Are preoperative histology and MRI useful for classification of endometrial cancer risk? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-07-19

AUTHORS

Noemie Body, Vincent Lavoué, Olivier De Kerdaniel, Fabrice Foucher, Sébastien Henno, Aurélie Cauchois, Bruno Laviolle, Marc Leblanc, Jean Levêque

ABSTRACT

BackgroundThe 2010 guidelines of the French National Cancer Institute (INCa) classify patients with endometrial cancer into three risk groups for lymph node invasion and recurrence on the basis of MRI and histological analysis of an endometrial specimen obtained preoperatively. The classification guides therapeutic choices, which may include pelvic and/or para-aortic lymphadenectomy. The purpose of this study was to evaluate the diagnostic performance of preoperative assessment to help identify intermediate- or high-risk patients requiring lymphadenectomy.MethodsThe study included all patients who underwent surgery for endometrial cancer between January 2010 and December 2013 at either Rennes University Hospital or Vannes Regional Hospital. The criteria for eligibility included a preoperative assessment with MRI and histological examination of an endometrial sample. A histological comparison was made between the preoperative and surgical specimens.ResultsAmong the 91 patients who underwent a full preoperative assessment, the diagnosis of intermediate- or high-risk endometrial cancer was established by MRI and histology with a sensitivity of 70 %, specificity of 82 %, positive predictive value (PPV) of 87 %, negative predictive value (NPV) of 61 %, positive likelihood ratio (LR+) of 3.8 and negative likelihood ratio (LR-) of 0.3. The risk group was underestimated in 32 % of patients and overestimated in 7 % of patients. MRI underestimated endometrial cancer stage in 20 % of cases, while endometrial sampling underestimated the histological type in 4 % of cases and the grade in 9 % of cases.ConclusionThe preoperative assessment overestimated or underestimated the risk of recurrence in nearly 40 % of cases, with errors in lesion type, grade or stage. Erroneous preoperative risk assessment leads to suboptimal initial surgical management of patients with endometrial cancer. More... »

PAGES

498

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12885-016-2554-0

DOI

http://dx.doi.org/10.1186/s12885-016-2554-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026592264

