Disparities of time trends and birth cohort effects on invasive breast cancer incidence in Shanghai and Hong Kong pre- and ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-23

AUTHORS

Feng Wang, Lap Ah Tse, Wing-cheong Chan, Carol Chi-hei Kwok, Siu-lan Leung, Cherry Wu, Oscar Wai-kong Mang, Roger Kai-cheong Ngan, Mengjie Li, Wai-cho Yu, Koon-ho Tsang, Sze-hong Law, Xiaoping Miao, Chunxiao Wu, Ying Zheng, Fan Wu, Xiaohong R. Yang, Ignatius Tak-sun Yu

ABSTRACT

BACKGROUND: Breast cancer is the leading cause of cancer morbidity among Shanghai and Hong Kong women, which contributes to 20-25% of new female cancer incidents. This study aimed to describe the temporal trend of breast cancer and interpret the potential effects on the observed secular trends. METHODS: Cancer incident data were obtained from the cancer registries. Age-standardized incidence rate was computed by the direct method using the World population of 2000. Average annual percentage change (AAPC) in incidence rate was estimated by the Joinpoint regression. Age, period and cohort effects were assessed by using a log-linear model with Poisson regression. RESULTS: During 1976-2009, an increasing trend of breast cancer incidence was observed, with an AAPC of 1.73 [95% confidence interval (CI): 1.54-1.92)] for women in Hong Kong and 2.83 (95% CI, 2.26-3.40) in Shanghai. Greater upward trends were revealed in Shanghai women aged 50 years old or above (AAPC = 3.09; 95% CI, 1.48-4.73). Using age at 50 years old as cut-point, strong birth cohort effects were shown in both pre- and post-menopausal women, though a more remarkable effect was suggested in Shanghai post-menopausal women. No evidence for a period effect was indicated. CONCLUSIONS: Incidence rate of breast cancer has been more speedy in Shanghai post-menopausal women than that of the Hong Kong women over the past 30 years. Decreased birth rate and increasing environmental exposures (e.g., light-at-night) over successive generations may have constituted major impacts on the birth cohort effects, especially for the post-menopausal breast cancer; further analytic studies are warranted. More... »

PAGES

362

Journal

TITLE

BMC Cancer

ISSUE

1

VOLUME

17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12885-017-3359-5

DOI

http://dx.doi.org/10.1186/s12885-017-3359-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085558895

