Population-based trends and risk factors of early- and late-onset preeclampsia in Taiwan 2001–2014 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Shu-Han You, Po-Jen Cheng, Ting-Ting Chung, Chang-Fu Kuo, Hsien-Ming Wu, Pao-Hsien Chu

ABSTRACT

BACKGROUND: Preeclampsia, a multisystem disorder in pregnancies complicates with maternal and fetal morbidity. Early- and late-onset preeclampsia, defined as preeclampsia developed before and after 34 weeks of gestation, respectively. The early-onset disease was less prevalent but associated with poorer outcomes. Moreover, the risk factors between early -and late- onset preeclampsia could be differed owing to the varied pathophysiology. In the study, we evaluated the incidences, trends, and risk factors of early- and late- onset preeclampsia in Taiwan. METHODS: This retrospective population-based cohort study included all ≧20 weeks singleton pregnancies resulting in live-born babies or stillbirths in Taiwan between January 1, 2001 and December 31, 2014 (n = 2,884,347). The data was collected electronically in Taiwanese Birth Register and National Health Insurance Research Database. The incidences and trends of early- and late-onset preeclampsia were assessed through Joinpoint analysis. Multivariate logistic regression was used to analyze the risk factors of both diseases. RESULTS: The age-adjusted overall preeclampsia rate was slightly increased from 1.1%(95%confidence interval [CI], 1.1-1.2) in 2001 to 1.3% (95%CI, 1.2-1.3) in 2012 with average annual percentage change (AAPC) 0.1%/year (95%CI, 0-0.2%). However, the incidence was remarkably increased from 1.3% (95%CI, 1.3-1.4) in 2012 to 1.7% (95%CI, 1.6-1.8) in 2014 with AAPC 1.3%/year (95%CI,0.3-2.5). Over the study period, the incidence trend in late-onset preeclampsia was steadily increasing from 0.7% (95%CI, 0.6-0.7) in 2001 to 0.9% (95%CI, 0.8-0.9) in 2014 with AAPC 0.2%/year (95%CI, 0.2-0.3) but in early-onset preeclampsia was predominantly increase from 0.5% (95%CI, 0.4-0.5) in 2012 to 0.8% (95%CI, 0.8-0.9) in 2014 with AAPC 2.3%/year (95%CI, 0.8-4.0). Advanced maternal age, primiparity, stroke, diabetes mellitus, chronic hypertension, and hyperthyroidism were risk factors of preeclampsia. Comparing early- and late-onset diseases, chronic hypertension (ratio of relative risk [RRR], 1.71; 95%CI, 1.55-1.88) and older age (RRR, 1.41; 95%CI 1.29-1.54) were more strongly associated with early-onset disease, whereas primiparity (RRR 0.71, 95%CI, 0.68-0.75) had stronger association with late-onset preeclampsia. CONCLUSIONS: The incidences of overall, and early- and late-onset preeclampsia were increasing in Taiwan from 2001 to 2014, predominantly for early-onset disease. Pregnant women with older age and chronic hypertension had significantly higher risk of early-onset preeclampsia. More... »

PAGES

199

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12884-018-1845-7

DOI

http://dx.doi.org/10.1186/s12884-018-1845-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104326169

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29855344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertension, Pregnancy-Induced", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Live Birth", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Maternal Age", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "National Health Programs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Parity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pre-Eclampsia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pregnancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Registries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stillbirth", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Taiwan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "You", 
        "givenName": "Shu-Han", 
        "id": "sg:person.010507234604.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010507234604.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Po-Jen", 
        "id": "sg:person.01037162341.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037162341.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Big data research office, Chang Gung Memorial Hospital, Linkou, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Ting-Ting", 
        "id": "sg:person.016643511663.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016643511663.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Linkou, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuo", 
        "givenName": "Chang-Fu", 
        "id": "sg:person.01253232301.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253232301.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Hsien-Ming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Cardiology, Chang Gung Memorial Hospital, Linkou, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chu", 
        "givenName": "Pao-Hsien", 