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27430321


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endometrial Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endometrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Node Excision", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Recurrence, Local", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Preoperative Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gynaecology Department, Rennes University Hospital, H\u00f4pital Sud, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "Gynaecology Department, Rennes University Hospital, H\u00f4pital Sud, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Body", 
        "givenName": "Noemie", 
        "id": "sg:person.01035103265.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035103265.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rennes 1, Faculty of Medicine, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.410368.8", 
          "name": [
            "Gynaecology Department, Rennes University Hospital, H\u00f4pital Sud, Rennes, France", 
            "Oncogenesis, Stress and Signaling, ER 4440, CRCL CRLCC Eug\u00e8ne Marquis, Rennes, France", 
            "University of Rennes 1, Faculty of Medicine, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lavou\u00e9", 
        "givenName": "Vincent", 
        "id": "sg:person.01370764031.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370764031.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gynaecology Department, Rennes University Hospital, H\u00f4pital Sud, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "Gynaecology Department, Rennes University Hospital, H\u00f4pital Sud, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Kerdaniel", 
        "givenName": "Olivier", 
        "id": "sg:person.01103216465.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103216465.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oncogenesis, Stress and Signaling, ER 4440, CRCL CRLCC Eug\u00e8ne Marquis, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.497647.f", 
          "name": [
            "Gynaecology Department, Rennes University Hospital, H\u00f4pital Sud, Rennes, France", 
            "Oncogenesis, Stress and Signaling, ER 4440, CRCL CRLCC Eug\u00e8ne Marquis, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foucher", 
        "givenName": "Fabrice", 
        "id": "sg:person.0707221623.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707221623.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pathology Department, CHU Pontchaillou, Rennes University Hospital, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Pathology Department, CHU Pontchaillou, Rennes University Hospital, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henno", 
        "givenName": "S\u00e9bastien", 
        "id": "sg:person.01023450223.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023450223.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pathology Department, CHU Pontchaillou, Rennes University Hospital, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Pathology Department, CHU Pontchaillou, Rennes University Hospital, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cauchois", 
        "givenName": "Aur\u00e9lie", 
        "id": "sg:person.01147734615.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147734615.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical Pharmacology Department, Rennes University Hospital, CIC Inserm 0203, H\u00f4pital Pontchaillou, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Clinical Pharmacology Department, Rennes University Hospital, CIC Inserm 0203, H\u00f4pital Pontchaillou, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laviolle", 
        "givenName": "Bruno", 
        "id": "sg:person.01346477033.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346477033.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gynaecology Department, Bretagne Atlantique Hospital, Vannes, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Gynaecology Department, Bretagne Atlantique Hospital, Vannes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leblanc", 
        "givenName": "Marc", 
        "id": "sg:person.01217445065.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217445065.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rennes 1, Faculty of Medicine, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.410368.8", 
          "name": [
            "Gynaecology Department, Rennes University Hospital, H\u00f4pital Sud, Rennes, France", 
            "Oncogenesis, Stress and Signaling, ER 4440, CRCL CRLCC Eug\u00e8ne Marquis, Rennes, France", 
            "University of Rennes 1, Faculty of Medicine, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lev\u00eaque", 
        "givenName": "Jean", 
        "id": "sg:person.01206012023.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206012023.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/bjc.2015.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045782353", 
          "https://doi.org/10.1038/bjc.2015.35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-717x-9-141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006037988", 
          "https://doi.org/10.1186/1748-717x-9-141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1309-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032306614", 
          "https://doi.org/10.1007/s00330-009-1309-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2013.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024034477", 
          "https://doi.org/10.1038/bjc.2013.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-012-2683-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016991630", 
          "https://doi.org/10.1245/s10434-012-2683-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-014-4311-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034664420", 