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28535760


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hong Kong", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Registries", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Sha Tin, Hong Kong SAR China", 
          "id": "http://www.grid.ac/institutes/grid.10784.3a", 
          "name": [
            "JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Sha Tin, Hong Kong SAR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Feng", 
        "id": "sg:person.01174410126.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174410126.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Public Health and Primary Care, the Chinese University of Hong Kong, Prince of Wales Hospital, 4/F, Sha Tin, N.T, Hong Kong SAR China", 
          "id": "http://www.grid.ac/institutes/grid.415197.f", 
          "name": [
            "JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Sha Tin, Hong Kong SAR China", 
            "School of Public Health and Primary Care, the Chinese University of Hong Kong, Prince of Wales Hospital, 4/F, Sha Tin, N.T, Hong Kong SAR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tse", 
        "givenName": "Lap Ah", 
        "id": "sg:person.01016514423.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016514423.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, North District Hospital, Sheung Shui, Hong Kong SAR China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Surgery, North District Hospital, Sheung Shui, Hong Kong SAR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "Wing-cheong", 
        "id": "sg:person.01223013466.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223013466.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Oncology, Princess Margaret Hospital, Kwai Chung, Hong Kong SAR China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Oncology, Princess Margaret Hospital, Kwai Chung, Hong Kong SAR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwok", 
        "givenName": "Carol Chi-hei", 
        "id": "sg:person.012004012152.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012004012152.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong SAR China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Surgery, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong SAR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leung", 
        "givenName": "Siu-lan", 
        "id": "sg:person.0661751166.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661751166.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, North District Hospital, Sheung Shui, Hong Kong SAR China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Pathology, North District Hospital, Sheung Shui, Hong Kong SAR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Cherry", 
        "id": "sg:person.01271126666.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271126666.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hong Kong Cancer Registry, Hospital Authority, Yau Ma Tei, Hong Kong SAR China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hong Kong Cancer Registry, Hospital Authority, Yau Ma Tei, Hong Kong SAR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mang", 
        "givenName": "Oscar Wai-kong", 
        "id": "sg:person.07756424654.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07756424654.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hong Kong Cancer Registry, Hospital Authority, Yau Ma Tei, Hong Kong SAR China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hong Kong Cancer Registry, Hospital Authority, Yau Ma Tei, Hong Kong SAR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ngan", 
        "givenName": "Roger Kai-cheong", 
        "id": "sg:person.01134220441.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134220441.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Sha Tin, Hong Kong SAR China", 
          "id": "http://www.grid.ac/institutes/grid.10784.3a", 
          "name": [
            "JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Sha Tin, Hong Kong SAR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Mengjie", 
        "id": "sg:person.0747574226.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747574226.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine and Geriatrics, Princess Margaret Hospital, Kwai Chung, Hong Kong SAR China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Medicine and Geriatrics, Princess Margaret Hospital, Kwai Chung, Hong Kong SAR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wai-cho", 
        "id": "sg:person.07676562502.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676562502.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Yan Chai Hospital, Tsuen Wan, Hong Kong SAR China", 
          "id": "http://www.grid.ac/institutes/grid.417335.7", 
          "name": [
            "Department of Pathology, Yan Chai Hospital, Tsuen Wan, Hong Kong SAR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsang", 
        "givenName": "Koon-ho", 
        "id": "sg:person.015631714335.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631714335.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Yan Chai Hospital, Tsuen Wan, Hong Kong SAR China", 
          "id": "http://www.grid.ac/institutes/grid.417335.7", 
          "name": [
            "Department of Surgery, Yan Chai Hospital, Tsuen Wan, Hong Kong SAR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Law", 
        "givenName": "Sze-hong", 
        "id": "sg:person.016427274735.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016427274735.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Epidemiology and Biostatistics, Tongji School of Public Health, Huazhong University of Science and Technology, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "Department of Epidemiology and Biostatistics, Tongji School of Public Health, Huazhong University of Science and Technology, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miao", 
        "givenName": "Xiaoping", 
        "id": "sg:person.07443467737.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07443467737.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.430328.e", 
          "name": [
            "Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Chunxiao", 
        "id": "sg:person.0627540462.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627540462.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.430328.e", 
          "name": [
            "Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Ying", 