        "id": "sg:person.016666024317.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016666024317.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/10641950601147945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001346917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(06)68397-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001634456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tjog.2013.06.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003545228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjopen-2011-000101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004687621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.38380.674340.e0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004823177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1471-0528.12629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004882382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2010.08.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007238879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9378(96)70056-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008015287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9378(96)70056-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008015287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(00)03599-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008295314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajog.2013.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008402466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1503/cmaj.120518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010928426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1503/cmaj.120518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010928426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aog.0000437382.03963.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012091206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aog.0000437382.03963.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012091206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.108.540880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012306256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.108.540880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012306256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/siny.2000.0023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013783180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2214-109x(14)70227-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014177097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000359969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015020936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejogrb.2013.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015451600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00404-014-3176-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017113457", 
          "https://doi.org/10.1007/s00404-014-3176-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000357615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019040608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.108.117358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022516242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.108.117358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022516242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajog.2013.08.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027141309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.thromres.2015.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030119865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7292(00)00240-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031060960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17987-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032745161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.semperi.2009.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036796598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000002653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038076201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000002653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038076201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aog.0000000000000472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038203940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aog.0000000000000472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038203940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0b013e3280d94313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040903422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0b013e3280d94313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040903422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/ibpc.s50641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042647900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(15)00070-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043080369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aog.0b013e3181a45b25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044089983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aog.0b013e3181a45b25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044089983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/prg-120021060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045010573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0160808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045832403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.preghy.2014.