          "https://doi.org/10.1245/s10434-014-4311-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-10-465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010889807", 
          "https://doi.org/10.1186/1471-2407-10-465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-014-4262-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002319584", 
          "https://doi.org/10.1245/s10434-014-4262-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6874-8-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009792531", 
          "https://doi.org/10.1186/1472-6874-8-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07-19", 
    "datePublishedReg": "2016-07-19", 
    "description": "BackgroundThe 2010 guidelines of the French National Cancer Institute (INCa) classify patients with endometrial cancer into three risk groups for lymph node invasion and recurrence on the basis of MRI and histological analysis of an endometrial specimen obtained preoperatively. The classification guides therapeutic choices, which may include pelvic and/or para-aortic lymphadenectomy. The purpose of this study was to evaluate the diagnostic performance of preoperative assessment to help identify intermediate- or high-risk patients requiring lymphadenectomy.MethodsThe study included all patients who underwent surgery for endometrial cancer between January 2010 and December 2013 at either Rennes University Hospital or Vannes Regional Hospital. The criteria for eligibility included a preoperative assessment with MRI and histological examination of an endometrial sample. A histological comparison was made between the preoperative and surgical specimens.ResultsAmong the 91 patients who underwent a full preoperative assessment, the diagnosis of intermediate- or high-risk endometrial cancer was established by MRI and histology with a sensitivity of 70\u00a0%, specificity of 82\u00a0%, positive predictive value (PPV) of 87\u00a0%, negative predictive value (NPV) of 61\u00a0%, positive likelihood ratio (LR+) of 3.8 and negative likelihood ratio (LR-) of 0.3. The risk group was underestimated in 32\u00a0% of patients and overestimated in 7\u00a0% of patients. MRI underestimated endometrial cancer stage in 20\u00a0% of cases, while endometrial sampling underestimated the histological type in 4\u00a0% of cases and the grade in 9\u00a0% of cases.ConclusionThe preoperative assessment overestimated or underestimated the risk of recurrence in nearly 40\u00a0% of cases, with errors in lesion type, grade or stage. Erroneous preoperative risk assessment leads to suboptimal initial surgical management of patients with endometrial cancer.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12885-016-2554-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024632", 
        "issn": [
          "1471-2407"
        ], 
        "name": "BMC Cancer", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "endometrial cancer", 
      "preoperative assessment", 
      "negative predictive value", 
      "positive predictive value", 
      "risk groups", 
      "predictive value", 
      "high-risk endometrial cancer", 
      "French National Cancer Institute", 
      "full preoperative assessment", 
      "para-aortic lymphadenectomy", 
      "endometrial cancer risk", 
      "high-risk patients", 
      "preoperative risk assessment", 
      "initial surgical management", 
      "lymph node invasion", 
      "risk of recurrence", 
      "endometrial cancer stages", 
      "Rennes University Hospital", 
      "basis of MRI", 
      "National Cancer Institute", 
      "positive likelihood ratio", 
      "negative likelihood ratio", 
      "likelihood ratio", 
      "endometrial sampling", 
      "preoperative histology", 
      "node invasion", 
      "endometrial specimen", 
      "histological type", 
      "surgical management", 
      "endometrial samples", 
      "therapeutic choice", 
      "University Hospital", 
      "cancer stage", 
      "surgical specimens", 
      "regional hospital", 
      "histological examination", 
      "MethodsThe study", 
      "cancer risk", 
      "Cancer Institute", 
      "patients", 
      "lesion type", 
      "histological analysis", 
      "cancer", 
      "MRI", 
      "diagnostic performance", 
      "histological comparison", 
      "lymphadenectomy", 
      "recurrence", 
      "hospital", 
      "histology", 
      "risk", 
      "assessment", 
      "surgery", 
      "grade", 
      "ResultsAmong", 
      "risk assessment", 
      "group", 
      "cases", 
      "diagnosis", 
      "eligibility", 
      "invasion", 
      "examination", 
      "study", 
      "guidelines", 
      "specificity", 
      "stage", 
      "management", 
      "criteria", 
      "Institute", 
      "classification", 
      "specimens", 
      "sensitivity", 
      "ratio", 
      "types", 
      "purpose", 
      "specimen", 
      "samples", 
      "values", 
      "sampling", 
      "comparison", 
      "choice", 
      "analysis", 
      "basis", 
      "error", 
      "performance"
    ], 
    "name": "Are preoperative histology and MRI useful for classification of endometrial cancer risk?", 
    "pagination": "498", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026592264"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12885-016-2554-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27430321"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12885-016-2554-0", 
      "https://app.dimensions.ai/details/publication/pub.1026592264"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_684.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12885-016-2554-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12885-016-2554-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12885-016-2554-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12885-016-2554-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12885-016-2554-0'