        "id": "sg:person.01270315213.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270315213.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.430328.e", 
          "name": [
            "Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Fan", 
        "id": "sg:person.01067566551.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067566551.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genetic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA", 
          "id": "http://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Genetic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xiaohong R.", 
        "id": "sg:person.0773462423.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773462423.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Sha Tin, Hong Kong SAR China", 
          "id": "http://www.grid.ac/institutes/grid.10784.3a", 
          "name": [
            "JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Sha Tin, Hong Kong SAR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Ignatius Tak-sun", 
        "id": "sg:person.010514020402.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010514020402.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10549-008-0303-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019305777", 
          "https://doi.org/10.1007/s10549-008-0303-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2014.532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007674755", 
          "https://doi.org/10.1038/bjc.2014.532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2011.301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032128500", 
          "https://doi.org/10.1038/bjc.2011.301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020266827", 
          "https://doi.org/10.1186/bcr932"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-23", 
    "datePublishedReg": "2017-05-23", 
    "description": "BACKGROUND: Breast cancer is the leading cause of cancer morbidity among Shanghai and Hong Kong women, which contributes to 20-25% of new female cancer incidents. This study aimed to describe the temporal trend of breast cancer and interpret the potential effects on the observed secular trends.\nMETHODS: Cancer incident data were obtained from the cancer registries. Age-standardized incidence rate was computed by the direct method using the World population of 2000. Average annual percentage change (AAPC) in incidence rate was estimated by the Joinpoint regression. Age, period and cohort effects were assessed by using a log-linear model with Poisson regression.\nRESULTS: During 1976-2009, an increasing trend of breast cancer incidence was observed, with an AAPC of 1.73 [95% confidence interval (CI): 1.54-1.92)] for women in Hong Kong and 2.83 (95% CI, 2.26-3.40) in Shanghai. Greater upward trends were revealed in Shanghai women aged 50\u00a0years old or above (AAPC\u00a0=\u00a03.09; 95% CI, 1.48-4.73). Using age at 50\u00a0years old as cut-point, strong birth cohort effects were shown in both pre- and post-menopausal women, though a more remarkable effect was suggested in Shanghai post-menopausal women. No evidence for a period effect was indicated.\nCONCLUSIONS: Incidence rate of breast cancer has been more speedy in Shanghai post-menopausal women than that of the Hong Kong women over the past 30\u00a0years. Decreased birth rate and increasing environmental exposures (e.g., light-at-night) over successive generations may have constituted major impacts on the birth cohort effects, especially for the post-menopausal breast cancer; further analytic studies are warranted.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12885-017-3359-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7433707", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024632", 
        "issn": [
          "1471-2407"
        ], 
        "name": "BMC Cancer", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "post-menopausal women", 
      "average annual percentage change", 
      "birth cohort effects", 
      "breast cancer incidence", 
      "breast cancer", 
      "incidence rate", 
      "cancer incidence", 
      "strong birth cohort effect", 
      "post-menopausal breast cancer", 
      "cohort effects", 
      "invasive breast cancer incidence", 
      "age-standardized incidence rates", 
      "annual percentage change", 
      "Hong Kong women", 
      "Further analytic studies", 
      "Cancer Registry", 
      "cancer morbidity", 
      "Shanghai women", 
      "joinpoint regression", 
      "Poisson regression", 
      "cancer incidents", 
      "cancer", 
      "percentage change", 
      "women", 
      "environmental exposures", 
      "birth rate", 
      "time trends", 
      "secular trends", 
      "incidence", 
      "period effects", 
      "age", 
      "years", 
      "potential effects", 
      "temporal trends", 
      "analytic study", 
      "morbidity", 
      "observed secular trends", 
      "regression", 
      "registry", 
      "world population", 
      "rate", 
      "effect", 
      "Hong Kong", 
      "major impact", 
      "study", 
      "cause", 
      "exposure", 
      "upward trend", 
      "population", 
      "log-linear model", 
      "disparities", 
      "evidence", 
      "period", 
      "trends", 
      "remarkable effect", 
      "Shanghai", 
      "incident data", 
      "changes", 
      "Kong", 
      "successive generations", 
      "data", 
      "impact", 
      "incidents", 
      "method", 
      "model", 
      "generation", 
      "direct method", 
      "Kong women", 
      "new female cancer incidents", 
      "female cancer incidents", 
      "Cancer incident data", 
      "Greater upward trends", 
      "Shanghai post-menopausal women"
    ], 
    "name": "Disparities of time trends and birth cohort effects on invasive breast cancer incidence in Shanghai and Hong Kong pre- and post-menopausal women", 
    "pagination": "362", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085558895"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12885-017-3359-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28535760"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12885-017-3359-5", 
      "https://app.dimensions.ai/details/publication/pub.1085558895"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_748.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12885-017-3359-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12885-017-3359-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12885-017-3359-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12885-017-3359-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12885-017-3359-5'


