Comparison of the prevalence of kidney disease by proteinuria and decreased estimated glomerular filtration rate determined using three creatinine-based equations ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-07

AUTHORS

SSenabulya F. Ronny, Nankabirwa I. Joaniter, Kalyesubula Robert, Wandera Bonnie, Kirenga Bruce, Kayima James, Ocama Posiano, Bagasha Peace

ABSTRACT

BackgroundDespite estimated glomerular filtration rate (eGFR) being the best marker for kidney function, there are no studies in sub-Saharan Africa comparing the performance of various equations used to determine eGFR. We compared prevalence of kidney disease determined by proteinuria of ≥ + 1 and or kidney disease improving global outcomes (KDIGO) eGFR criteria of < 60 ml/minute/1.73m2 determined using three creatinine-based equations among patients admitted on medical ward of Masaka Regional Referral Hospital.MethodsThis was a prospective study conducted among adult patients admitted on medical wards between September 2020 to March 2021. Spot urine samples were collected to assess for proteinuria and blood samples were collected to assess serum creatinine levels. Kidney disease was defined as proteinuria of ≥ 1 + on spot urine dipstick and or KDIGO eGFR criteria of < 60 ml/minute/1.73m2. Estimated glomerular filtration rate was calculated using three creatinine-based equations: a) Full Age Spectrum equation (FAS), b) chronic kidney disease-Epidemiology collaboration (CKD-EPI) 2021 equation, c) CKD EPI 2009 (without and with race factor) equation. CKD was determined after followed up at 90 days post enrollment to determine the chronicity of proteinuria of ≥ + 1 and or KDIGO eGFR criteria of < 60mls /minute/1.73m2. We also compared prevalence of CKD determined by KDIGO eGFR criteria of < 60mls /minute/1.73m2 vs age adapted eGFR threshold criteria for defining CKD.ResultsAmong the 357 patients enrolled in the study, KDIGO eGFR criteria of < 60mls / minute determined using FAS and CKD-EPI 2009 without race factor equations and or proteinuria of ≥ + 1 showed the highest overall prevalence of kidney disease at 27.2%.Prevalence of confirmed CKD at 90 days was highest with proteinuria ≥ + 1 and or KDIGO eGFR criteria of < 60mls/min determined using CKD EPI 2009 without race factor Equation (15.1%).ConclusionsUse of KDIGO eGFR criteria of < 60mls / minute /1.73m2 using FAS and CKD-EPI 2009 without race equations identifies the largest number of patients with CKD. Health care systems in sub-Saharan Africa should calculate eGFR using FAS equations or CKD-EPI 2009 without race equations during basic screening and management protocols. More... »

PAGES

242

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12882-022-02865-w

DOI

http://dx.doi.org/10.1186/s12882-022-02865-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149312946

