Promoter hypermethylation of HS3ST2, SEPTIN9 and SLIT2 combined with FGFR3 mutations as a sensitive/specific urinary assay for diagnosis and surveillance ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Jean-Pierre Roperch, Bernard Grandchamp, François Desgrandchamps, Pierre Mongiat-Artus, Vincent Ravery, Idir Ouzaid, Morgan Roupret, Véronique Phe, Calin Ciofu, Florence Tubach, Olivier Cussenot, Roberto Incitti

ABSTRACT

BACKGROUND: Non-muscle-invasive bladder cancer (NMIBC) is a high incidence form of bladder cancer (BCa), where genetic and epigenetic alterations occur frequently. We assessed the performance of associating a FGFR3 mutation assay and a DNA methylation analysis to improve bladder cancer detection and to predict disease recurrence of NMIBC patients. METHODS: We used allele specific PCR to determine the FGFR3 mutation status for R248C, S249C, G372C, and Y375C. We preselected 18 candidate genes reported in the literature as being hypermethylated in cancer and measured their methylation levels by quantitative multiplex-methylation specific PCR. We selected HS3ST2, SLIT2 and SEPTIN9 as the most discriminative between control and NMIBC patients and we assayed these markers on urine DNA from a diagnostic study consisting of 167 NMIBC and 105 controls and a follow-up study consisting of 158 NMIBC at diagnosis time's and 425 at follow-up time. ROC analysis was performed to evaluate the diagnostic accuracy of each assay alone and in combination. RESULTS: For Diagnosis: Using a logistic regression analysis with a model consisting of the 3 markers' methylation values, FGFR3 status, age and known smoker status at the diagnosis time we obtained sensitivity/specificity of 97.6 %/84.8 % and an optimism-corrected AUC of 0.96. With an estimated BCa prevalence of 12.1 % in a hematuria cohort, this corresponds to a negative predictive value (NPV) of 99.6 %. For Follow-up: Using a logistic regression with FGFR3 mutation and the CMI at two time points (beginning of the follow-up and current time point), we got sensitivity/specificity/NPV of 90.3 %/65.1 %/97.0 % and a corrected AUC of 0.84. We also tested a thresholding algorithm with FGFR3 mutation and the two time points as described above, obtaining sensitivity/specificity/NPV values of, respectively, 94.5 %/75.9 %/98.5 % and an AUC of 0.82. CONCLUSIONS: We showed that combined analysis of FGFR3 mutation and DNA methylation markers on urine can be a useful strategy in diagnosis, surveillance and for risk stratification of patients with NMIBC. These results provide the basis for a highly accurate noninvasive test for population screening and allowing to decrease the frequency of cystoscopy, an important feature for both patient quality of life improvement and care cost reduction. More... »

PAGES

704

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12885-016-2748-5

DOI

http://dx.doi.org/10.1186/s12885-016-2748-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022382035

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27586786


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1004", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Area Under Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Transitional Cell", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Methylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intercellular Signaling Peptides and Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multiplex Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Tissue Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Promoter Regions, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptor, Fibroblast Growth Factor, Type 3", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Septins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sulfotransferases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Urinary Bladder Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "OncoDiag SAS, Agoranov, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roperch", 
        "givenName": "Jean-Pierre", 
        "id": "sg:person.01275637241.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275637241.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "OncoDiag SAS, Agoranov, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grandchamp", 
        "givenName": "Bernard", 
        "id": "sg:person.01023077336.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023077336.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Saint-Louis", 
          "id": "https://www.grid.ac/institutes/grid.413328.f", 
          "name": [
            "Departement of Urology, Saint-Louis Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desgrandchamps", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.01324441427.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324441427.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Saint-Louis", 
          "id": "https://www.grid.ac/institutes/grid.413328.f", 
          "name": [
            "Departement of Urology, Saint-Louis Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mongiat-Artus", 
        "givenName": "Pierre", 
        "id": "sg:person.0763253422.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763253422.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Bichat-Claude-Bernard", 
          "id": "https://www.grid.ac/institutes/grid.411119.d", 
          "name": [
            "Departement of Urology, Bichat-Claude Bernard Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ravery", 
        "givenName": "Vincent", 
        "id": "sg:person.01074307260.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074307260.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Bichat-Claude-Bernard", 
