Plasma metabolites and lipids associate with kidney function and kidney volume in hypertensive ADPKD patients early in the disease course View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Kyoungmi Kim, Josephine F. Trott, Guimin Gao, Arlene Chapman, Robert H. Weiss

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and is characterized by gradual cyst growth and expansion, increase in kidney volume with an ultimate decline in kidney function leading to end stage renal disease (ESRD). Given the decades long period of stable kidney function while cyst growth occurs, it is important to identify those patients who will progress to ESRD. Recent data from our and other laboratories have demonstrated that metabolic reprogramming may play a key role in cystic epithelial proliferation resulting in cyst growth in ADPKD. Height corrected total kidney volume (ht-TKV) accurately reflects cyst burden and predicts future loss of kidney function. We hypothesize that specific plasma metabolites will correlate with eGFR and ht-TKV early in ADPKD, both predictors of disease progression, potentially indicative of early physiologic derangements of renal disease severity. METHODS: To investigate the predictive role of plasma metabolites on eGFR and/or ht-TKV, we used a non-targeted GC-TOF/MS-based metabolomics approach on hypertensive ADPKD patients in the early course of their disease. Patient data was obtained from the HALT-A randomized clinical trial at baseline including estimated glomerular filtration rate (eGFR) and measured ht-TKV. To identify individual metabolites whose intensities are significantly correlated with eGFR and ht-TKV, association analyses were performed using linear regression with each metabolite signal level as the primary predictor variable and baseline eGFR and ht-TKV as the continuous outcomes of interest, while adjusting for covariates. Significance was determined by Storey's false discovery rate (FDR) q-values to correct for multiple testing. RESULTS: Twelve metabolites significantly correlated with eGFR and two triglycerides significantly correlated with baseline ht-TKV at FDR q-value < 0.05. Specific significant metabolites, including pseudo-uridine, indole-3-lactate, uric acid, isothreonic acid, and creatinine, have been previously shown to accumulate in plasma and/or urine in both diabetic and cystic renal diseases with advanced renal insufficiency. CONCLUSIONS: This study identifies metabolic derangements in early ADPKD which may be prognostic for ADPKD disease progression. CLINICAL TRIAL: HALT Progression of Polycystic Kidney Disease (HALT PKD) Study A; Clinical www.clinicaltrials.gov identifier: NCT00283686; first posted January 30, 2006, last update posted March 19, 2015. More... »

PAGES

66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12882-019-1249-6

DOI

http://dx.doi.org/10.1186/s12882-019-1249-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112385137

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30803434


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Kyoungmi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Division of Nephrology, Department of Internal Medicine, University of California, Genome and Biomedical Sciences Building, Room 6311, 451 Health Sciences Dr, 95616, Davis, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trott", 
        "givenName": "Josephine F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Public Health Sciences, University of Chicago, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Guimin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Nephrology Section, University of Chicago, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chapman", 
        "givenName": "Arlene", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VA Northern California Health Care System", 
          "id": "https://www.grid.ac/institutes/grid.413933.f", 
          "name": [
            "Division of Nephrology, Department of Internal Medicine, University of California, Genome and Biomedical Sciences Building, Room 6311, 451 Health Sciences Dr, 95616, Davis, CA, USA", 
            "Cancer Center, University of California, Davis, CA, USA", 
            "Medical Service, VA Northern California Health Care System, Sacramento, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "Robert H.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1152/ajprenal.00238.2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002364028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(94)90137-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002785267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1402685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003000775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003193783", 
          "https://doi.org/10.1038/nm.3092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2003.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006492402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471142727.mb3004s114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009575929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ki.2013.497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010034512", 
          "https://doi.org/10.1038/ki.2013.497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2015.07.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012505583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000260042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014436842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/tcrm.s1617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015226663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0272-6386(12)80922-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016139502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018285816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1194/jlr.p042176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018521982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1523-1755.1998.00944.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018567075", 
          "https://doi.org/10.1046/j.1523-1755.1998.00944.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10157-013-0866-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022075893", 
          "https://doi.org/10.1007/s10157-013-0866-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ki.2010.375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022592684", 