 

This table displays all metadata directly associated to this object as RDF triples.

331 TRIPLES      22 PREDICATES      139 URIs      122 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12885-016-2554-0 schema:about N0f1e57bc33b94829beb1a502a54d1224
2 N1203fc75b9fa48e88e9a50eedef99857
3 N172744ff9b0843d7a967e8daf6727958
4 N4d1ab1dee32e404ca9dccff17aec4f29
5 N5221bfad9c854f669fa8f2dfcdf9ea92
6 N5ed1296e5ec34de3ab832102366d68d5
7 N83ae017be1234494993806d0449cfe6e
8 N8707e06eaea84eb487bee8e98698a643
9 N93c5b964282842fa851a07ee341345f4
10 N9bf55e9a57bc4a459b5a88e406d3a559
11 Nab861acb6625413b885aa903616f74b4
12 Naec3b2f1580042299e02f2960928ef72
13 Nb8d692237c994e31a2b3891740f182f6
14 Nba38f7037bc54c3b9a1a7a55a736215c
15 Nc01a97fc69fb44f3bf46794f13019350
16 Nc72b11ed62cf4dc9aeb7c36d07a5f613
17 Nddd42bdb0d514c30988f597348f3f837
18 Nfb2b2be9d2aa4e02a5b13bfd303783ce
19 Nffdc69455847448bb6ced51346332d7f
20 anzsrc-for:11
21 anzsrc-for:1112
22 schema:author N10034029de534d4da64eb1c40b364742
23 schema:citation sg:pub.10.1007/s00330-009-1309-6
24 sg:pub.10.1038/bjc.2013.95
25 sg:pub.10.1038/bjc.2015.35
26 sg:pub.10.1186/1471-2407-10-465
27 sg:pub.10.1186/1472-6874-8-8
28 sg:pub.10.1186/1748-717x-9-141
29 sg:pub.10.1245/s10434-012-2683-x
30 sg:pub.10.1245/s10434-014-4262-9
31 sg:pub.10.1245/s10434-014-4311-4
32 schema:datePublished 2016-07-19
33 schema:datePublishedReg 2016-07-19
34 schema:description BackgroundThe 2010 guidelines of the French National Cancer Institute (INCa) classify patients with endometrial cancer into three risk groups for lymph node invasion and recurrence on the basis of MRI and histological analysis of an endometrial specimen obtained preoperatively. The classification guides therapeutic choices, which may include pelvic and/or para-aortic lymphadenectomy. The purpose of this study was to evaluate the diagnostic performance of preoperative assessment to help identify intermediate- or high-risk patients requiring lymphadenectomy.MethodsThe study included all patients who underwent surgery for endometrial cancer between January 2010 and December 2013 at either Rennes University Hospital or Vannes Regional Hospital. The criteria for eligibility included a preoperative assessment with MRI and histological examination of an endometrial sample. A histological comparison was made between the preoperative and surgical specimens.ResultsAmong the 91 patients who underwent a full preoperative assessment, the diagnosis of intermediate- or high-risk endometrial cancer was established by MRI and histology with a sensitivity of 70 %, specificity of 82 %, positive predictive value (PPV) of 87 %, negative predictive value (NPV) of 61 %, positive likelihood ratio (LR+) of 3.8 and negative likelihood ratio (LR-) of 0.3. The risk group was underestimated in 32 % of patients and overestimated in 7 % of patients. MRI underestimated endometrial cancer stage in 20 % of cases, while endometrial sampling underestimated the histological type in 4 % of cases and the grade in 9 % of cases.ConclusionThe preoperative assessment overestimated or underestimated the risk of recurrence in nearly 40 % of cases, with errors in lesion type, grade or stage. Erroneous preoperative risk assessment leads to suboptimal initial surgical management of patients with endometrial cancer.
35 schema:genre article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N18d9dd6579d340e8b8b9fe58f9379596
39 N194d73d02b9840bb9ffb78c54d5c4f15
40 sg:journal.1024632
41 schema:keywords Cancer Institute
42 French National Cancer Institute
43 Institute
44 MRI
45 MethodsThe study
46 National Cancer Institute
47 Rennes University Hospital
48 ResultsAmong
49 University Hospital
50 analysis
51 assessment
52 basis
53 basis of MRI
54 cancer
55 cancer risk
56 cancer stage
57 cases
58 choice
59 classification
60 comparison
61 criteria
62 diagnosis
63 diagnostic performance
64 eligibility
65 endometrial cancer
66 endometrial cancer risk
67 endometrial cancer stages
68 endometrial samples