          "id": "https://www.grid.ac/institutes/grid.411119.d", 
          "name": [
            "Departement of Urology, Bichat-Claude Bernard Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ouzaid", 
        "givenName": "Idir", 
        "id": "sg:person.01243344103.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243344103.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "GRC-05, University Institute of Oncology, University Paris-6, Paris, France", 
            "Department of Urology, Piti\u00e9 Hospital, Paris, France", 
            "Department of Urology, Tenon Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roupret", 
        "givenName": "Morgan", 
        "id": "sg:person.0740171455.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740171455.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Piti\u00e9-Salp\u00eatri\u00e8re Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411439.a", 
          "name": [
            "Department of Urology, Piti\u00e9 Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Phe", 
        "givenName": "V\u00e9ronique", 
        "id": "sg:person.01312370347.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312370347.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Urology, Tenon Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciofu", 
        "givenName": "Calin", 
        "id": "sg:person.01202403345.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202403345.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Bichat-Claude-Bernard", 
          "id": "https://www.grid.ac/institutes/grid.411119.d", 
          "name": [
            "INSERM, ECEVE, UMR 1123, CIC-EC 11425, Paris, France", 
            "University Paris Diderot, ECEVE, UMR 1123, Sorbonne Paris Cit\u00e9, Paris, France", 
            "Department of Epidemiology and Clinical Research, Bichat-Claude Bernard Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tubach", 
        "givenName": "Florence", 
        "id": "sg:person.0644774462.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644774462.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "GRC-05, University Institute of Oncology, University Paris-6, Paris, France", 
            "Department of Urology, Piti\u00e9 Hospital, Paris, France", 
            "Department of Urology, Tenon Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cussenot", 
        "givenName": "Olivier", 
        "id": "sg:person.013241233644.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013241233644.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "OncoDiag SAS, Agoranov, Paris, France", 
            "Computational Bioscience Research Center, KAUST University, Thuwal, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Incitti", 
        "givenName": "Roberto", 
        "id": "sg:person.0771555305.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771555305.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.urology.2015.07.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000211587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.2006.05976.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001309901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.2006.05976.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001309901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-12-3276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007481021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.2011.10428.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007973986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/bmm.15.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009661782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9440(10)64665-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010814816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bulcan.2015.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013317309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/bc.2011.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013324039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-05-1045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014497848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)80590-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018203419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1206146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018278111", 
          "https://doi.org/10.1038/sj.onc.1206146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1206146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018278111", 
          "https://doi.org/10.1038/sj.onc.1206146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-09-3013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019543069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12032-013-0768-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019745541", 
          "https://doi.org/10.1007/s12032-013-0768-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.11536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019829624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0094023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020766530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020873540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021817259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.juro.2007.03.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023774567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.25651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025874152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-08-0192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028920932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matbio.2007.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030664494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.juro.2011.03.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030826798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031460436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031460436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031460436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.1654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032170128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-11-0067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032514442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-4598-5-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033691518", 
