″ | ″ | strategies |
123 | ″ | ″ | stratification |
124 | ″ | ″ | study |
125 | ″ | ″ | study protocol |
126 | ″ | ″ | subsequent molecular analysis |
127 | ″ | ″ | technique |
128 | ″ | ″ | values |
129 | ″ | ″ | way |
130 | ″ | ″ | whole study |
131 | ″ | ″ | women |
132 | ″ | ″ | years |
133 | ″ | schema:name | The ANDROMEDA prospective cohort study: predictive value of combined criteria to tailor breast cancer screening and new opportunities from circulating markers: study protocol |
134 | ″ | schema:pagination | 785 |
135 | ″ | schema:productId | N3b222352df604dfc982417684401b3a8 |
136 | ″ | ″ | N7f36cf5c9180423f8808d9b532580c2b |
137 | ″ | ″ | Neef43d5a32994739a7e3dc3c2c1ebb2d |
138 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1092906095 |
139 | ″ | ″ | https://doi.org/10.1186/s12885-017-3784-5 |
140 | ″ | schema:sdDatePublished | 2022-06-01T22:17 |
141 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
142 | ″ | schema:sdPublisher | N8f21a5ec972f4a54ac64a07efa0c4bd6 |
143 | ″ | schema:url | https://doi.org/10.1186/s12885-017-3784-5 |
144 | ″ | sgo:license | sg:explorer/license/ |
145 | ″ | sgo:sdDataset | articles |
146 | ″ | rdf:type | schema:ScholarlyArticle |
147 | N063686f79dd647fb976635ec9313fe03 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
148 | ″ | schema:name | Early Detection of Cancer |
149 | ″ | rdf:type | schema:DefinedTerm |
150 | N1ba758bdc1c047eda3c9360ca25fb025 | schema:familyName | the Andromeda working group |
151 | ″ | rdf:type | schema:Person |
152 | N2588269783094abfb89db0c4a76d7a3d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
153 | ″ | schema:name | Prospective Studies |
154 | ″ | rdf:type | schema:DefinedTerm |
155 | N37adf4e53a414bc0b183591d8d07981c | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
156 | ″ | schema:name | Research Design |
157 | ″ | rdf:type | schema:DefinedTerm |
158 | N3b222352df604dfc982417684401b3a8 | schema:name | doi |
159 | ″ | schema:value | 10.1186/s12885-017-3784-5 |
160 | ″ | rdf:type | schema:PropertyValue |
161 | N53c9b586fe39420ab489e7d31be4e505 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
162 | ″ | schema:name | Predictive Value of Tests |
163 | ″ | rdf:type | schema:DefinedTerm |
164 | N5a6ba9accc4e4212ae74ee0ee91dcd58 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
165 | ″ | schema:name | Breast Neoplasms |
166 | ″ | rdf:type | schema:DefinedTerm |
167 | N601b989bdd8841548fc7d3ff0d585a2c | rdf:first | sg:person.01227253023.16 |
168 | ″ | rdf:rest | Ndec223e98480419f8000be42d4934f7d |
169 | N626e3b3522aa48daa7927f3155235b50 | rdf:first | sg:person.01076106541.78 |
170 | ″ | rdf:rest | N8f520a692cf541f6a629234941a2879f |
171 | N6575ccb8c18a4d6fbf139acc502383f1 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
172 | ″ | schema:name | Humans |
173 | ″ | rdf:type | schema:DefinedTerm |
174 | N6eb64abf06974137af652ba96aa88556 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
175 | ″ | schema:name | Middle Aged |
176 | ″ | rdf:type | schema:DefinedTerm |
177 | N6ec3caa8bc574966962f228ba0460fdf | rdf:first | sg:person.0730535464.85 |
178 | ″ | rdf:rest | N626e3b3522aa48daa7927f3155235b50 |
179 | N725bfedb3bf84d269119e79201c879d5 | rdf:first | N1ba758bdc1c047eda3c9360ca25fb025 |
180 | ″ | rdf:rest | rdf:nil |
181 | N7b096e34762a4a41b8aa376071d8bdc9 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
182 | ″ | schema:name | Prognosis |
183 | ″ | rdf:type | schema:DefinedTerm |
184 | N7f36cf5c9180423f8808d9b532580c2b | schema:name | dimensions_id |
185 | ″ | schema:value | pub.1092906095 |
186 | ″ | rdf:type | schema:PropertyValue |
187 | N8701e7b8cb1e46a48e263e867ff57e01 | schema:volumeNumber | 17 |
188 | ″ | rdf:type | schema:PublicationVolume |
189 | N8f21a5ec972f4a54ac64a07efa0c4bd6 | schema:name | Springer Nature - SN SciGraph project |
190 | ″ | rdf:type | schema:Organization |
191 | N8f520a692cf541f6a629234941a2879f | rdf:first | sg:person.01007711047.63 |
192 | ″ | rdf:rest | N601b989bdd8841548fc7d3ff0d585a2c |
193 | Nbc4eed36f65a4a63b7f09252de61f520 | schema:issueNumber | 1 |
194 | ″ | rdf:type | schema:PublicationIssue |
195 | Nd3756e88e17e46a08a055bec620dbb02 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
196 | ″ | schema:name | Aged |
197 | ″ | rdf:type | schema:DefinedTerm |
198 | Ndec223e98480419f8000be42d4934f7d | rdf:first | sg:person.0743542266.47 |
199 | ″ | rdf:rest | N725bfedb3bf84d269119e79201c879d5 |
200 | Ne2aab58c8ae2430e969aaee5902f016f | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
201 | ″ | schema:name | Biomarkers, Tumor |
202 | ″ | rdf:type | schema:DefinedTerm |
203 | Ne302508e70c646f4a16ae0d3467f484f | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
204 | ″ | schema:name | Female |
205 | ″ | rdf:type | schema:DefinedTerm |