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35799132


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Creatinine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glomerular Filtration Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hospitals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteinuria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Referral and Consultation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Renal Insufficiency, Chronic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uganda", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda", 
          "id": "http://www.grid.ac/institutes/grid.11194.3c", 
          "name": [
            "Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ronny", 
        "givenName": "SSenabulya F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Infectious Disease Research Collaboration, Kampala, Uganda", 
          "id": "http://www.grid.ac/institutes/grid.463352.5", 
          "name": [
            "Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda", 
            "Infectious Disease Research Collaboration, Kampala, Uganda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joaniter", 
        "givenName": "Nankabirwa I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda", 
          "id": "http://www.grid.ac/institutes/grid.11194.3c", 
          "name": [
            "Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robert", 
        "givenName": "Kalyesubula", 
        "id": "sg:person.015652743477.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652743477.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Makerere NCD Training Program, Makerere Lung Institute, Kampala, Uganda", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Makerere NCD Training Program, Makerere Lung Institute, Kampala, Uganda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonnie", 
        "givenName": "Wandera", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Makerere NCD Training Program, Makerere Lung Institute, Kampala, Uganda", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda", 
            "Makerere NCD Training Program, Makerere Lung Institute, Kampala, Uganda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruce", 
        "givenName": "Kirenga", 
        "id": "sg:person.012104015272.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104015272.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Uganda Heart Institute, Mulago Hospital, Kampala, Uganda", 
          "id": "http://www.grid.ac/institutes/grid.416252.6", 
          "name": [
            "Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda", 
            "Uganda Heart Institute, Mulago Hospital, Kampala, Uganda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "James", 
        "givenName": "Kayima", 
        "id": "sg:person.012701375672.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701375672.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda", 
          "id": "http://www.grid.ac/institutes/grid.11194.3c", 
          "name": [
            "Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Posiano", 
        "givenName": "Ocama", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mulago National Referral Hospital, Kampala, Uganda", 
          "id": "http://www.grid.ac/institutes/grid.416252.6", 
          "name": [
            "Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda", 
            "Mulago National Referral Hospital, Kampala, Uganda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peace", 
        "givenName": "Bagasha", 
        "id": "sg:person.014274336672.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274336672.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12882-020-01873-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128670147", 
          "https://doi.org/10.1186/s12882-020-01873-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12882-015-0035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012228686", 
          "https://doi.org/10.1186/s12882-015-0035-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12882-017-0521-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084510185", 
          "https://doi.org/10.1186/s12882-017-0521-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2369-16-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017839919", 
          "https://doi.org/10.1186/1471-2369-16-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-07", 