 

This table displays all metadata directly associated to this object as RDF triples.

350 TRIPLES      22 PREDICATES      115 URIs      103 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12885-017-3359-5 schema:about N17bfafb17e7d493b8cb3c1f7200798df
2 N27b927bf847b4d6fa5e252dbd73850bd
3 N487729d386a44aeda4a935d285f5311d
4 N49237e751fcd4cc791e01c382afad6a8
5 N4d64693774b94f49a359de50bd79d594
6 N5457b37d742147b2a36742a87393e27b
7 N5e3b213b798c49549425aafc24f912ef
8 N8c7b037932e742918234caabcce139f8
9 Nb06cb4399d144c82b67dceb99e22ef7c
10 Nc179269501994b29bc4412370a244aa5
11 Ne7deeafd4a3d433ea23f76816743a883
12 Nef89b715be854a57bca08a5745020926
13 anzsrc-for:11
14 anzsrc-for:1117
15 schema:author N13d51274e2b74d88ac84a6dbcff7d99e
16 schema:citation sg:pub.10.1007/s10549-008-0303-z
17 sg:pub.10.1038/bjc.2011.301
18 sg:pub.10.1038/bjc.2014.532
19 sg:pub.10.1186/bcr932
20 schema:datePublished 2017-05-23
21 schema:datePublishedReg 2017-05-23
22 schema:description BACKGROUND: Breast cancer is the leading cause of cancer morbidity among Shanghai and Hong Kong women, which contributes to 20-25% of new female cancer incidents. This study aimed to describe the temporal trend of breast cancer and interpret the potential effects on the observed secular trends. METHODS: Cancer incident data were obtained from the cancer registries. Age-standardized incidence rate was computed by the direct method using the World population of 2000. Average annual percentage change (AAPC) in incidence rate was estimated by the Joinpoint regression. Age, period and cohort effects were assessed by using a log-linear model with Poisson regression. RESULTS: During 1976-2009, an increasing trend of breast cancer incidence was observed, with an AAPC of 1.73 [95% confidence interval (CI): 1.54-1.92)] for women in Hong Kong and 2.83 (95% CI, 2.26-3.40) in Shanghai. Greater upward trends were revealed in Shanghai women aged 50 years old or above (AAPC = 3.09; 95% CI, 1.48-4.73). Using age at 50 years old as cut-point, strong birth cohort effects were shown in both pre- and post-menopausal women, though a more remarkable effect was suggested in Shanghai post-menopausal women. No evidence for a period effect was indicated. CONCLUSIONS: Incidence rate of breast cancer has been more speedy in Shanghai post-menopausal women than that of the Hong Kong women over the past 30 years. Decreased birth rate and increasing environmental exposures (e.g., light-at-night) over successive generations may have constituted major impacts on the birth cohort effects, especially for the post-menopausal breast cancer; further analytic studies are warranted.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N3a7f704e66254fd79aec608a06b1f336
27 Nd79cf0bb61934ef98f2fba46bed68fe6
28 sg:journal.1024632
29 schema:keywords Cancer Registry
30 Cancer incident data
31 Further analytic studies
32 Greater upward trends
33 Hong Kong
34 Hong Kong women
35 Kong
36 Kong women
37 Poisson regression
38 Shanghai
39 Shanghai post-menopausal women
40 Shanghai women
41 age
42 age-standardized incidence rates
43 analytic study
44 annual percentage change
45 average annual percentage change
46 birth cohort effects
47 birth rate
48 breast cancer
49 breast cancer incidence
50 cancer
51 cancer incidence
52 cancer incidents
53 cancer morbidity
54 cause
55 changes
56 cohort effects
57 data
58 direct method
59 disparities
60 effect
61 environmental exposures
62 evidence
63 exposure
64 female cancer incidents
65 generation
66 impact
67 incidence
68 incidence rate
69 incident data
70 incidents
71 invasive breast cancer incidence
72 joinpoint regression
73 log-linear model
74 major impact
75 method
76 model
77 morbidity
78 new female cancer incidents
79 observed secular trends
80 percentage change
81 period
82 period effects
83 population
84 post-menopausal breast cancer
85 post-menopausal women
86 potential effects
87 rate
88 registry
89 regression
90 remarkable effect
91 secular trends
92 strong birth cohort effect
93 study
94 successive generations
95 temporal trends
96 time trends
97 trends
98 upward trend
99 women
100 world population
101 years
102 schema:name Disparities of time trends and birth cohort effects on invasive breast cancer incidence in Shanghai and Hong Kong pre- and post-menopausal women
103 schema:pagination 362
104 schema:productId N68a8f7b44ab142fc9fce2bf6fe190b8e
105 N71325c9ae71045679e8b269fda7647aa