          "https://doi.org/10.1038/ki.2010.375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/gfs417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023427829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddi421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024752394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddi421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024752394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0697-179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025543392", 
          "https://doi.org/10.1038/ng0697-179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2016.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027776814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2007.01.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027903873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ebiom.2016.01.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034283623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1097-2765(00)00123-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035736569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1402686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036459588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/ijcm.2013.44035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036986059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037230842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.26274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037233857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ekir.2017.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038595360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajprenal.00722.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041764549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000441-198903000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042482164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000441-198903000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042482164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/gfu044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043928473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.03250410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044088761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ki.1992.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049920112", 
          "https://doi.org/10.1038/ki.1992.195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrneph.2011.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049932075", 
          "https://doi.org/10.1038/nrneph.2011.152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.03100608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051502696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr200093w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056292513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/omi.2010.0094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059303841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.272.5266.1339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062553185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2015030231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068243453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2015030231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068243453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2015030231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068243453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/org.24322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072306771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5455/medarh.2011.65.213-215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072872955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082554408", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082762771", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrneph.2017.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129792", 
          "https://doi.org/10.1038/nrneph.2017.30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.7b03404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092357816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2017.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093125122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000486011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099738058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.kint.2017.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100101246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.kint.2017.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100101246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-03036-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101130559", 
          "https://doi.org/10.1038/s41467-018-03036-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-03036-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101130559", 
          "https://doi.org/10.1038/s41467-018-03036-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-03036-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101130559", 
          "https://doi.org/10.1038/s41467-018-03036-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajprenal.00025.2018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107361631"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and is characterized by gradual cyst growth and expansion, increase in kidney volume with an ultimate decline in kidney function leading to end stage renal disease (ESRD). Given the decades long period of stable kidney function while cyst growth occurs, it is important to identify those patients who will progress to ESRD. Recent data from our and other laboratories have demonstrated that metabolic reprogramming may play a key role in cystic epithelial proliferation resulting in cyst growth in ADPKD. Height corrected total kidney volume (ht-TKV) accurately reflects cyst burden and predicts future loss of kidney function. We hypothesize that specific plasma metabolites will correlate with eGFR and ht-TKV early in ADPKD, both predictors of disease progression, potentially indicative of early physiologic derangements of renal disease severity.