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049988716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4061/2011/858134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052187899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.i1753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053018706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/ajh.2008.20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056440410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4414/smw.2015.14175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072528541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077032175", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5694/j.1326-5377.2005.tb06730.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077032175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1704559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090282273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcb.26290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090773844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jri.2017.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091322656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s2040174417000733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091617214"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Preeclampsia, a multisystem disorder in pregnancies complicates with maternal and fetal morbidity. Early- and late-onset preeclampsia, defined as preeclampsia developed before and after 34\u00a0weeks of gestation, respectively. The early-onset disease was less prevalent but associated with poorer outcomes. Moreover, the risk factors between early -and late- onset preeclampsia could be differed owing to the varied pathophysiology. In the study, we evaluated the incidences, trends, and risk factors of early- and late- onset preeclampsia in Taiwan.\nMETHODS: This retrospective population-based cohort study included all \u226720\u00a0weeks singleton pregnancies resulting in live-born babies or stillbirths in Taiwan between January 1, 2001 and December 31, 2014 (n\u2009=\u20092,884,347). The data was collected electronically in Taiwanese Birth Register and National Health Insurance Research Database. The incidences and trends of early- and late-onset preeclampsia were assessed through Joinpoint analysis. Multivariate logistic regression was used to analyze the risk factors of both diseases.\nRESULTS: The age-adjusted overall preeclampsia rate was slightly increased from 1.1%(95%confidence interval [CI], 1.1-1.2) in 2001 to 1.3% (95%CI, 1.2-1.3) in 2012 with average annual percentage change (AAPC) 0.1%/year (95%CI, 0-0.2%). However, the incidence was remarkably increased from 1.3% (95%CI, 1.3-1.4) in 2012 to 1.7% (95%CI, 1.6-1.8) in 2014 with AAPC 1.3%/year (95%CI,0.3-2.5). Over the study period, the incidence trend in late-onset preeclampsia was steadily increasing from 0.7% (95%CI, 0.6-0.7) in 2001 to 0.9% (95%CI, 0.8-0.9) in 2014 with AAPC 0.2%/year (95%CI, 0.2-0.3) but in early-onset preeclampsia was predominantly increase from 0.5% (95%CI, 0.4-0.5) in 2012 to 0.8% (95%CI, 0.8-0.9) in 2014 with AAPC 2.3%/year (95%CI, 0.8-4.0). Advanced maternal age, primiparity, stroke, diabetes mellitus, chronic hypertension, and hyperthyroidism were risk factors of preeclampsia. Comparing early- and late-onset diseases, chronic hypertension (ratio of relative risk [RRR], 1.71; 95%CI, 1.55-1.88) and older age (RRR, 1.41; 95%CI 1.29-1.54) were more strongly associated with early-onset disease, whereas primiparity (RRR 0.71, 95%CI, 0.68-0.75) had stronger association with late-onset preeclampsia.\nCONCLUSIONS: The incidences of overall, and early- and late-onset preeclampsia were increasing in Taiwan from 2001 to 2014, predominantly for early-onset disease. Pregnant women with older age and chronic hypertension had significantly higher risk of early-onset preeclampsia.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12884-018-1845-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024631", 
        "issn": [
          "1471-2393"
        ], 
        "name": "BMC Pregnancy and Childbirth", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Population-based trends and risk factors of early- and late-onset preeclampsia in Taiwan 2001\u20132014", 
    "pagination": "199", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "01f5f7f7613533890693cbb306625435779e6537fefcbaec19179721d5c40cb7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29855344"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100967799"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12884-018-1845-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104326169"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12884-018-1845-7", 
      "https://app.dimensions.ai/details/publication/pub.1104326169"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54011_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12884-018-1845-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12884-018-1845-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12884-018-1845-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12884-018-1845-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12884-018-1845-7'


 

This table displays all metadata directly associated to this object as RDF triples.

323 TRIPLES      21 PREDICATES      93 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12884-018-1845-7 schema:about N23de2c67f3ee46b7821fbdec0bdbb16c
2 N28862ec830cd4102a37ed3e9fc82e58d
3 N3175d1c1e39f42f5963a8620c2949003
4 N35a6d048f12147ee8ef06f85740cf796