          "https://doi.org/10.1186/1476-4598-5-16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1464-410x.2000.00547.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034895597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0079634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035126321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1741-7015-9-133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035285731", 
          "https://doi.org/10.1186/1741-7015-9-133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000369357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037191802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-10-2659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039271253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra072067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039993367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-13-566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041012375", 
          "https://doi.org/10.1186/1471-2407-13-566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03262330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045201944", 
          "https://doi.org/10.1007/bf03262330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eururo.2015.06.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053675617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075175873", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075246384", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078321775", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: Non-muscle-invasive bladder cancer (NMIBC) is a high incidence form of bladder cancer (BCa), where genetic and epigenetic alterations occur frequently. We assessed the performance of associating a FGFR3 mutation assay and a DNA methylation analysis to improve bladder cancer detection and to predict disease recurrence of NMIBC patients.\nMETHODS: We used allele specific PCR to determine the FGFR3 mutation status for R248C, S249C, G372C, and Y375C. We preselected 18 candidate genes reported in the literature as being hypermethylated in cancer and measured their methylation levels by quantitative multiplex-methylation specific PCR. We selected HS3ST2, SLIT2 and SEPTIN9 as the most discriminative between control and NMIBC patients and we assayed these markers on urine DNA from a diagnostic study consisting of 167 NMIBC and 105 controls and a follow-up study consisting of 158 NMIBC at diagnosis time's and 425 at follow-up time. ROC analysis was performed to evaluate the diagnostic accuracy of each assay alone and in combination.\nRESULTS: For Diagnosis: Using a logistic regression analysis with a model consisting of the 3 markers' methylation values, FGFR3 status, age and known smoker status at the diagnosis time we obtained sensitivity/specificity of 97.6\u00a0%/84.8\u00a0% and an optimism-corrected AUC of 0.96. With an estimated BCa prevalence of 12.1\u00a0% in a hematuria cohort, this corresponds to a negative predictive value (NPV) of 99.6\u00a0%. For Follow-up: Using a logistic regression with FGFR3 mutation and the CMI at two time points (beginning of the follow-up and current time point), we got sensitivity/specificity/NPV of 90.3\u00a0%/65.1\u00a0%/97.0\u00a0% and a corrected AUC of 0.84. We also tested a thresholding algorithm with FGFR3 mutation and the two time points as described above, obtaining sensitivity/specificity/NPV values of, respectively, 94.5\u00a0%/75.9\u00a0%/98.5\u00a0% and an AUC of 0.82.\nCONCLUSIONS: We showed that combined analysis of FGFR3 mutation and DNA methylation markers on urine can be a useful strategy in diagnosis, surveillance and for risk stratification of patients with NMIBC. These results provide the basis for a highly accurate noninvasive test for population screening and allowing to decrease the frequency of cystoscopy, an important feature for both patient quality of life improvement and care cost reduction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12885-016-2748-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024632", 
        "issn": [
          "1471-2407"
        ], 
        "name": "BMC Cancer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Promoter hypermethylation of HS3ST2, SEPTIN9 and SLIT2 combined with FGFR3 mutations as a sensitive/specific urinary assay for diagnosis and surveillance in patients with low or high-risk non-muscle-invasive bladder cancer", 
    "pagination": "704", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6aa1d18893f7cdd64344880dbc9f97e9d51200634459dee5b56de778f2fd5ce7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27586786"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100967800"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12885-016-2748-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022382035"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12885-016-2748-5", 