    "datePublishedReg": "2022-07-07", 
    "description": "BackgroundDespite estimated glomerular filtration rate (eGFR) being the best marker for kidney function, there are no studies in sub-Saharan Africa comparing the performance of various equations used to determine eGFR. We compared prevalence of kidney disease determined by proteinuria of\u2009\u2265\u2009\u2009+\u20091 and or kidney disease improving global outcomes (KDIGO) eGFR criteria of\u2009<\u200960\u00a0ml/minute/1.73m2 determined using three creatinine-based equations among patients admitted on medical ward of Masaka Regional Referral Hospital.MethodsThis was a prospective study conducted among adult patients admitted on medical wards between September 2020 to March 2021. Spot urine samples were collected to assess for proteinuria and blood samples were collected to assess serum creatinine levels. Kidney disease was defined as proteinuria of\u2009\u2265\u20091\u2009+\u2009on spot urine dipstick and or KDIGO eGFR criteria of\u2009<\u200960\u00a0ml/minute/1.73m2. Estimated glomerular filtration rate was calculated using three creatinine-based equations: a) Full Age Spectrum equation (FAS), b) chronic kidney disease-Epidemiology collaboration (CKD-EPI) 2021 equation, c) CKD EPI 2009 (without and with race factor) equation. CKD was determined after followed up at 90\u00a0days post enrollment to determine the chronicity of proteinuria of\u2009\u2265\u2009\u2009+\u20091 and or KDIGO eGFR criteria of\u2009<\u200960mls /minute/1.73m2. We also compared prevalence of CKD determined by KDIGO eGFR criteria of\u2009<\u200960mls /minute/1.73m2 vs age adapted eGFR threshold criteria for defining CKD.ResultsAmong the 357 patients enrolled in the study, KDIGO eGFR criteria of\u2009<\u200960mls / minute determined using FAS and CKD-EPI 2009 without race factor equations and or proteinuria of\u2009\u2265\u2009\u2009+\u20091 showed the highest overall prevalence of kidney disease at 27.2%.Prevalence of confirmed CKD at 90\u00a0days was highest with proteinuria\u2009\u2265\u2009\u2009+\u20091 and or KDIGO eGFR criteria of\u2009<\u200960mls/min determined using CKD EPI 2009 without race factor Equation (15.1%).ConclusionsUse of KDIGO eGFR criteria of\u2009<\u200960mls / minute /1.73m2 using FAS and CKD-EPI 2009 without race equations identifies the largest number of patients with CKD. Health care systems in sub-Saharan Africa should calculate eGFR using FAS equations or CKD-EPI 2009 without race equations during basic screening and management protocols.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12882-022-02865-w", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8631231", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024626", 
        "issn": [
          "1471-2369"
        ], 
        "name": "BMC Nephrology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "full age spectrum (FAS) equation", 
      "glomerular filtration rate", 
      "eGFR criteria", 
      "Regional Referral Hospital", 
      "kidney disease", 
      "medical wards", 
      "filtration rate", 
      "referral hospital", 
      "prospective study", 
      "serum creatinine levels", 
      "prevalence of CKD", 
      "spot urine samples", 
      "high overall prevalence", 
      "health care system", 
      "creatinine levels", 
      "adult patients", 
      "kidney function", 
      "Saharan Africa", 
      "overall prevalence", 
      "urine dipstick", 
      "proteinuria", 
      "CKD", 
      "blood samples", 
      "patients", 
      "basic screening", 
      "FAS equation", 
      "good marker", 
      "prevalence", 
      "creatinine", 
      "disease", 
      "care system", 
      "urine samples", 
      "wards", 
      "hospital", 
      "EGFR", 
      "management protocol", 
      "minutes", 
      "days", 
      "MethodsThis", 
      "criteria", 
      "chronicity", 
      "BackgroundDespite", 
      "study", 
      "ConclusionsUse", 
      "dipstick", 
      "age", 
      "rate", 
      "enrollment", 
      "markers", 
      "screening", 
      "threshold criteria", 
      "min", 
      "Uganda", 
      "samples", 
      "levels", 
      "protocol", 
      "large number", 
      "Africa", 
      "function", 
      "number", 
      "comparison", 
      "spectrum equation", 
      "system", 
      "performance", 
      "factor equation", 
      "equations"
    ], 