69 endometrial sampling
70 endometrial specimen
71 error
72 examination
73 full preoperative assessment
74 grade
75 group
76 guidelines
77 high-risk endometrial cancer
78 high-risk patients
79 histological analysis
80 histological comparison
81 histological examination
82 histological type
83 histology
84 hospital
85 initial surgical management
86 invasion
87 lesion type
88 likelihood ratio
89 lymph node invasion
90 lymphadenectomy
91 management
92 negative likelihood ratio
93 negative predictive value
94 node invasion
95 para-aortic lymphadenectomy
96 patients
97 performance
98 positive likelihood ratio
99 positive predictive value
100 predictive value
101 preoperative assessment
102 preoperative histology
103 preoperative risk assessment
104 purpose
105 ratio
106 recurrence
107 regional hospital
108 risk
109 risk assessment
110 risk groups
111 risk of recurrence
112 samples
113 sampling
114 sensitivity
115 specificity
116 specimen
117 specimens
118 stage
119 study
120 surgery
121 surgical management
122 surgical specimens
123 therapeutic choice
124 types
125 values
126 schema:name Are preoperative histology and MRI useful for classification of endometrial cancer risk?
127 schema:pagination 498
128 schema:productId N7480f6d2f69c4db5ab16b50c4c4e4af6
129 N9d8b53443b4041a985fae5725ee594f4
130 Na92ce419758d437191f7eead38d4e801
131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026592264
132 https://doi.org/10.1186/s12885-016-2554-0
133 schema:sdDatePublished 2022-05-20T07:31
134 schema:sdLicense https://scigraph.springernature.com/explorer/license/
135 schema:sdPublisher N692b3cb9f7d74bb8bbe764df731de74e
136 schema:url https://doi.org/10.1186/s12885-016-2554-0
137 sgo:license sg:explorer/license/
138 sgo:sdDataset articles
139 rdf:type schema:ScholarlyArticle
140 N0f1e57bc33b94829beb1a502a54d1224 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Neoplasm Recurrence, Local
142 rdf:type schema:DefinedTerm
143 N10034029de534d4da64eb1c40b364742 rdf:first sg:person.01035103265.78
144 rdf:rest Nd9737726a2e14cb1a7c4908d970f9968
145 N1203fc75b9fa48e88e9a50eedef99857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Reproducibility of Results
147 rdf:type schema:DefinedTerm
148 N172744ff9b0843d7a967e8daf6727958 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Lymph Nodes
150 rdf:type schema:DefinedTerm
151 N18d9dd6579d340e8b8b9fe58f9379596 schema:volumeNumber 16
152 rdf:type schema:PublicationVolume
153 N194d73d02b9840bb9ffb78c54d5c4f15 schema:issueNumber 1
154 rdf:type schema:PublicationIssue
155 N21ec18c5d38e49b89b83c5c94d9f07de rdf:first sg:person.01147734615.02
156 rdf:rest N3ae4be3e880042e3b97b8bf5463ddf7f
157 N3ae4be3e880042e3b97b8bf5463ddf7f rdf:first sg:person.01346477033.32
158 rdf:rest Na79014ad62a5498aa956ded4ab28ba11
159 N4d1ab1dee32e404ca9dccff17aec4f29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Female
161 rdf:type schema:DefinedTerm
162 N5221bfad9c854f669fa8f2dfcdf9ea92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Adult
164 rdf:type schema:DefinedTerm
165 N5ed1296e5ec34de3ab832102366d68d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Risk Assessment
167 rdf:type schema:DefinedTerm
168 N692b3cb9f7d74bb8bbe764df731de74e schema:name Springer Nature - SN SciGraph project
169 rdf:type schema:Organization
170 N6a13bc8f178b4e5c9fb1b93319f11156 rdf:first sg:person.01206012023.14
171 rdf:rest rdf:nil
172 N7480f6d2f69c4db5ab16b50c4c4e4af6 schema:name pubmed_id
173 schema:value 27430321
174 rdf:type schema:PropertyValue
175 N83ae017be1234494993806d0449cfe6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Lymphatic Metastasis
177 rdf:type schema:DefinedTerm
178 N8707e06eaea84eb487bee8e98698a643 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Endometrium
180 rdf:type schema:DefinedTerm
181 N93c5b964282842fa851a07ee341345f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Lymph Node Excision
183 rdf:type schema:DefinedTerm
184 N9bf55e9a57bc4a459b5a88e406d3a559 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Preoperative Care