106 N862fd7f16d7c4823913ba010b803cd2e
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085558895
108 https://doi.org/10.1186/s12885-017-3359-5
109 schema:sdDatePublished 2021-12-01T19:41
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N99e95d55202c4a2cadb8d51050b60b24
112 schema:url https://doi.org/10.1186/s12885-017-3359-5
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N0501981936044aa6b1acd875211f9b93 rdf:first sg:person.07676562502.03
117 rdf:rest N08949dd8f6f642a28d7ea8636f1ec353
118 N070acbcc2884432f812317430a395587 rdf:first sg:person.01134220441.43
119 rdf:rest N64f09b60471e4ff39e2a34e0f8f702ca
120 N08949dd8f6f642a28d7ea8636f1ec353 rdf:first sg:person.015631714335.23
121 rdf:rest N706a71d8e3e94342a90b39d61ccce32a
122 N124b0646c2f145cb8d6b8f6f93466752 rdf:first sg:person.01016514423.26
123 rdf:rest N453c999088e54651884a4416aa3d7d14
124 N13d51274e2b74d88ac84a6dbcff7d99e rdf:first sg:person.01174410126.45
125 rdf:rest N124b0646c2f145cb8d6b8f6f93466752
126 N17bfafb17e7d493b8cb3c1f7200798df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Female
128 rdf:type schema:DefinedTerm
129 N27b927bf847b4d6fa5e252dbd73850bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Registries
131 rdf:type schema:DefinedTerm
132 N2b2252ff5a5b427bb8b54874238d7119 rdf:first sg:person.07443467737.22
133 rdf:rest N2ef35e0047504105971867ce9e9c1bd2
134 N2ef35e0047504105971867ce9e9c1bd2 rdf:first sg:person.0627540462.65
135 rdf:rest N7be580a9ce17497e961b3b73b02c08b3
136 N3a7f704e66254fd79aec608a06b1f336 schema:issueNumber 1
137 rdf:type schema:PublicationIssue
138 N453c999088e54651884a4416aa3d7d14 rdf:first sg:person.01223013466.20
139 rdf:rest N86c6eced103b47f99d7b6ccf016d2b0c
140 N4754458b281b4f94a0137c66a6c8cb3d rdf:first sg:person.01067566551.07
141 rdf:rest Nd736a66b8caa4b06929710acb2059b81
142 N487729d386a44aeda4a935d285f5311d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Middle Aged
144 rdf:type schema:DefinedTerm
145 N49237e751fcd4cc791e01c382afad6a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Linear Models
147 rdf:type schema:DefinedTerm
148 N4d64693774b94f49a359de50bd79d594 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Adult
150 rdf:type schema:DefinedTerm
151 N50def3cf0ff743f1a12b985dddc079d7 rdf:first sg:person.0661751166.09
152 rdf:rest N601d8900586840d6a8d90c23ec57806c
153 N5457b37d742147b2a36742a87393e27b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Breast Neoplasms
155 rdf:type schema:DefinedTerm
156 N5e3b213b798c49549425aafc24f912ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name China
158 rdf:type schema:DefinedTerm
159 N601d8900586840d6a8d90c23ec57806c rdf:first sg:person.01271126666.03
160 rdf:rest N95afd4e1a6354a3b8d90a84ff7226ba9
161 N64f09b60471e4ff39e2a34e0f8f702ca rdf:first sg:person.0747574226.28
162 rdf:rest N0501981936044aa6b1acd875211f9b93
163 N68a8f7b44ab142fc9fce2bf6fe190b8e schema:name dimensions_id
164 schema:value pub.1085558895
165 rdf:type schema:PropertyValue
166 N706a71d8e3e94342a90b39d61ccce32a rdf:first sg:person.016427274735.33
167 rdf:rest N2b2252ff5a5b427bb8b54874238d7119
168 N71325c9ae71045679e8b269fda7647aa schema:name doi
169 schema:value 10.1186/s12885-017-3359-5
170 rdf:type schema:PropertyValue
171 N7be580a9ce17497e961b3b73b02c08b3 rdf:first sg:person.01270315213.45
172 rdf:rest N4754458b281b4f94a0137c66a6c8cb3d
173 N862fd7f16d7c4823913ba010b803cd2e schema:name pubmed_id
174 schema:value 28535760
175 rdf:type schema:PropertyValue
176 N86c6eced103b47f99d7b6ccf016d2b0c rdf:first sg:person.012004012152.13
177 rdf:rest N50def3cf0ff743f1a12b985dddc079d7
178 N8c7b037932e742918234caabcce139f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Aged
180 rdf:type schema:DefinedTerm
181 N95afd4e1a6354a3b8d90a84ff7226ba9 rdf:first sg:person.07756424654.58
182 rdf:rest N070acbcc2884432f812317430a395587
183 N99e95d55202c4a2cadb8d51050b60b24 schema:name Springer Nature - SN SciGraph project
184 rdf:type schema:Organization
185 Nb06cb4399d144c82b67dceb99e22ef7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Humans
187 rdf:type schema:DefinedTerm
188 Nc179269501994b29bc4412370a244aa5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Age Factors
190 rdf:type schema:DefinedTerm
191 Nd736a66b8caa4b06929710acb2059b81 rdf:first sg:person.0773462423.37
192 rdf:rest Ne5d9b03933a647f793df81e7b5c445b4
193 Nd79cf0bb61934ef98f2fba46bed68fe6 schema:volumeNumber 17
194 rdf:type schema:PublicationVolume