    "name": "Comparison of the prevalence of kidney disease by proteinuria and decreased estimated glomerular filtration rate determined using three creatinine-based equations among patients admitted on medical wards of Masaka Regional Referral Hospital in Uganda: a prospective study", 
    "pagination": "242", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149312946"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12882-022-02865-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35799132"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12882-022-02865-w", 
      "https://app.dimensions.ai/details/publication/pub.1149312946"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_947.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12882-022-02865-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12882-022-02865-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12882-022-02865-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12882-022-02865-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12882-022-02865-w'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      106 URIs      94 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12882-022-02865-w schema:about N4dd75f757f524401b5db12cf8d49fbf1
2 N7a2f79d274d240d3b163c32660f3a183
3 N7aa83a606ec5440f9816973b731f81f6
4 N95499b95aa2b4e23a4a605ad6a5daf73
5 Nb24d0c9ebbc04671b2a6c82552a42a00
6 Nc1eb55b71b8c461c922d11a9e399f407
7 Nc5c1e656cf0345cda32d49041af80162
8 Nc968a2936546420c8a59aa6d752dc433
9 Nce48f0b38c894f85bb0094848ebf01d9
10 Ncefd08a969bf47ddab3a2aac5429eb1d
11 Nf0145fd2efdb46ddbd74634740c515d2
12 anzsrc-for:11
13 anzsrc-for:1103
14 schema:author N312eb8924369403bafc4961be5813531
15 schema:citation sg:pub.10.1186/1471-2369-16-1
16 sg:pub.10.1186/s12882-015-0035-3
17 sg:pub.10.1186/s12882-017-0521-x
18 sg:pub.10.1186/s12882-020-01873-y
19 schema:datePublished 2022-07-07
20 schema:datePublishedReg 2022-07-07
21 schema:description BackgroundDespite estimated glomerular filtration rate (eGFR) being the best marker for kidney function, there are no studies in sub-Saharan Africa comparing the performance of various equations used to determine eGFR. We compared prevalence of kidney disease determined by proteinuria of ≥  + 1 and or kidney disease improving global outcomes (KDIGO) eGFR criteria of < 60 ml/minute/1.73m2 determined using three creatinine-based equations among patients admitted on medical ward of Masaka Regional Referral Hospital.MethodsThis was a prospective study conducted among adult patients admitted on medical wards between September 2020 to March 2021. Spot urine samples were collected to assess for proteinuria and blood samples were collected to assess serum creatinine levels. Kidney disease was defined as proteinuria of ≥ 1 + on spot urine dipstick and or KDIGO eGFR criteria of < 60 ml/minute/1.73m2. Estimated glomerular filtration rate was calculated using three creatinine-based equations: a) Full Age Spectrum equation (FAS), b) chronic kidney disease-Epidemiology collaboration (CKD-EPI) 2021 equation, c) CKD EPI 2009 (without and with race factor) equation. CKD was determined after followed up at 90 days post enrollment to determine the chronicity of proteinuria of ≥  + 1 and or KDIGO eGFR criteria of < 60mls /minute/1.73m2. We also compared prevalence of CKD determined by KDIGO eGFR criteria of < 60mls /minute/1.73m2 vs age adapted eGFR threshold criteria for defining CKD.ResultsAmong the 357 patients enrolled in the study, KDIGO eGFR criteria of < 60mls / minute determined using FAS and CKD-EPI 2009 without race factor equations and or proteinuria of ≥  + 1 showed the highest overall prevalence of kidney disease at 27.2%.Prevalence of confirmed CKD at 90 days was highest with proteinuria ≥  + 1 and or KDIGO eGFR criteria of < 60mls/min determined using CKD EPI 2009 without race factor Equation (15.1%).ConclusionsUse of KDIGO eGFR criteria of < 60mls / minute /1.73m2 using FAS and CKD-EPI 2009 without race equations identifies the largest number of patients with CKD. Health care systems in sub-Saharan Africa should calculate eGFR using FAS equations or CKD-EPI 2009 without race equations during basic screening and management protocols.
22 schema:genre article
23 schema:isAccessibleForFree true
24 schema:isPartOf N42691034c6434a2fad3e0d668dc962fc
25 Nf0ace2a658ba4e6c81dfcf3045e4f0e5
26 sg:journal.1024626
27 schema:keywords Africa
28 BackgroundDespite
29 CKD
30 ConclusionsUse
31 EGFR
32 FAS equation
33 MethodsThis
34 Regional Referral Hospital