      "https://app.dimensions.ai/details/publication/pub.1022382035"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87097_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12885-016-2748-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12885-016-2748-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12885-016-2748-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12885-016-2748-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12885-016-2748-5'


 

This table displays all metadata directly associated to this object as RDF triples.

375 TRIPLES      21 PREDICATES      90 URIs      44 LITERALS      32 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12885-016-2748-5 schema:about N1a4f17bd9fb34b0386425ee79036a2e0
2 N2c19a4a953c14e80bf87057c24199348
3 N32b303e694a245719e4c4366caf79a36
4 N3663cd5416204eb7ac8656e1fb5b00ff
5 N38814c92ac50483b806539837ffd67b1
6 N49e0121e7ace40b781f285bf6fae57fe
7 N4a9ca8a8fded4f07b898d03ae9a034ee
8 N55d6c086eb164cdbb0a8aa7a6f5b6896
9 N75a8c8469116493eb6d7efc50746b237
10 N80f9366f3f37422e8d0fee061c5ba9a1
11 N900f4ff34608437ba9c35149524ad0c0
12 N9e9ad55e892f4f179705adf88d80a4e4
13 Na032d1b5f15f476d8e35246c96bf3a23
14 Naacad372feed46fc911dcdd490619cf5
15 Nad8cd1f6ca00423dac0150c510b7d48f
16 Nc41ea6e194bd4e2c95632f31000fae4b
17 Nc663aea4fa7a484c9ec855d8218af527
18 Nc89ed822c8f64e0495d9302b593dd2a1
19 Nd6a99ab521f14d0b9cca9c92fb794f0d
20 Ndcb4a4800fe24afd80546704de2434f3
21 Ne04cd8ca83ae42d695605b64427092e9
22 Nfb0e97dd66b443a780fde3ae45665546
23 Nfe7ee3d6ce8c4660a9db2ffe9c2c8c67
24 anzsrc-for:10
25 anzsrc-for:1004
26 schema:author Nd4e4e1b2f255499b9071773e0de05c76
27 schema:citation sg:pub.10.1007/bf03262330
28 sg:pub.10.1007/s12032-013-0768-4
29 sg:pub.10.1038/sj.onc.1206146
30 sg:pub.10.1186/1471-2407-13-566
31 sg:pub.10.1186/1476-4598-5-16
32 sg:pub.10.1186/1741-7015-9-133
33 https://app.dimensions.ai/details/publication/pub.1075175873
34 https://app.dimensions.ai/details/publication/pub.1075246384
35 https://app.dimensions.ai/details/publication/pub.1078321775
36 https://doi.org/10.1002/cncr.11536
37 https://doi.org/10.1002/ijc.25651
38 https://doi.org/10.1002/path.1654
39 https://doi.org/10.1016/j.bulcan.2015.10.004
40 https://doi.org/10.1016/j.eururo.2015.06.044
41 https://doi.org/10.1016/j.juro.2007.03.034
42 https://doi.org/10.1016/j.juro.2011.03.141
43 https://doi.org/10.1016/j.matbio.2007.03.002
44 https://doi.org/10.1016/j.urology.2015.07.036
45 https://doi.org/10.1016/s0002-9440(10)64665-2
46 https://doi.org/10.1016/s0092-8674(00)80590-5
47 https://doi.org/10.1046/j.1464-410x.2000.00547.x
48 https://doi.org/10.1056/nejmra072067
49 https://doi.org/10.1093/bioinformatics/bti623
50 https://doi.org/10.1111/j.1464-410x.2006.05976.x
51 https://doi.org/10.1111/j.1464-410x.2011.10428.x
52 https://doi.org/10.1158/1055-9965.epi-08-0192
53 https://doi.org/10.1158/1055-9965.epi-11-0067
54 https://doi.org/10.1158/1078-0432.ccr-05-1045
55 https://doi.org/10.1158/1078-0432.ccr-09-3013
56 https://doi.org/10.1158/1078-0432.ccr-10-2659
57 https://doi.org/10.1158/1078-0432.ccr-12-3276
58 https://doi.org/10.1159/000369357
59 https://doi.org/10.1371/journal.pone.0079634
60 https://doi.org/10.1371/journal.pone.0094023
61 https://doi.org/10.1371/journal.pone.0149756
62 https://doi.org/10.1515/bc.2011.073
63 https://doi.org/10.2217/bmm.15.120
64 https://doi.org/10.3322/caac.21166
65 schema:datePublished 2016-12
66 schema:datePublishedReg 2016-12-01
67 schema:description BACKGROUND: Non-muscle-invasive bladder cancer (NMIBC) is a high incidence form of bladder cancer (BCa), where genetic and epigenetic alterations occur frequently. We assessed the performance of associating a FGFR3 mutation assay and a DNA methylation analysis to improve bladder cancer detection and to predict disease recurrence of NMIBC patients. METHODS: We used allele specific PCR to determine the FGFR3 mutation status for R248C, S249C, G372C, and Y375C. We preselected 18 candidate genes reported in the literature as being hypermethylated in cancer and measured their methylation levels by quantitative multiplex-methylation specific PCR. We selected HS3ST2, SLIT2 and SEPTIN9 as the most discriminative between control and NMIBC patients and we assayed these markers on urine DNA from a diagnostic study consisting of 167 NMIBC and 105 controls and a follow-up study consisting of 158 NMIBC at diagnosis time's and 425 at follow-up time. ROC analysis was performed to evaluate the diagnostic accuracy of each assay alone and in combination. RESULTS: For Diagnosis: Using a logistic regression analysis with a model consisting of the 3 markers' methylation values, FGFR3 status, age and known smoker status at the diagnosis time we obtained sensitivity/specificity of 97.6 %/84.8 % and an optimism-corrected AUC of 0.96. With an estimated BCa prevalence of 12.1 % in a hematuria cohort, this corresponds to a negative predictive value (NPV) of 99.6 %. For Follow-up: Using a logistic regression with FGFR3 mutation and the CMI at two time points (beginning of the follow-up and current time point), we got sensitivity/specificity/NPV of 90.3 %/65.1 %/97.0 % and a corrected AUC of 0.84. We also tested a thresholding algorithm with FGFR3 mutation and the two time points as described above, obtaining sensitivity/specificity/NPV values of, respectively, 94.5 %/75.9 %/98.5 % and an AUC of 0.82. CONCLUSIONS: We showed that combined analysis of FGFR3 mutation and DNA methylation markers on urine can be a useful strategy in diagnosis, surveillance and for risk stratification of patients with NMIBC. These results provide the basis for a highly accurate noninvasive test for population screening and allowing to decrease the frequency of cystoscopy, an important feature for both patient quality of life improvement and care cost reduction.