5 N560624b4d7ca4d35bcc6e79a6f1cfc35
6 N7667a6b3929e45e9af6878b8d79e0583
7 N7d24ee43cdd94cb49af7da1443e3c808
8 Naf98c5196adc49b1a5f04a4ef0b25998
9 Nb0e972cfe3214104af324a2ab5387b6f
10 Nb6562ee84469475f8a2d04078008e33b
11 Nbaad684b65f147e3ad12bb366b558285
12 Nccf16eda11eb48b28c4131cc5a3ec03e
13 Nd0c48780dcde414abbafea5fb7b9a716
14 Nd141a14bc75c488388b0b6a32dfb77ae
15 Nd4e2c2f26aa34a76befa5d405a91e2a7
16 Nd5e1897498d048f984ba1d131d6b499c
17 Ne3f7de27c6e1416181b702b1f498e4aa
18 Ne4b4b251196c40539b2581e5a896201f
19 Ne54e1fa1320441a4ad74cea2622fe633
20 Nec774dd9535a46f5b021720e6767afc1
21 anzsrc-for:11
22 anzsrc-for:1117
23 schema:author Ne5e91d78fcec490b8583e492a5b8935b
24 schema:citation sg:pub.10.1007/s00404-014-3176-x
25 https://app.dimensions.ai/details/publication/pub.1077032175
26 https://doi.org/10.1002/jcb.26290
27 https://doi.org/10.1016/j.ajog.2013.07.030
28 https://doi.org/10.1016/j.ajog.2013.08.019
29 https://doi.org/10.1016/j.amjcard.2010.08.073
30 https://doi.org/10.1016/j.ejogrb.2013.05.005
31 https://doi.org/10.1016/j.jri.2017.08.005
32 https://doi.org/10.1016/j.preghy.2014.02.001
33 https://doi.org/10.1016/j.thromres.2015.06.022
34 https://doi.org/10.1016/j.tjog.2013.06.021
35 https://doi.org/10.1016/s0002-9378(96)70056-x
36 https://doi.org/10.1016/s0020-7292(00)00240-x
37 https://doi.org/10.1016/s0140-6736(00)03599-6
38 https://doi.org/10.1016/s0140-6736(05)17987-2
39 https://doi.org/10.1016/s0140-6736(06)68397-9
40 https://doi.org/10.1016/s0140-6736(15)00070-7
41 https://doi.org/10.1016/s2214-109x(14)70227-x
42 https://doi.org/10.1017/s2040174417000733
43 https://doi.org/10.1038/ajh.2008.20
44 https://doi.org/10.1053/j.semperi.2009.02.010
45 https://doi.org/10.1053/siny.2000.0023
46 https://doi.org/10.1056/nejmoa1704559
47 https://doi.org/10.1080/10641950601147945
48 https://doi.org/10.1081/prg-120021060
49 https://doi.org/10.1097/01.aog.0000437382.03963.88
50 https://doi.org/10.1097/aog.0000000000000472
51 https://doi.org/10.1097/aog.0b013e3181a45b25
52 https://doi.org/10.1097/hjh.0b013e3280d94313
53 https://doi.org/10.1097/md.0000000000002653
54 https://doi.org/10.1111/1471-0528.12629
55 https://doi.org/10.1136/bmj.38380.674340.e0
56 https://doi.org/10.1136/bmj.i1753
57 https://doi.org/10.1136/bmjopen-2011-000101
58 https://doi.org/10.1159/000357615
59 https://doi.org/10.1159/000359969
60 https://doi.org/10.1161/hypertensionaha.108.117358
61 https://doi.org/10.1161/strokeaha.108.540880
62 https://doi.org/10.1371/journal.pone.0160808
63 https://doi.org/10.1503/cmaj.120518
64 https://doi.org/10.2147/ibpc.s50641
65 https://doi.org/10.4061/2011/858134
66 https://doi.org/10.4414/smw.2015.14175
67 https://doi.org/10.5694/j.1326-5377.2005.tb06730.x
68 schema:datePublished 2018-12
69 schema:datePublishedReg 2018-12-01
70 schema:description BACKGROUND: Preeclampsia, a multisystem disorder in pregnancies complicates with maternal and fetal morbidity. Early- and late-onset preeclampsia, defined as preeclampsia developed before and after 34 weeks of gestation, respectively. The early-onset disease was less prevalent but associated with poorer outcomes. Moreover, the risk factors between early -and late- onset preeclampsia could be differed owing to the varied pathophysiology. In the study, we evaluated the incidences, trends, and risk factors of early- and late- onset preeclampsia in Taiwan. METHODS: This retrospective population-based cohort study included all ≧20 weeks singleton pregnancies resulting in live-born babies or stillbirths in Taiwan between January 1, 2001 and December 31, 2014 (n = 2,884,347). The data was collected electronically in Taiwanese Birth Register and National Health Insurance Research Database. The incidences and trends of early- and late-onset preeclampsia were assessed through Joinpoint analysis. Multivariate logistic regression was used to analyze the risk factors of both diseases. RESULTS: The age-adjusted overall preeclampsia rate was slightly increased from 1.1%(95%confidence interval [CI], 1.1-1.2) in 2001 to 1.3% (95%CI, 1.2-1.3) in 2012 with average annual percentage change (AAPC) 0.1%/year (95%CI, 0-0.2%). However, the incidence was remarkably increased from 1.3% (95%CI, 1.3-1.4) in 2012 to 1.7% (95%CI, 1.6-1.8) in 2014 with AAPC 1.3%/year (95%CI,0.3-2.5). Over the study period, the incidence trend in late-onset preeclampsia was steadily increasing from 0.7% (95%CI, 0.6-0.7) in 2001 to 0.9% (95%CI, 0.8-0.9) in 2014 with AAPC 0.2%/year (95%CI, 0.2-0.3) but in early-onset preeclampsia was predominantly increase from 0.5% (95%CI, 0.4-0.5) in 2012 to 0.8% (95%CI, 0.8-0.9) in 2014 with AAPC 2.3%/year (95%CI, 0.8-4.0). Advanced maternal age, primiparity, stroke, diabetes mellitus, chronic hypertension, and hyperthyroidism were risk factors of preeclampsia. Comparing early- and late-onset diseases, chronic hypertension (ratio of relative risk [RRR], 1.71; 95%CI, 1.55-1.88) and older age (RRR, 1.41; 95%CI 1.29-1.54) were more strongly associated with early-onset disease, whereas primiparity (RRR 0.71, 95%CI, 0.68-0.75) had stronger association with late-onset preeclampsia. CONCLUSIONS: The incidences of overall, and early- and late-onset preeclampsia were increasing in Taiwan from 2001 to 2014, predominantly for early-onset disease. Pregnant women with older age and chronic hypertension had significantly higher risk of early-onset preeclampsia.