195 Ne5d9b03933a647f793df81e7b5c445b4 rdf:first sg:person.010514020402.56
196 rdf:rest rdf:nil
197 Ne7deeafd4a3d433ea23f76816743a883 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Hong Kong
199 rdf:type schema:DefinedTerm
200 Nef89b715be854a57bca08a5745020926 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Age Distribution
202 rdf:type schema:DefinedTerm
203 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
204 schema:name Medical and Health Sciences
205 rdf:type schema:DefinedTerm
206 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
207 schema:name Public Health and Health Services
208 rdf:type schema:DefinedTerm
209 sg:grant.7433707 http://pending.schema.org/fundedItem sg:pub.10.1186/s12885-017-3359-5
210 rdf:type schema:MonetaryGrant
211 sg:journal.1024632 schema:issn 1471-2407
212 schema:name BMC Cancer
213 schema:publisher Springer Nature
214 rdf:type schema:Periodical
215 sg:person.01016514423.26 schema:affiliation grid-institutes:grid.415197.f
216 schema:familyName Tse
217 schema:givenName Lap Ah
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016514423.26
219 rdf:type schema:Person
220 sg:person.010514020402.56 schema:affiliation grid-institutes:grid.10784.3a
221 schema:familyName Yu
222 schema:givenName Ignatius Tak-sun
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010514020402.56
224 rdf:type schema:Person
225 sg:person.01067566551.07 schema:affiliation grid-institutes:grid.430328.e
226 schema:familyName Wu
227 schema:givenName Fan
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067566551.07
229 rdf:type schema:Person
230 sg:person.01134220441.43 schema:affiliation grid-institutes:None
231 schema:familyName Ngan
232 schema:givenName Roger Kai-cheong
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134220441.43
234 rdf:type schema:Person
235 sg:person.01174410126.45 schema:affiliation grid-institutes:grid.10784.3a
236 schema:familyName Wang
237 schema:givenName Feng
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174410126.45
239 rdf:type schema:Person
240 sg:person.012004012152.13 schema:affiliation grid-institutes:None
241 schema:familyName Kwok
242 schema:givenName Carol Chi-hei
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012004012152.13
244 rdf:type schema:Person
245 sg:person.01223013466.20 schema:affiliation grid-institutes:None
246 schema:familyName Chan
247 schema:givenName Wing-cheong
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223013466.20
249 rdf:type schema:Person
250 sg:person.01270315213.45 schema:affiliation grid-institutes:grid.430328.e
251 schema:familyName Zheng
252 schema:givenName Ying
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270315213.45
254 rdf:type schema:Person
255 sg:person.01271126666.03 schema:affiliation grid-institutes:None
256 schema:familyName Wu
257 schema:givenName Cherry
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271126666.03
259 rdf:type schema:Person
260 sg:person.015631714335.23 schema:affiliation grid-institutes:grid.417335.7
261 schema:familyName Tsang
262 schema:givenName Koon-ho
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631714335.23
264 rdf:type schema:Person
265 sg:person.016427274735.33 schema:affiliation grid-institutes:grid.417335.7
266 schema:familyName Law
267 schema:givenName Sze-hong
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016427274735.33
269 rdf:type schema:Person
270 sg:person.0627540462.65 schema:affiliation grid-institutes:grid.430328.e
271 schema:familyName Wu
272 schema:givenName Chunxiao
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627540462.65
274 rdf:type schema:Person
275 sg:person.0661751166.09 schema:affiliation grid-institutes:None
276 schema:familyName Leung
277 schema:givenName Siu-lan
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661751166.09
279 rdf:type schema:Person
280 sg:person.07443467737.22 schema:affiliation grid-institutes:grid.33199.31
281 schema:familyName Miao
282 schema:givenName Xiaoping
283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07443467737.22
284 rdf:type schema:Person
285 sg:person.0747574226.28 schema:affiliation grid-institutes:grid.10784.3a
286 schema:familyName Li
287 schema:givenName Mengjie
288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747574226.28
289 rdf:type schema:Person
290 sg:person.07676562502.03 schema:affiliation grid-institutes:None
291 schema:familyName Yu
292 schema:givenName Wai-cho