186 rdf:type schema:DefinedTerm
187 N9d8b53443b4041a985fae5725ee594f4 schema:name dimensions_id
188 schema:value pub.1026592264
189 rdf:type schema:PropertyValue
190 Na79014ad62a5498aa956ded4ab28ba11 rdf:first sg:person.01217445065.28
191 rdf:rest N6a13bc8f178b4e5c9fb1b93319f11156
192 Na92ce419758d437191f7eead38d4e801 schema:name doi
193 schema:value 10.1186/s12885-016-2554-0
194 rdf:type schema:PropertyValue
195 Nab861acb6625413b885aa903616f74b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Aged, 80 and over
197 rdf:type schema:DefinedTerm
198 Naec3b2f1580042299e02f2960928ef72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Risk Factors
200 rdf:type schema:DefinedTerm
201 Nb281adca17014c2b9f24a71a437d246f rdf:first sg:person.01023450223.24
202 rdf:rest N21ec18c5d38e49b89b83c5c94d9f07de
203 Nb8d692237c994e31a2b3891740f182f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Middle Aged
205 rdf:type schema:DefinedTerm
206 Nba38f7037bc54c3b9a1a7a55a736215c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Aged
208 rdf:type schema:DefinedTerm
209 Nc01a97fc69fb44f3bf46794f13019350 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Humans
211 rdf:type schema:DefinedTerm
212 Nc72b11ed62cf4dc9aeb7c36d07a5f613 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Neoplasm Staging
214 rdf:type schema:DefinedTerm
215 Nd7372d0e003f4e05a6ddb43125ac69e6 rdf:first sg:person.01103216465.65
216 rdf:rest Nf55c980cda5a4f1a8d25c04ba1020baa
217 Nd9737726a2e14cb1a7c4908d970f9968 rdf:first sg:person.01370764031.08
218 rdf:rest Nd7372d0e003f4e05a6ddb43125ac69e6
219 Nddd42bdb0d514c30988f597348f3f837 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
220 schema:name Endometrial Neoplasms
221 rdf:type schema:DefinedTerm
222 Nf55c980cda5a4f1a8d25c04ba1020baa rdf:first sg:person.0707221623.06
223 rdf:rest Nb281adca17014c2b9f24a71a437d246f
224 Nfb2b2be9d2aa4e02a5b13bfd303783ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
225 schema:name Magnetic Resonance Imaging
226 rdf:type schema:DefinedTerm
227 Nffdc69455847448bb6ced51346332d7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
228 schema:name Retrospective Studies
229 rdf:type schema:DefinedTerm
230 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
231 schema:name Medical and Health Sciences
232 rdf:type schema:DefinedTerm
233 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
234 schema:name Oncology and Carcinogenesis
235 rdf:type schema:DefinedTerm
236 sg:journal.1024632 schema:issn 1471-2407
237 schema:name BMC Cancer
238 schema:publisher Springer Nature
239 rdf:type schema:Periodical
240 sg:person.01023450223.24 schema:affiliation grid-institutes:grid.414271.5
241 schema:familyName Henno
242 schema:givenName Sébastien
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023450223.24
244 rdf:type schema:Person
245 sg:person.01035103265.78 schema:affiliation grid-institutes:grid.411154.4
246 schema:familyName Body
247 schema:givenName Noemie
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035103265.78
249 rdf:type schema:Person
250 sg:person.01103216465.65 schema:affiliation grid-institutes:grid.411154.4
251 schema:familyName De Kerdaniel
252 schema:givenName Olivier
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103216465.65
254 rdf:type schema:Person
255 sg:person.01147734615.02 schema:affiliation grid-institutes:grid.414271.5
256 schema:familyName Cauchois
257 schema:givenName Aurélie
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147734615.02
259 rdf:type schema:Person
260 sg:person.01206012023.14 schema:affiliation grid-institutes:grid.410368.8
261 schema:familyName Levêque
262 schema:givenName Jean
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206012023.14
264 rdf:type schema:Person
265 sg:person.01217445065.28 schema:affiliation grid-institutes:None
266 schema:familyName Leblanc
267 schema:givenName Marc
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217445065.28
269 rdf:type schema:Person