68 schema:genre research_article
69 schema:inLanguage en
70 schema:isAccessibleForFree true
71 schema:isPartOf N2438970dc75b484c80b5897e6a81b4a5
72 Naac9790371e149639e5cbcbdf723b090
73 sg:journal.1024632
74 schema:name Promoter hypermethylation of HS3ST2, SEPTIN9 and SLIT2 combined with FGFR3 mutations as a sensitive/specific urinary assay for diagnosis and surveillance in patients with low or high-risk non-muscle-invasive bladder cancer
75 schema:pagination 704
76 schema:productId N142a9b1490aa48998e9d14fef401eed3
77 N661ec894539848cab3648ae40e73748a
78 N677269dad47443208864b5de47eaf3e6
79 N75ecec9b4fc94cd88379455822f8b75e
80 N94e6b1cd14d74d68a2282297cff72453
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022382035
82 https://doi.org/10.1186/s12885-016-2748-5
83 schema:sdDatePublished 2019-04-11T12:24
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N13c163d574c14b3982213b624c7492ea
86 schema:url https://link.springer.com/10.1186%2Fs12885-016-2748-5
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N13c163d574c14b3982213b624c7492ea schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N142a9b1490aa48998e9d14fef401eed3 schema:name readcube_id
93 schema:value 6aa1d18893f7cdd64344880dbc9f97e9d51200634459dee5b56de778f2fd5ce7
94 rdf:type schema:PropertyValue
95 N1a4f17bd9fb34b0386425ee79036a2e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Aged
97 rdf:type schema:DefinedTerm
98 N2438970dc75b484c80b5897e6a81b4a5 schema:issueNumber 1
99 rdf:type schema:PublicationIssue
100 N2a29f296630945c0ba2e082dd66bf5ad schema:name OncoDiag SAS, Agoranov, Paris, France
101 rdf:type schema:Organization
102 N2c19a4a953c14e80bf87057c24199348 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Aged, 80 and over
104 rdf:type schema:DefinedTerm
105 N32b303e694a245719e4c4366caf79a36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Adult
107 rdf:type schema:DefinedTerm
108 N3663cd5416204eb7ac8656e1fb5b00ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Receptor, Fibroblast Growth Factor, Type 3
110 rdf:type schema:DefinedTerm
111 N38814c92ac50483b806539837ffd67b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Urinary Bladder Neoplasms
113 rdf:type schema:DefinedTerm
114 N49e0121e7ace40b781f285bf6fae57fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Sulfotransferases
116 rdf:type schema:DefinedTerm
117 N4a9ca8a8fded4f07b898d03ae9a034ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Biomarkers, Tumor
119 rdf:type schema:DefinedTerm
120 N4c677eeb547c48e9baff966598c1acb5 rdf:first sg:person.0644774462.29
121 rdf:rest N6973e8783fb740bb819555964a793bff
122 N556f8bbcd260494a8b42fcf5e11833e5 rdf:first sg:person.01243344103.45
123 rdf:rest N7f6d2b36e527454596cd3c3f4457e8b1
124 N55d6c086eb164cdbb0a8aa7a6f5b6896 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Nerve Tissue Proteins
126 rdf:type schema:DefinedTerm
127 N621e0267e40042748eb7b345f50fefb2 schema:name Computational Bioscience Research Center, KAUST University, Thuwal, Saudi Arabia
128 OncoDiag SAS, Agoranov, Paris, France
129 rdf:type schema:Organization
130 N661ec894539848cab3648ae40e73748a schema:name doi
131 schema:value 10.1186/s12885-016-2748-5
132 rdf:type schema:PropertyValue
133 N677269dad47443208864b5de47eaf3e6 schema:name nlm_unique_id
134 schema:value 100967800
135 rdf:type schema:PropertyValue
136 N6973e8783fb740bb819555964a793bff rdf:first sg:person.013241233644.08
137 rdf:rest N840c7c57acd644edb4b3349d934acd79
138 N75a8c8469116493eb6d7efc50746b237 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Humans
140 rdf:type schema:DefinedTerm
141 N75ecec9b4fc94cd88379455822f8b75e schema:name dimensions_id
142 schema:value pub.1022382035
143 rdf:type schema:PropertyValue
144 N7f6d2b36e527454596cd3c3f4457e8b1 rdf:first sg:person.0740171455.76
145 rdf:rest N8422cc1ed6d04eb7946d649c961c6558
146 N80f9366f3f37422e8d0fee061c5ba9a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Area Under Curve
148 rdf:type schema:DefinedTerm
149 N840c7c57acd644edb4b3349d934acd79 rdf:first sg:person.0771555305.28
150 rdf:rest rdf:nil
151 N8422cc1ed6d04eb7946d649c961c6558 rdf:first sg:person.01312370347.20
152 rdf:rest Ne20e3f8525344949a0d9c6ee993e0ffc