\nMETHODS: To investigate the predictive role of plasma metabolites on eGFR and/or ht-TKV, we used a non-targeted GC-TOF/MS-based metabolomics approach on hypertensive ADPKD patients in the early course of their disease. Patient data was obtained from the HALT-A randomized clinical trial at baseline including estimated glomerular filtration rate (eGFR) and measured ht-TKV. To identify individual metabolites whose intensities are significantly correlated with eGFR and ht-TKV, association analyses were performed using linear regression with each metabolite signal level as the primary predictor variable and baseline eGFR and ht-TKV as the continuous outcomes of interest, while adjusting for covariates. Significance was determined by Storey's false discovery rate (FDR) q-values to correct for multiple testing.\nRESULTS: Twelve metabolites significantly correlated with eGFR and two triglycerides significantly correlated with baseline ht-TKV at FDR q-value <\u20090.05. Specific significant metabolites, including pseudo-uridine, indole-3-lactate, uric acid, isothreonic acid, and creatinine, have been previously shown to accumulate in plasma and/or urine in both diabetic and cystic renal diseases with advanced renal insufficiency.\nCONCLUSIONS: This study identifies metabolic derangements in early ADPKD which may be prognostic for ADPKD disease progression.\nCLINICAL TRIAL: HALT Progression of Polycystic Kidney Disease (HALT PKD) Study A; Clinical www.clinicaltrials.gov identifier: NCT00283686; first posted January 30, 2006, last update posted March 19, 2015.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12882-019-1249-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6376354", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024626", 
        "issn": [
          "1471-2369"
        ], 
        "name": "BMC Nephrology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Plasma metabolites and lipids associate with kidney function and kidney volume in hypertensive ADPKD patients early in the disease course", 
    "pagination": "66", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ba514fa8fbaa1f0258f4ee088c1c11f8733d580ed80f82752700dc0eca1196db"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30803434"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100967793"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12882-019-1249-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112385137"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12882-019-1249-6", 
      "https://app.dimensions.ai/details/publication/pub.1112385137"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78950_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12882-019-1249-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12882-019-1249-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12882-019-1249-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12882-019-1249-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12882-019-1249-6'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      21 PREDICATES      79 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12882-019-1249-6 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nc86c9be1878047e19b8858b67b1e49df
4 schema:citation sg:pub.10.1007/s10157-013-0866-9
5 sg:pub.10.1038/ki.1992.195
6 sg:pub.10.1038/ki.2010.375
7 sg:pub.10.1038/ki.2013.497
8 sg:pub.10.1038/ng0697-179
9 sg:pub.10.1038/nm.3092
10 sg:pub.10.1038/nrneph.2011.152
11 sg:pub.10.1038/nrneph.2017.30
12 sg:pub.10.1038/s41467-018-03036-y
13 sg:pub.10.1046/j.1523-1755.1998.00944.x
14 https://app.dimensions.ai/details/publication/pub.1082554408
15 https://app.dimensions.ai/details/publication/pub.1082762771
16 https://doi.org/10.1002/0471142727.mb3004s114
17 https://doi.org/10.1002/ijc.26274
18 https://doi.org/10.1016/0092-8674(94)90137-6
19 https://doi.org/10.1016/j.ab.2007.01.028
20 https://doi.org/10.1016/j.ajhg.2016.05.004
21 https://doi.org/10.1016/j.ebiom.2016.01.027
22 https://doi.org/10.1016/j.ekir.2017.01.003
23 https://doi.org/10.1016/j.kint.2017.09.027
24 https://doi.org/10.1016/j.tree.2003.10.013
25 https://doi.org/10.1016/s0272-6386(12)80922-x
26 https://doi.org/10.1016/s1097-2765(00)00123-4
27 https://doi.org/10.1021/acs.analchem.7b03404
28 https://doi.org/10.1021/pr200093w
29 https://doi.org/10.1053/j.ajkd.2015.07.037
30 https://doi.org/10.1053/j.ajkd.2017.09.008
31 https://doi.org/10.1056/nejmoa1402685
32 https://doi.org/10.1056/nejmoa1402686
33 https://doi.org/10.1089/omi.2010.0094
34 https://doi.org/10.1093/hmg/ddi421
35 https://doi.org/10.1093/ndt/gfs417
36 https://doi.org/10.1093/ndt/gfu044
37 https://doi.org/10.1097/00000441-198903000-00002
38 https://doi.org/10.1111/1467-9868.00346
39 https://doi.org/10.1126/science.272.5266.1339
40 https://doi.org/10.1152/ajprenal.00025.2018
41 https://doi.org/10.1152/ajprenal.00238.2015
42 https://doi.org/10.1152/ajprenal.00722.2009
43 https://doi.org/10.1159/000260042
44 https://doi.org/10.1159/000486011
45 https://doi.org/10.1194/jlr.p042176
46 https://doi.org/10.1371/journal.pgen.1003053
47 https://doi.org/10.1681/asn.2015030231
48 https://doi.org/10.2147/tcrm.s1617
49 https://doi.org/10.2215/cjn.03100608
50 https://doi.org/10.2215/cjn.03250410
51 https://doi.org/10.4161/org.24322
52 https://doi.org/10.4236/ijcm.2013.44035
53 https://doi.org/10.5455/medarh.2011.65.213-215
54 schema:datePublished 2019-12
55 schema:datePublishedReg 2019-12-01
56 schema:description BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and is characterized by gradual cyst growth and expansion, increase in kidney volume with an ultimate decline in kidney function leading to end stage renal disease (ESRD). Given the decades long period of stable kidney function while cyst growth occurs, it is important to identify those patients who will progress to ESRD. Recent data from our and other laboratories have demonstrated that metabolic reprogramming may play a key role in cystic epithelial proliferation resulting in cyst growth in ADPKD. Height corrected total kidney volume (ht-TKV) accurately reflects cyst burden and predicts future loss of kidney function. We hypothesize that specific plasma metabolites will correlate with eGFR and ht-TKV early in ADPKD, both predictors of disease progression, potentially indicative of early physiologic derangements of renal disease severity. METHODS: To investigate the predictive role of plasma metabolites on eGFR and/or ht-TKV, we used a non-targeted GC-TOF/MS-based metabolomics approach on hypertensive ADPKD patients in the early course of their disease. Patient data was obtained from the HALT-A randomized clinical trial at baseline including estimated glomerular filtration rate (eGFR) and measured ht-TKV. To identify individual metabolites whose intensities are significantly correlated