71 schema:genre research_article
72 schema:inLanguage en
73 schema:isAccessibleForFree true
74 schema:isPartOf N8a08a6cd4a9c4091b2e4af49637acac7
75 Ncf4332a269f348be9cf58f7e970ec016
76 sg:journal.1024631
77 schema:name Population-based trends and risk factors of early- and late-onset preeclampsia in Taiwan 2001–2014
78 schema:pagination 199
79 schema:productId N1851a8dc7cdf46a2a092a3d5194df32e
80 N6fed89fa7f684b1e8736d04cb1feefa8
81 N83c54d3fe21645de899fac65b117feb5
82 Nee020a617c294ba28eaa4dbc4b343097
83 Nf01220c56fc048da9b574b3279aa738c
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104326169
85 https://doi.org/10.1186/s12884-018-1845-7
86 schema:sdDatePublished 2019-04-11T12:15
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Na7b3bb016e7b4a109abf996928d11f09
89 schema:url https://link.springer.com/10.1186%2Fs12884-018-1845-7
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N1542731e3b974403b46df56bfa5b5134 rdf:first sg:person.01037162341.81
94 rdf:rest N4aa618b1578940ca931124cb24f8a1d4
95 N1851a8dc7cdf46a2a092a3d5194df32e schema:name nlm_unique_id
96 schema:value 100967799
97 rdf:type schema:PropertyValue
98 N23de2c67f3ee46b7821fbdec0bdbb16c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Parity
100 rdf:type schema:DefinedTerm
101 N25b45ee3764342e88713a4d6b773b9d8 rdf:first sg:person.01253232301.92
102 rdf:rest Nd99a945fb02f407d98ed5ef95bfddf5e
103 N28862ec830cd4102a37ed3e9fc82e58d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Humans
105 rdf:type schema:DefinedTerm
106 N3175d1c1e39f42f5963a8620c2949003 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name National Health Programs
108 rdf:type schema:DefinedTerm
109 N345d2dd3d71f4a6a97e4ccc0a8aea7d4 schema:name Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, Taiwan
110 rdf:type schema:Organization
111 N35a6d048f12147ee8ef06f85740cf796 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Female
113 rdf:type schema:DefinedTerm
114 N3d92f482b9ea4a50a1b8b38b29ac5c06 schema:name Department of Cardiology, Chang Gung Memorial Hospital, Linkou, Taiwan
115 rdf:type schema:Organization
116 N4aa618b1578940ca931124cb24f8a1d4 rdf:first sg:person.016643511663.14
117 rdf:rest N25b45ee3764342e88713a4d6b773b9d8
118 N4f3f0a275eb845b3b7c271617ff36434 schema:name Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, Taiwan
119 rdf:type schema:Organization
120 N560624b4d7ca4d35bcc6e79a6f1cfc35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Taiwan
122 rdf:type schema:DefinedTerm
123 N6fed89fa7f684b1e8736d04cb1feefa8 schema:name doi
124 schema:value 10.1186/s12884-018-1845-7
125 rdf:type schema:PropertyValue
126 N7667a6b3929e45e9af6878b8d79e0583 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Pregnancy
128 rdf:type schema:DefinedTerm
129 N7b8f11d5604e486eaa1a8150af9ec2a9 schema:name Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Linkou, Taiwan
130 rdf:type schema:Organization
131 N7d24ee43cdd94cb49af7da1443e3c808 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Age Factors
133 rdf:type schema:DefinedTerm
134 N83c54d3fe21645de899fac65b117feb5 schema:name readcube_id
135 schema:value 01f5f7f7613533890693cbb306625435779e6537fefcbaec19179721d5c40cb7
136 rdf:type schema:PropertyValue
137 N8a08a6cd4a9c4091b2e4af49637acac7 schema:volumeNumber 18
138 rdf:type schema:PublicationVolume
139 Na7b3bb016e7b4a109abf996928d11f09 schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 Naae4f9cba7ea4783a611e447563e2253 schema:affiliation N4f3f0a275eb845b3b7c271617ff36434
142 schema:familyName Wu
143 schema:givenName Hsien-Ming
144 rdf:type schema:Person
145 Nac581a15fc2543c6b731bd3ef52f677e schema:name Big data research office, Chang Gung Memorial Hospital, Linkou, Taiwan
146 rdf:type schema:Organization
147 Naf98c5196adc49b1a5f04a4ef0b25998 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Logistic Models
149 rdf:type schema:DefinedTerm
150 Nb0e972cfe3214104af324a2ab5387b6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Databases, Factual
152 rdf:type schema:DefinedTerm
153 Nb6562ee84469475f8a2d04078008e33b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Pre-Eclampsia
155 rdf:type schema:DefinedTerm
156 Nbaad684b65f147e3ad12bb366b558285 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Risk Factors
158 rdf:type schema:DefinedTerm
159 Nccf16eda11eb48b28c4131cc5a3ec03e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Registries
161 rdf:type schema:DefinedTerm
162 Ncf4332a269f348be9cf58f7e970ec016 schema:issueNumber 1
163 rdf:type schema:PublicationIssue
164 Nd0c48780dcde414abbafea5fb7b9a716 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Time Factors