35 Saharan Africa
36 Uganda
37 adult patients
38 age
39 basic screening
40 blood samples
41 care system
42 chronicity
43 comparison
44 creatinine
45 creatinine levels
46 criteria
47 days
48 dipstick
49 disease
50 eGFR criteria
51 enrollment
52 equations
53 factor equation
54 filtration rate
55 full age spectrum (FAS) equation
56 function
57 glomerular filtration rate
58 good marker
59 health care system
60 high overall prevalence
61 hospital
62 kidney disease
63 kidney function
64 large number
65 levels
66 management protocol
67 markers
68 medical wards
69 min
70 minutes
71 number
72 overall prevalence
73 patients
74 performance
75 prevalence
76 prevalence of CKD
77 prospective study
78 proteinuria
79 protocol
80 rate
81 referral hospital
82 samples
83 screening
84 serum creatinine levels
85 spectrum equation
86 spot urine samples
87 study
88 system
89 threshold criteria
90 urine dipstick
91 urine samples
92 wards
93 schema:name Comparison of the prevalence of kidney disease by proteinuria and decreased estimated glomerular filtration rate determined using three creatinine-based equations among patients admitted on medical wards of Masaka Regional Referral Hospital in Uganda: a prospective study
94 schema:pagination 242
95 schema:productId N9e7c0e32675d4468bc191d64648127a3
96 Nb4ca9196707f4e63b0c34ac06c937af5
97 Nde318538d76445a892249724ba890efb
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149312946
99 https://doi.org/10.1186/s12882-022-02865-w
100 schema:sdDatePublished 2022-09-02T16:08
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N590c68113e2945de8ba0aace556f7551
103 schema:url https://doi.org/10.1186/s12882-022-02865-w
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N177f351d3ee648be9c9d4b0f7d30abdf rdf:first sg:person.014274336672.33
108 rdf:rest rdf:nil
109 N2d5b1ce274c946479e33d6b6f6cc0e30 rdf:first sg:person.015652743477.79
110 rdf:rest N2eef645689284336b3e956233e095340
111 N2eef645689284336b3e956233e095340 rdf:first N98fd6a6d1cc94bf4bde1ab066a1b6450
112 rdf:rest N51dca204218b44c18d337e04e7287616
113 N312eb8924369403bafc4961be5813531 rdf:first N9565d6f774f04fda93122b41543a1958
114 rdf:rest N6149b32b675942788263efe90110748f
115 N42691034c6434a2fad3e0d668dc962fc schema:issueNumber 1
116 rdf:type schema:PublicationIssue
117 N4dd75f757f524401b5db12cf8d49fbf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Proteinuria
119 rdf:type schema:DefinedTerm
120 N50eea67263b346879df10776ea1ad56c rdf:first sg:person.012701375672.90
121 rdf:rest Nb61a45a0b58643759f48c03bb07c78ed
122 N51dca204218b44c18d337e04e7287616 rdf:first sg:person.012104015272.95
123 rdf:rest N50eea67263b346879df10776ea1ad56c
124 N590c68113e2945de8ba0aace556f7551 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 N6149b32b675942788263efe90110748f rdf:first N8e3831b7e0bb4045894f34957ace2a50
127 rdf:rest N2d5b1ce274c946479e33d6b6f6cc0e30
128 N7a2f79d274d240d3b163c32660f3a183 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Humans
130 rdf:type schema:DefinedTerm
131 N7aa83a606ec5440f9816973b731f81f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Renal Insufficiency, Chronic
133 rdf:type schema:DefinedTerm
134 N8e3831b7e0bb4045894f34957ace2a50 schema:affiliation grid-institutes:grid.463352.5
135 schema:familyName Joaniter
136 schema:givenName Nankabirwa I.
137 rdf:type schema:Person
138 N94cbd518584b42549809fa11da3d9d45 schema:affiliation grid-institutes:grid.11194.3c
139 schema:familyName Posiano
140 schema:givenName Ocama
141 rdf:type schema:Person
142 N95499b95aa2b4e23a4a605ad6a5daf73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Glomerular Filtration Rate
144 rdf:type schema:DefinedTerm
145 N9565d6f774f04fda93122b41543a1958 schema:affiliation grid-institutes:grid.11194.3c
146 schema:familyName Ronny
147 schema:givenName SSenabulya F.
148 rdf:type schema:Person
149 N98fd6a6d1cc94bf4bde1ab066a1b6450 schema:affiliation grid-institutes:None
150 schema:familyName Bonnie
151 schema:givenName Wandera
152 rdf:type schema:Person
153 N9e7c0e32675d4468bc191d64648127a3 schema:name dimensions_id
154 schema:value pub.1149312946
155 rdf:type schema:PropertyValue
156 Nb24d0c9ebbc04671b2a6c82552a42a00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Adult
158 rdf:type schema:DefinedTerm
159 Nb4ca9196707f4e63b0c34ac06c937af5 schema:name doi
160 schema:value 10.1186/s12882-022-02865-w
161 rdf:type schema:PropertyValue
162 Nb61a45a0b58643759f48c03bb07c78ed rdf:first N94cbd518584b42549809fa11da3d9d45