153 N8bdec3bc0b4545a692cda99a80ab2d19 schema:name OncoDiag SAS, Agoranov, Paris, France
154 rdf:type schema:Organization
155 N900f4ff34608437ba9c35149524ad0c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Algorithms
157 rdf:type schema:DefinedTerm
158 N94e6b1cd14d74d68a2282297cff72453 schema:name pubmed_id
159 schema:value 27586786
160 rdf:type schema:PropertyValue
161 N9e9ad55e892f4f179705adf88d80a4e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Mutation
163 rdf:type schema:DefinedTerm
164 Na032d1b5f15f476d8e35246c96bf3a23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Middle Aged
166 rdf:type schema:DefinedTerm
167 Na4031aa253574215bfe9d857ec965e4e rdf:first sg:person.0763253422.17
168 rdf:rest Nfcaaf62f99fc4b4a9a00ef05f5b5aaae
169 Naac9790371e149639e5cbcbdf723b090 schema:volumeNumber 16
170 rdf:type schema:PublicationVolume
171 Naacad372feed46fc911dcdd490619cf5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Female
173 rdf:type schema:DefinedTerm
174 Nad8cd1f6ca00423dac0150c510b7d48f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Male
176 rdf:type schema:DefinedTerm
177 Nc41ea6e194bd4e2c95632f31000fae4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Carcinoma, Transitional Cell
179 rdf:type schema:DefinedTerm
180 Nc663aea4fa7a484c9ec855d8218af527 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Septins
182 rdf:type schema:DefinedTerm
183 Nc89ed822c8f64e0495d9302b593dd2a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Intercellular Signaling Peptides and Proteins
185 rdf:type schema:DefinedTerm
186 Nd0551f28105941359869d4a1f1c92b7a rdf:first sg:person.01324441427.88
187 rdf:rest Na4031aa253574215bfe9d857ec965e4e
188 Nd4e4e1b2f255499b9071773e0de05c76 rdf:first sg:person.01275637241.24
189 rdf:rest Nec865ab47555436fbec8a3826d6ea3bd
190 Nd6a99ab521f14d0b9cca9c92fb794f0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Logistic Models
192 rdf:type schema:DefinedTerm
193 Ndcb4a4800fe24afd80546704de2434f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name DNA Methylation
195 rdf:type schema:DefinedTerm
196 Ne04cd8ca83ae42d695605b64427092e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Promoter Regions, Genetic
198 rdf:type schema:DefinedTerm
199 Ne20e3f8525344949a0d9c6ee993e0ffc rdf:first sg:person.01202403345.94
200 rdf:rest N4c677eeb547c48e9baff966598c1acb5
201 Nec865ab47555436fbec8a3826d6ea3bd rdf:first sg:person.01023077336.59
202 rdf:rest Nd0551f28105941359869d4a1f1c92b7a
203 Nfb0e97dd66b443a780fde3ae45665546 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Multiplex Polymerase Chain Reaction
205 rdf:type schema:DefinedTerm
206 Nfcaaf62f99fc4b4a9a00ef05f5b5aaae rdf:first sg:person.01074307260.14
207 rdf:rest N556f8bbcd260494a8b42fcf5e11833e5
208 Nfe7ee3d6ce8c4660a9db2ffe9c2c8c67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name ROC Curve
210 rdf:type schema:DefinedTerm
211 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
212 schema:name Technology
213 rdf:type schema:DefinedTerm
214 anzsrc-for:1004 schema:inDefinedTermSet anzsrc-for:
215 schema:name Medical Biotechnology
216 rdf:type schema:DefinedTerm
217 sg:journal.1024632 schema:issn 1471-2407
218 schema:name BMC Cancer
219 rdf:type schema:Periodical
220 sg:person.01023077336.59 schema:affiliation N8bdec3bc0b4545a692cda99a80ab2d19
221 schema:familyName Grandchamp
222 schema:givenName Bernard
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023077336.59
224 rdf:type schema:Person
225 sg:person.01074307260.14 schema:affiliation https://www.grid.ac/institutes/grid.411119.d
226 schema:familyName Ravery
227 schema:givenName Vincent
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074307260.14
229 rdf:type schema:Person
230 sg:person.01202403345.94 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
231 schema:familyName Ciofu
232 schema:givenName Calin
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202403345.94
234 rdf:type schema:Person
235 sg:person.01243344103.45 schema:affiliation https://www.grid.ac/institutes/grid.411119.d
236 schema:familyName Ouzaid
237 schema:givenName Idir
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243344103.45
239 rdf:type schema:Person