166 rdf:type schema:DefinedTerm
167 Nd141a14bc75c488388b0b6a32dfb77ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Retrospective Studies
169 rdf:type schema:DefinedTerm
170 Nd4e2c2f26aa34a76befa5d405a91e2a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Hypertension, Pregnancy-Induced
172 rdf:type schema:DefinedTerm
173 Nd5e1897498d048f984ba1d131d6b499c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Incidence
175 rdf:type schema:DefinedTerm
176 Nd8b360f860c547a7b149b1997bb3247c schema:name Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, Taiwan
177 rdf:type schema:Organization
178 Nd99a945fb02f407d98ed5ef95bfddf5e rdf:first Naae4f9cba7ea4783a611e447563e2253
179 rdf:rest Nfd69f10e6d3540af9f130fa9abdbf5ad
180 Ne3f7de27c6e1416181b702b1f498e4aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Maternal Age
182 rdf:type schema:DefinedTerm
183 Ne4b4b251196c40539b2581e5a896201f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Stillbirth
185 rdf:type schema:DefinedTerm
186 Ne54e1fa1320441a4ad74cea2622fe633 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Adult
188 rdf:type schema:DefinedTerm
189 Ne5e91d78fcec490b8583e492a5b8935b rdf:first sg:person.010507234604.38
190 rdf:rest N1542731e3b974403b46df56bfa5b5134
191 Nec774dd9535a46f5b021720e6767afc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Live Birth
193 rdf:type schema:DefinedTerm
194 Nee020a617c294ba28eaa4dbc4b343097 schema:name pubmed_id
195 schema:value 29855344
196 rdf:type schema:PropertyValue
197 Nf01220c56fc048da9b574b3279aa738c schema:name dimensions_id
198 schema:value pub.1104326169
199 rdf:type schema:PropertyValue
200 Nfd69f10e6d3540af9f130fa9abdbf5ad rdf:first sg:person.016666024317.12
201 rdf:rest rdf:nil
202 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
203 schema:name Medical and Health Sciences
204 rdf:type schema:DefinedTerm
205 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
206 schema:name Public Health and Health Services
207 rdf:type schema:DefinedTerm
208 sg:journal.1024631 schema:issn 1471-2393
209 schema:name BMC Pregnancy and Childbirth
210 rdf:type schema:Periodical
211 sg:person.01037162341.81 schema:affiliation Nd8b360f860c547a7b149b1997bb3247c
212 schema:familyName Cheng
213 schema:givenName Po-Jen
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037162341.81
215 rdf:type schema:Person
216 sg:person.010507234604.38 schema:affiliation N345d2dd3d71f4a6a97e4ccc0a8aea7d4
217 schema:familyName You
218 schema:givenName Shu-Han
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010507234604.38
220 rdf:type schema:Person
221 sg:person.01253232301.92 schema:affiliation N7b8f11d5604e486eaa1a8150af9ec2a9
222 schema:familyName Kuo
223 schema:givenName Chang-Fu
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253232301.92
225 rdf:type schema:Person
226 sg:person.016643511663.14 schema:affiliation Nac581a15fc2543c6b731bd3ef52f677e
227 schema:familyName Chung
228 schema:givenName Ting-Ting
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016643511663.14
230 rdf:type schema:Person
231 sg:person.016666024317.12 schema:affiliation N3d92f482b9ea4a50a1b8b38b29ac5c06
232 schema:familyName Chu
233 schema:givenName Pao-Hsien
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016666024317.12
235 rdf:type schema:Person
236 sg:pub.10.1007/s00404-014-3176-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017113457
237 https://doi.org/10.1007/s00404-014-3176-x
238 rdf:type schema:CreativeWork
239 https://app.dimensions.ai/details/publication/pub.1077032175 schema:CreativeWork
240 https://doi.org/10.1002/jcb.26290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090773844
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.ajog.2013.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008402466
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.ajog.2013.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027141309
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.amjcard.2010.08.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007238879
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.ejogrb.2013.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015451600
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.jri.2017.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091322656
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.preghy.2014.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049988716
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.thromres.2015.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030119865
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.tjog.2013.06.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003545228