293 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676562502.03
294 rdf:type schema:Person
295 sg:person.0773462423.37 schema:affiliation grid-institutes:grid.48336.3a
296 schema:familyName Yang
297 schema:givenName Xiaohong R.
298 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773462423.37
299 rdf:type schema:Person
300 sg:person.07756424654.58 schema:affiliation grid-institutes:None
301 schema:familyName Mang
302 schema:givenName Oscar Wai-kong
303 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07756424654.58
304 rdf:type schema:Person
305 sg:pub.10.1007/s10549-008-0303-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019305777
306 https://doi.org/10.1007/s10549-008-0303-z
307 rdf:type schema:CreativeWork
308 sg:pub.10.1038/bjc.2011.301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032128500
309 https://doi.org/10.1038/bjc.2011.301
310 rdf:type schema:CreativeWork
311 sg:pub.10.1038/bjc.2014.532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007674755
312 https://doi.org/10.1038/bjc.2014.532
313 rdf:type schema:CreativeWork
314 sg:pub.10.1186/bcr932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020266827
315 https://doi.org/10.1186/bcr932
316 rdf:type schema:CreativeWork
317 grid-institutes:None schema:alternateName Department of Medicine and Geriatrics, Princess Margaret Hospital, Kwai Chung, Hong Kong SAR China
318 Department of Oncology, Princess Margaret Hospital, Kwai Chung, Hong Kong SAR China
319 Department of Pathology, North District Hospital, Sheung Shui, Hong Kong SAR China
320 Department of Surgery, North District Hospital, Sheung Shui, Hong Kong SAR China
321 Department of Surgery, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong SAR China
322 Hong Kong Cancer Registry, Hospital Authority, Yau Ma Tei, Hong Kong SAR China
323 schema:name Department of Medicine and Geriatrics, Princess Margaret Hospital, Kwai Chung, Hong Kong SAR China
324 Department of Oncology, Princess Margaret Hospital, Kwai Chung, Hong Kong SAR China
325 Department of Pathology, North District Hospital, Sheung Shui, Hong Kong SAR China
326 Department of Surgery, North District Hospital, Sheung Shui, Hong Kong SAR China
327 Department of Surgery, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong SAR China
328 Hong Kong Cancer Registry, Hospital Authority, Yau Ma Tei, Hong Kong SAR China
329 rdf:type schema:Organization
330 grid-institutes:grid.10784.3a schema:alternateName JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Sha Tin, Hong Kong SAR China
331 schema:name JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Sha Tin, Hong Kong SAR China
332 rdf:type schema:Organization
333 grid-institutes:grid.33199.31 schema:alternateName Department of Epidemiology and Biostatistics, Tongji School of Public Health, Huazhong University of Science and Technology, Wuhan, China
334 schema:name Department of Epidemiology and Biostatistics, Tongji School of Public Health, Huazhong University of Science and Technology, Wuhan, China
335 rdf:type schema:Organization
336 grid-institutes:grid.415197.f schema:alternateName School of Public Health and Primary Care, the Chinese University of Hong Kong, Prince of Wales Hospital, 4/F, Sha Tin, N.T, Hong Kong SAR China
337 schema:name JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Sha Tin, Hong Kong SAR China
338 School of Public Health and Primary Care, the Chinese University of Hong Kong, Prince of Wales Hospital, 4/F, Sha Tin, N.T, Hong Kong SAR China
339 rdf:type schema:Organization
340 grid-institutes:grid.417335.7 schema:alternateName Department of Pathology, Yan Chai Hospital, Tsuen Wan, Hong Kong SAR China
341 Department of Surgery, Yan Chai Hospital, Tsuen Wan, Hong Kong SAR China
342 schema:name Department of Pathology, Yan Chai Hospital, Tsuen Wan, Hong Kong SAR China
343 Department of Surgery, Yan Chai Hospital, Tsuen Wan, Hong Kong SAR China
344 rdf:type schema:Organization
345 grid-institutes:grid.430328.e schema:alternateName Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China
346 schema:name Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China
347 rdf:type schema:Organization
348 grid-institutes:grid.48336.3a schema:alternateName Genetic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
349 schema:name Genetic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
350 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...