240 sg:person.01275637241.24 schema:affiliation N2a29f296630945c0ba2e082dd66bf5ad
241 schema:familyName Roperch
242 schema:givenName Jean-Pierre
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275637241.24
244 rdf:type schema:Person
245 sg:person.01312370347.20 schema:affiliation https://www.grid.ac/institutes/grid.411439.a
246 schema:familyName Phe
247 schema:givenName Véronique
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312370347.20
249 rdf:type schema:Person
250 sg:person.013241233644.08 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
251 schema:familyName Cussenot
252 schema:givenName Olivier
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013241233644.08
254 rdf:type schema:Person
255 sg:person.01324441427.88 schema:affiliation https://www.grid.ac/institutes/grid.413328.f
256 schema:familyName Desgrandchamps
257 schema:givenName François
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324441427.88
259 rdf:type schema:Person
260 sg:person.0644774462.29 schema:affiliation https://www.grid.ac/institutes/grid.411119.d
261 schema:familyName Tubach
262 schema:givenName Florence
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644774462.29
264 rdf:type schema:Person
265 sg:person.0740171455.76 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
266 schema:familyName Roupret
267 schema:givenName Morgan
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740171455.76
269 rdf:type schema:Person
270 sg:person.0763253422.17 schema:affiliation https://www.grid.ac/institutes/grid.413328.f
271 schema:familyName Mongiat-Artus
272 schema:givenName Pierre
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763253422.17
274 rdf:type schema:Person
275 sg:person.0771555305.28 schema:affiliation N621e0267e40042748eb7b345f50fefb2
276 schema:familyName Incitti
277 schema:givenName Roberto
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771555305.28
279 rdf:type schema:Person
280 sg:pub.10.1007/bf03262330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045201944
281 https://doi.org/10.1007/bf03262330
282 rdf:type schema:CreativeWork
283 sg:pub.10.1007/s12032-013-0768-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019745541
284 https://doi.org/10.1007/s12032-013-0768-4
285 rdf:type schema:CreativeWork
286 sg:pub.10.1038/sj.onc.1206146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018278111
287 https://doi.org/10.1038/sj.onc.1206146
288 rdf:type schema:CreativeWork
289 sg:pub.10.1186/1471-2407-13-566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041012375
290 https://doi.org/10.1186/1471-2407-13-566
291 rdf:type schema:CreativeWork
292 sg:pub.10.1186/1476-4598-5-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033691518
293 https://doi.org/10.1186/1476-4598-5-16
294 rdf:type schema:CreativeWork
295 sg:pub.10.1186/1741-7015-9-133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035285731
296 https://doi.org/10.1186/1741-7015-9-133
297 rdf:type schema:CreativeWork
298 https://app.dimensions.ai/details/publication/pub.1075175873 schema:CreativeWork
299 https://app.dimensions.ai/details/publication/pub.1075246384 schema:CreativeWork
300 https://app.dimensions.ai/details/publication/pub.1078321775 schema:CreativeWork
301 https://doi.org/10.1002/cncr.11536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019829624
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1002/ijc.25651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025874152
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1002/path.1654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032170128
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1016/j.bulcan.2015.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013317309
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1016/j.eururo.2015.06.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053675617
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1016/j.juro.2007.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023774567
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1016/j.juro.2011.03.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030826798
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1016/j.matbio.2007.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030664494