206 | Neef43d5a32994739a7e3dc3c2c1ebb2d | schema:name | pubmed_id |
207 | ″ | schema:value | 29166878 |
208 | ″ | rdf:type | schema:PropertyValue |
209 | Nf9069c2f5a5b4c998e8aff0edeed0867 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
210 | ″ | schema:name | Clinical Protocols |
211 | ″ | rdf:type | schema:DefinedTerm |
212 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
213 | ″ | schema:name | Medical and Health Sciences |
214 | ″ | rdf:type | schema:DefinedTerm |
215 | anzsrc-for:1112 | schema:inDefinedTermSet | anzsrc-for: |
216 | ″ | schema:name | Oncology and Carcinogenesis |
217 | ″ | rdf:type | schema:DefinedTerm |
218 | anzsrc-for:1117 | schema:inDefinedTermSet | anzsrc-for: |
219 | ″ | schema:name | Public Health and Health Services |
220 | ″ | rdf:type | schema:DefinedTerm |
221 | sg:journal.1024632 | schema:issn | 1471-2407 |
222 | ″ | schema:name | BMC Cancer |
223 | ″ | schema:publisher | Springer Nature |
224 | ″ | rdf:type | schema:Periodical |
225 | sg:person.01007711047.63 | schema:affiliation | grid-institutes:grid.419563.c |
226 | ″ | schema:familyName | Petracci |
227 | ″ | schema:givenName | Elisabetta |
228 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007711047.63 |
229 | ″ | rdf:type | schema:Person |
230 | sg:person.01076106541.78 | schema:affiliation | grid-institutes:grid.420240.0 |
231 | ″ | schema:familyName | Gallo |
232 | ″ | schema:givenName | Federica |
233 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076106541.78 |
234 | ″ | rdf:type | schema:Person |
235 | sg:person.01227253023.16 | schema:affiliation | grid-institutes:None |
236 | ″ | schema:familyName | Chiorino |
237 | ″ | schema:givenName | Giovanna |
238 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227253023.16 |
239 | ″ | rdf:type | schema:Person |
240 | sg:person.0730535464.85 | schema:affiliation | grid-institutes:grid.420240.0 |
241 | ″ | schema:familyName | Giordano |
242 | ″ | schema:givenName | Livia |
243 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730535464.85 |
244 | ″ | rdf:type | schema:Person |
245 | sg:person.0743542266.47 | schema:affiliation | grid-institutes:grid.420240.0 |
246 | ″ | schema:familyName | Segnan |
247 | ″ | schema:givenName | Nereo |
248 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743542266.47 |
249 | ″ | rdf:type | schema:Person |
250 | sg:pub.10.1007/s10555-012-9414-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013778432 |
251 | ″ | ″ | https://doi.org/10.1007/s10555-012-9414-4 |
252 | ″ | rdf:type | schema:CreativeWork |
253 | sg:pub.10.1038/bjc.2011.118 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026293422 |
254 | ″ | ″ | https://doi.org/10.1038/bjc.2011.118 |
255 | ″ | rdf:type | schema:CreativeWork |
256 | sg:pub.10.1038/ng.2563 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001447315 |
257 | ″ | ″ | https://doi.org/10.1038/ng.2563 |
258 | ″ | rdf:type | schema:CreativeWork |
259 | sg:pub.10.1038/ng.586 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006256853 |
260 | ″ | ″ | https://doi.org/10.1038/ng.586 |
261 | ″ | rdf:type | schema:CreativeWork |
262 | sg:pub.10.1038/srep25997 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1043763731 |
263 | ″ | ″ | https://doi.org/10.1038/srep25997 |
264 | ″ | rdf:type | schema:CreativeWork |
265 | sg:pub.10.1186/bcr3110 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032911992 |
266 | ″ | ″ | https://doi.org/10.1186/bcr3110 |
267 | ″ | rdf:type | schema:CreativeWork |
268 | sg:pub.10.1186/bcr3428 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025002574 |
269 | ″ | ″ | https://doi.org/10.1186/bcr3428 |
270 | ″ | rdf:type | schema:CreativeWork |
271 | sg:pub.10.1186/bcr3493 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000009450 |
272 | ″ | ″ | https://doi.org/10.1186/bcr3493 |
273 | ″ | rdf:type | schema:CreativeWork |
274 | grid-institutes:None | schema:alternateName | Edo & Elvo Tempia Foundation, Biella, Italy |
275 | ″ | schema:name | Edo & Elvo Tempia Foundation, Biella, Italy |
276 | ″ | rdf:type | schema:Organization |
277 | grid-institutes:grid.419563.c | schema:alternateName | Unity of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori, IRCCS, Meldola, Italy |
278 | ″ | schema:name | Unity of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori, IRCCS, Meldola, Italy |
279 | ″ | rdf:type | schema:Organization |
280 | grid-institutes:grid.420240.0 | schema:alternateName | Centre for Cancer Prevention (CPO Piemonte), Unit of Epidemiology and Screening, AOU Città della Salute e della Scienza of Turin, Via Cavour 31, 10123, Turin, Italy |
281 | ″ | schema:name | Centre for Cancer Prevention (CPO Piemonte), Unit of Epidemiology and Screening, AOU Città della Salute e della Scienza of Turin, Via Cavour 31, 10123, Turin, Italy |
282 | ″ | rdf:type | schema:Organization |