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/s0002-9378(96)70056-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008015287
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/s0020-7292(00)00240-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031060960
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/s0140-6736(00)03599-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008295314
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/s0140-6736(05)17987-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032745161
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/s0140-6736(06)68397-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001634456
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/s0140-6736(15)00070-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043080369
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/s2214-109x(14)70227-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014177097
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1017/s2040174417000733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091617214
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1038/ajh.2008.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056440410
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1053/j.semperi.2009.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036796598
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1053/siny.2000.0023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013783180
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1056/nejmoa1704559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090282273
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1080/10641950601147945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001346917
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1081/prg-120021060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045010573
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1097/01.aog.0000437382.03963.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012091206
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1097/aog.0000000000000472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038203940
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1097/aog.0b013e3181a45b25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044089983
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1097/hjh.0b013e3280d94313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040903422
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1097/md.0000000000002653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038076201
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1111/1471-0528.12629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004882382
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1136/bmj.38380.674340.e0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004823177
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1136/bmj.i1753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053018706
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1136/bmjopen-2011-000101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004687621
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1159/000357615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019040608
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1159/000359969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015020936
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1161/hypertensionaha.108.117358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022516242
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1161/strokeaha.108.540880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012306256
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1371/journal.pone.0160808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045832403
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1503/cmaj.120518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010928426
315 rdf:type schema:CreativeWork
316 https://doi.org/10.2147/ibpc.s50641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042647900
317 rdf:type schema:CreativeWork
318 https://doi.org/10.4061/2011/858134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052187899
319 rdf:type schema:CreativeWork
320 https://doi.org/10.4414/smw.2015.14175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072528541
321 rdf:type schema:CreativeWork
322 https://doi.org/10.5694/j.1326-5377.2005.tb06730.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1077032175
323 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...