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1016/j.urology.2015.07.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000211587
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1016/s0002-9440(10)64665-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010814816
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1016/s0092-8674(00)80590-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018203419
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1046/j.1464-410x.2000.00547.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034895597
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1056/nejmra072067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039993367
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1093/bioinformatics/bti623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020873540
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1111/j.1464-410x.2006.05976.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001309901
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1111/j.1464-410x.2011.10428.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007973986
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1158/1055-9965.epi-08-0192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028920932
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1158/1055-9965.epi-11-0067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032514442
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1158/1078-0432.ccr-05-1045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014497848
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1158/1078-0432.ccr-09-3013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019543069
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1158/1078-0432.ccr-10-2659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039271253
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1158/1078-0432.ccr-12-3276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007481021
344 rdf:type schema:CreativeWork
345 https://doi.org/10.1159/000369357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037191802
346 rdf:type schema:CreativeWork
347 https://doi.org/10.1371/journal.pone.0079634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035126321
348 rdf:type schema:CreativeWork
349 https://doi.org/10.1371/journal.pone.0094023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020766530
350 rdf:type schema:CreativeWork
351 https://doi.org/10.1371/journal.pone.0149756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031460436
352 rdf:type schema:CreativeWork
353 https://doi.org/10.1515/bc.2011.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013324039
354 rdf:type schema:CreativeWork
355 https://doi.org/10.2217/bmm.15.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009661782
356 rdf:type schema:CreativeWork
357 https://doi.org/10.3322/caac.21166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021817259
358 rdf:type schema:CreativeWork
359 https://www.grid.ac/institutes/grid.411119.d schema:alternateName Hôpital Bichat-Claude-Bernard
360 schema:name Departement of Urology, Bichat-Claude Bernard Hospital, Paris, France
361 Department of Epidemiology and Clinical Research, Bichat-Claude Bernard Hospital, Paris, France
362 INSERM, ECEVE, UMR 1123, CIC-EC 11425, Paris, France
363 University Paris Diderot, ECEVE, UMR 1123, Sorbonne Paris Cité, Paris, France
364 rdf:type schema:Organization
365 https://www.grid.ac/institutes/grid.411439.a schema:alternateName Pitié-Salpêtrière Hospital
366 schema:name Department of Urology, Pitié Hospital, Paris, France
367 rdf:type schema:Organization
368 https://www.grid.ac/institutes/grid.413328.f schema:alternateName Hôpital Saint-Louis
369 schema:name Departement of Urology, Saint-Louis Hospital, Paris, France
370 rdf:type schema:Organization
371 https://www.grid.ac/institutes/grid.413483.9 schema:alternateName Tenon Hospital
372 schema:name Department of Urology, Pitié Hospital, Paris, France
373 Department of Urology, Tenon Hospital, Paris, France
374 GRC-05, University Institute of Oncology, University Paris-6, Paris, France
375 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...