with eGFR and ht-TKV, association analyses were performed using linear regression with each metabolite signal level as the primary predictor variable and baseline eGFR and ht-TKV as the continuous outcomes of interest, while adjusting for covariates. Significance was determined by Storey's false discovery rate (FDR) q-values to correct for multiple testing. RESULTS: Twelve metabolites significantly correlated with eGFR and two triglycerides significantly correlated with baseline ht-TKV at FDR q-value < 0.05. Specific significant metabolites, including pseudo-uridine, indole-3-lactate, uric acid, isothreonic acid, and creatinine, have been previously shown to accumulate in plasma and/or urine in both diabetic and cystic renal diseases with advanced renal insufficiency. CONCLUSIONS: This study identifies metabolic derangements in early ADPKD which may be prognostic for ADPKD disease progression. CLINICAL TRIAL: HALT Progression of Polycystic Kidney Disease (HALT PKD) Study A; Clinical www.clinicaltrials.gov identifier: NCT00283686; first posted January 30, 2006, last update posted March 19, 2015.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf Nb85c9d2584b041c3a991688b4a7e07b0
61 Nbef3a9b23f064299b302a538a438dbcd
62 sg:journal.1024626
63 schema:name Plasma metabolites and lipids associate with kidney function and kidney volume in hypertensive ADPKD patients early in the disease course
64 schema:pagination 66
65 schema:productId N46d68f090f8a41e3a75630807cf9fd5e
66 N4fa909d6e8284a949719fe4cdcf489ae
67 N8a77eb37acd644a98662d5d2bc3274f9
68 Nbf708670b13f44108793334d62552b89
69 Nd1254b18674b46c798bdfc176e180315
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112385137
71 https://doi.org/10.1186/s12882-019-1249-6
72 schema:sdDatePublished 2019-04-11T13:19
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nbed49a48d1ca4dd899955efd5fd0d90a
75 schema:url https://link.springer.com/10.1186%2Fs12882-019-1249-6
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N00011a6b93074b9c977f1b320b6da251 schema:name Nephrology Section, University of Chicago, Chicago, IL, USA
80 rdf:type schema:Organization
81 N09d880eaf064476f80ee5472d7a7f635 schema:affiliation https://www.grid.ac/institutes/grid.413933.f
82 schema:familyName Weiss
83 schema:givenName Robert H.
84 rdf:type schema:Person
85 N318ea82097fe4354b23c9888e29c4936 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
86 schema:familyName Kim
87 schema:givenName Kyoungmi
88 rdf:type schema:Person
89 N388e311395074620b6a4b0a6bbd08b9b schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
90 schema:familyName Trott
91 schema:givenName Josephine F.
92 rdf:type schema:Person
93 N46d68f090f8a41e3a75630807cf9fd5e schema:name nlm_unique_id
94 schema:value 100967793
95 rdf:type schema:PropertyValue
96 N4c262fb7b2f84ca08b0bc326eaddb91b schema:name Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
97 rdf:type schema:Organization
98 N4fa909d6e8284a949719fe4cdcf489ae schema:name pubmed_id
99 schema:value 30803434
100 rdf:type schema:PropertyValue
101 N6b358f44788e47659f5d442c39a6dee6 rdf:first N7d8dc99832604b9cae68a960247598a4
102 rdf:rest N7e98be83b31e4fba9da5fca6f4d359cc
103 N7d8dc99832604b9cae68a960247598a4 schema:affiliation N00011a6b93074b9c977f1b320b6da251
104 schema:familyName Chapman
105 schema:givenName Arlene
106 rdf:type schema:Person
107 N7e98be83b31e4fba9da5fca6f4d359cc rdf:first N09d880eaf064476f80ee5472d7a7f635
108 rdf:rest rdf:nil
109 N7fe5c12f3ed3474daaa42ac929259fd8 rdf:first N8b21f19afd66400a88dad02574136ef3
110 rdf:rest N6b358f44788e47659f5d442c39a6dee6
111 N8a77eb37acd644a98662d5d2bc3274f9 schema:name dimensions_id
112 schema:value pub.1112385137
113 rdf:type schema:PropertyValue
114 N8b21f19afd66400a88dad02574136ef3 schema:affiliation N4c262fb7b2f84ca08b0bc326eaddb91b
115 schema:familyName Gao
116 schema:givenName Guimin
117 rdf:type schema:Person
118 Nae4aa78e14844eb88b15d92b46825650 rdf:first N388e311395074620b6a4b0a6bbd08b9b
119 rdf:rest N7fe5c12f3ed3474daaa42ac929259fd8
120 Nb85c9d2584b041c3a991688b4a7e07b0 schema:volumeNumber 20
121 rdf:type schema:PublicationVolume
122 Nbed49a48d1ca4dd899955efd5fd0d90a schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nbef3a9b23f064299b302a538a438dbcd schema:issueNumber 1
125 rdf:type schema:PublicationIssue
126 Nbf708670b13f44108793334d62552b89 schema:name readcube_id
127 schema:value ba514fa8fbaa1f0258f4ee088c1c11f8733d580ed80f82752700dc0eca1196db
128 rdf:type schema:PropertyValue
129 Nc86c9be1878047e19b8858b67b1e49df rdf:first N318ea82097fe4354b23c9888e29c4936
130 rdf:rest Nae4aa78e14844eb88b15d92b46825650
131 Nd1254b18674b46c798bdfc176e180315 schema:name doi
132 schema:value 10.1186/s12882-019-1249-6
133 rdf:type schema:PropertyValue
134 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
135 schema:name Medical and Health Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
138 schema:name Clinical Sciences
139 rdf:type schema:DefinedTerm
140 sg:grant.6376354 http://pending.schema.org/fundedItem sg:pub.10.1186/s12882-019-1249-6
141 rdf:type schema:MonetaryGrant
142 sg:journal.1024626 schema:issn 1471-2369
143 schema:name BMC Nephrology
144 rdf:type schema:Periodical
145 sg:pub.10.1007/s10157-013-0866-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022075893
146 https://doi.org/10.1007/s10157-013-0866-9
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/ki.1992.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049920112
149 https://doi.org/10.1038/ki.1992.195
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/ki.2010.375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022592684
152 https://doi.org/10.1038/ki.2010.375
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/ki.2013.497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010034512
155 https://doi.org/10.1038/ki.2013.497
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/ng0697-179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025543392
158 https://doi.org/10.1038/ng0697-179
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nm.3092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003193783
161 https://doi.org/10.1038/nm.3092
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nrneph.2011.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049932075
164 https://doi.org/10.1038/nrneph.2011.152
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nrneph.2017.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129792
167 https://doi.org/10.1038/nrneph.2017.30