270 sg:person.01346477033.32 schema:affiliation grid-institutes:grid.414271.5
271 schema:familyName Laviolle
272 schema:givenName Bruno
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346477033.32
274 rdf:type schema:Person
275 sg:person.01370764031.08 schema:affiliation grid-institutes:grid.410368.8
276 schema:familyName Lavoué
277 schema:givenName Vincent
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370764031.08
279 rdf:type schema:Person
280 sg:person.0707221623.06 schema:affiliation grid-institutes:grid.497647.f
281 schema:familyName Foucher
282 schema:givenName Fabrice
283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707221623.06
284 rdf:type schema:Person
285 sg:pub.10.1007/s00330-009-1309-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032306614
286 https://doi.org/10.1007/s00330-009-1309-6
287 rdf:type schema:CreativeWork
288 sg:pub.10.1038/bjc.2013.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024034477
289 https://doi.org/10.1038/bjc.2013.95
290 rdf:type schema:CreativeWork
291 sg:pub.10.1038/bjc.2015.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045782353
292 https://doi.org/10.1038/bjc.2015.35
293 rdf:type schema:CreativeWork
294 sg:pub.10.1186/1471-2407-10-465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010889807
295 https://doi.org/10.1186/1471-2407-10-465
296 rdf:type schema:CreativeWork
297 sg:pub.10.1186/1472-6874-8-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009792531
298 https://doi.org/10.1186/1472-6874-8-8
299 rdf:type schema:CreativeWork
300 sg:pub.10.1186/1748-717x-9-141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006037988
301 https://doi.org/10.1186/1748-717x-9-141
302 rdf:type schema:CreativeWork
303 sg:pub.10.1245/s10434-012-2683-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016991630
304 https://doi.org/10.1245/s10434-012-2683-x
305 rdf:type schema:CreativeWork
306 sg:pub.10.1245/s10434-014-4262-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002319584
307 https://doi.org/10.1245/s10434-014-4262-9
308 rdf:type schema:CreativeWork
309 sg:pub.10.1245/s10434-014-4311-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034664420
310 https://doi.org/10.1245/s10434-014-4311-4
311 rdf:type schema:CreativeWork
312 grid-institutes:None schema:alternateName Gynaecology Department, Bretagne Atlantique Hospital, Vannes, France
313 schema:name Gynaecology Department, Bretagne Atlantique Hospital, Vannes, France
314 rdf:type schema:Organization
315 grid-institutes:grid.410368.8 schema:alternateName University of Rennes 1, Faculty of Medicine, Rennes, France
316 schema:name Gynaecology Department, Rennes University Hospital, Hôpital Sud, Rennes, France
317 Oncogenesis, Stress and Signaling, ER 4440, CRCL CRLCC Eugène Marquis, Rennes, France
318 University of Rennes 1, Faculty of Medicine, Rennes, France
319 rdf:type schema:Organization
320 grid-institutes:grid.411154.4 schema:alternateName Gynaecology Department, Rennes University Hospital, Hôpital Sud, Rennes, France
321 schema:name Gynaecology Department, Rennes University Hospital, Hôpital Sud, Rennes, France
322 rdf:type schema:Organization
323 grid-institutes:grid.414271.5 schema:alternateName Clinical Pharmacology Department, Rennes University Hospital, CIC Inserm 0203, Hôpital Pontchaillou, Rennes, France
324 Pathology Department, CHU Pontchaillou, Rennes University Hospital, Rennes, France
325 schema:name Clinical Pharmacology Department, Rennes University Hospital, CIC Inserm 0203, Hôpital Pontchaillou, Rennes, France
326 Pathology Department, CHU Pontchaillou, Rennes University Hospital, Rennes, France
327 rdf:type schema:Organization
328 grid-institutes:grid.497647.f schema:alternateName Oncogenesis, Stress and Signaling, ER 4440, CRCL CRLCC Eugène Marquis, Rennes, France
329 schema:name Gynaecology Department, Rennes University Hospital, Hôpital Sud, Rennes, France
330 Oncogenesis, Stress and Signaling, ER 4440, CRCL CRLCC Eugène Marquis, Rennes, France
331 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...