163 rdf:rest N177f351d3ee648be9c9d4b0f7d30abdf
164 Nc1eb55b71b8c461c922d11a9e399f407 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Referral and Consultation
166 rdf:type schema:DefinedTerm
167 Nc5c1e656cf0345cda32d49041af80162 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Creatinine
169 rdf:type schema:DefinedTerm
170 Nc968a2936546420c8a59aa6d752dc433 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Prevalence
172 rdf:type schema:DefinedTerm
173 Nce48f0b38c894f85bb0094848ebf01d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Uganda
175 rdf:type schema:DefinedTerm
176 Ncefd08a969bf47ddab3a2aac5429eb1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Hospitals
178 rdf:type schema:DefinedTerm
179 Nde318538d76445a892249724ba890efb schema:name pubmed_id
180 schema:value 35799132
181 rdf:type schema:PropertyValue
182 Nf0145fd2efdb46ddbd74634740c515d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Prospective Studies
184 rdf:type schema:DefinedTerm
185 Nf0ace2a658ba4e6c81dfcf3045e4f0e5 schema:volumeNumber 23
186 rdf:type schema:PublicationVolume
187 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
188 schema:name Medical and Health Sciences
189 rdf:type schema:DefinedTerm
190 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
191 schema:name Clinical Sciences
192 rdf:type schema:DefinedTerm
193 sg:grant.8631231 http://pending.schema.org/fundedItem sg:pub.10.1186/s12882-022-02865-w
194 rdf:type schema:MonetaryGrant
195 sg:journal.1024626 schema:issn 1471-2369
196 schema:name BMC Nephrology
197 schema:publisher Springer Nature
198 rdf:type schema:Periodical
199 sg:person.012104015272.95 schema:affiliation grid-institutes:None
200 schema:familyName Bruce
201 schema:givenName Kirenga
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104015272.95
203 rdf:type schema:Person
204 sg:person.012701375672.90 schema:affiliation grid-institutes:grid.416252.6
205 schema:familyName James
206 schema:givenName Kayima
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701375672.90
208 rdf:type schema:Person
209 sg:person.014274336672.33 schema:affiliation grid-institutes:grid.416252.6
210 schema:familyName Peace
211 schema:givenName Bagasha
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274336672.33
213 rdf:type schema:Person
214 sg:person.015652743477.79 schema:affiliation grid-institutes:grid.11194.3c
215 schema:familyName Robert
216 schema:givenName Kalyesubula
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652743477.79
218 rdf:type schema:Person
219 sg:pub.10.1186/1471-2369-16-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017839919
220 https://doi.org/10.1186/1471-2369-16-1
221 rdf:type schema:CreativeWork
222 sg:pub.10.1186/s12882-015-0035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012228686
223 https://doi.org/10.1186/s12882-015-0035-3
224 rdf:type schema:CreativeWork
225 sg:pub.10.1186/s12882-017-0521-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084510185
226 https://doi.org/10.1186/s12882-017-0521-x
227 rdf:type schema:CreativeWork
228 sg:pub.10.1186/s12882-020-01873-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1128670147
229 https://doi.org/10.1186/s12882-020-01873-y
230 rdf:type schema:CreativeWork
231 grid-institutes:None schema:alternateName Makerere NCD Training Program, Makerere Lung Institute, Kampala, Uganda
232 schema:name Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda
233 Makerere NCD Training Program, Makerere Lung Institute, Kampala, Uganda
234 rdf:type schema:Organization
235 grid-institutes:grid.11194.3c schema:alternateName Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda
236 schema:name Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda
237 rdf:type schema:Organization
238 grid-institutes:grid.416252.6 schema:alternateName Mulago National Referral Hospital, Kampala, Uganda
239 Uganda Heart Institute, Mulago Hospital, Kampala, Uganda
240 schema:name Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda
241 Mulago National Referral Hospital, Kampala, Uganda
242 Uganda Heart Institute, Mulago Hospital, Kampala, Uganda
243 rdf:type schema:Organization
244 grid-institutes:grid.463352.5 schema:alternateName Infectious Disease Research Collaboration, Kampala, Uganda
245 schema:name Department of Medicine, Makerere University College of Health Sciences, P.O.BOX 7062, Kampala, Uganda
246 Infectious Disease Research Collaboration, Kampala, Uganda
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...