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/s41467-018-03036-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1101130559
170 https://doi.org/10.1038/s41467-018-03036-y
171 rdf:type schema:CreativeWork
172 sg:pub.10.1046/j.1523-1755.1998.00944.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018567075
173 https://doi.org/10.1046/j.1523-1755.1998.00944.x
174 rdf:type schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1082554408 schema:CreativeWork
176 https://app.dimensions.ai/details/publication/pub.1082762771 schema:CreativeWork
177 https://doi.org/10.1002/0471142727.mb3004s114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009575929
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/ijc.26274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037233857
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0092-8674(94)90137-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002785267
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.ab.2007.01.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027903873
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.ajhg.2016.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027776814
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.ebiom.2016.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034283623
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.ekir.2017.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038595360
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.kint.2017.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100101246
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.tree.2003.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006492402
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0272-6386(12)80922-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016139502
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s1097-2765(00)00123-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035736569
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/acs.analchem.7b03404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092357816
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/pr200093w schema:sameAs https://app.dimensions.ai/details/publication/pub.1056292513
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1053/j.ajkd.2015.07.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012505583
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1053/j.ajkd.2017.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093125122
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1056/nejmoa1402685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003000775
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1056/nejmoa1402686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036459588
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1089/omi.2010.0094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059303841
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/hmg/ddi421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024752394
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/ndt/gfs417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023427829
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/ndt/gfu044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043928473
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1097/00000441-198903000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042482164
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1111/1467-9868.00346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018285816
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1126/science.272.5266.1339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553185
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1152/ajprenal.00025.2018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107361631
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1152/ajprenal.00238.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002364028
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1152/ajprenal.00722.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041764549
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1159/000260042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014436842
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1159/000486011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099738058
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1194/jlr.p042176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018521982
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1371/journal.pgen.1003053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037230842
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1681/asn.2015030231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068243453
240 rdf:type schema:CreativeWork
241 https://doi.org/10.2147/tcrm.s1617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015226663
242 rdf:type schema:CreativeWork
243 https://doi.org/10.2215/cjn.03100608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051502696
244 rdf:type schema:CreativeWork
245 https://doi.org/10.2215/cjn.03250410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044088761
246 rdf:type schema:CreativeWork
247 https://doi.org/10.4161/org.24322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072306771
248 rdf:type schema:CreativeWork
249 https://doi.org/10.4236/ijcm.2013.44035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036986059
250 rdf:type schema:CreativeWork
251 https://doi.org/10.5455/medarh.2011.65.213-215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072872955
252 rdf:type schema:CreativeWork
253 https://www.grid.ac/institutes/grid.27860.3b schema:alternateName University of California, Davis
254 schema:name Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
255 Division of Nephrology, Department of Internal Medicine, University of California, Genome and Biomedical Sciences Building, Room 6311, 451 Health Sciences Dr, 95616, Davis, CA, USA
256 rdf:type schema:Organization
257 https://www.grid.ac/institutes/grid.413933.f schema:alternateName VA Northern California Health Care System
258 schema:name Cancer Center, University of California, Davis, CA, USA
259 Division of Nephrology, Department of Internal Medicine, University of California, Genome and Biomedical Sciences Building, Room 6311, 451 Health Sciences Dr, 95616, Davis, CA, USA
260 Medical Service, VA Northern California Health Care System, Sacramento, CA, USA
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...