A model to predict disease progression in patients with autosomal dominant polycystic kidney disease (ADPKD): the ADPKD Outcomes Model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-02-13

AUTHORS

Phil McEwan, Hayley Bennett Wilton, Albert C. M. Ong, Bjarne Ørskov, Richard Sandford, Francesco Scolari, Maria-Cristina V. Cabrera, Gerd Walz, Karl O’Reilly, Paul Robinson

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the leading inheritable cause of end-stage renal disease (ESRD); however, the natural course of disease progression is heterogeneous between patients. This study aimed to develop a natural history model of ADPKD that predicted progression rates and long-term outcomes in patients with differing baseline characteristics. METHODS: The ADPKD Outcomes Model (ADPKD-OM) was developed using available patient-level data from the placebo arm of the Tolvaptan Efficacy and Safety in Management of ADPKD and its Outcomes Study (TEMPO 3:4; ClinicalTrials.gov identifier NCT00428948). Multivariable regression equations estimating annual rates of ADPKD progression, in terms of total kidney volume (TKV) and estimated glomerular filtration rate, formed the basis of the lifetime patient-level simulation model. Outputs of the ADPKD-OM were compared against external data sources to validate model accuracy and generalisability to other ADPKD patient populations, then used to predict long-term outcomes in a cohort matched to the overall TEMPO 3:4 study population. RESULTS: A cohort with baseline patient characteristics consistent with TEMPO 3:4 was predicted to reach ESRD at a mean age of 52 years. Most patients (85%) were predicted to reach ESRD by the age of 65 years, with many progressing to ESRD earlier in life (18, 36 and 56% by the age of 45, 50 and 55 years, respectively). Consistent with previous research and clinical opinion, analyses supported the selection of baseline TKV as a prognostic factor for ADPKD progression, and demonstrated its value as a strong predictor of future ESRD risk. Validation exercises and illustrative analyses confirmed the ability of the ADPKD-OM to accurately predict disease progression towards ESRD across a range of clinically-relevant patient profiles. CONCLUSIONS: The ADPKD-OM represents a robust tool to predict natural disease progression and long-term outcomes in ADPKD patients, based on readily available and/or measurable clinical characteristics. In conjunction with clinical judgement, it has the potential to support decision-making in research and clinical practice. More... »

PAGES

37

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12882-017-0804-2

DOI

http://dx.doi.org/10.1186/s12882-017-0804-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100997097

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29439650


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antidiuretic Hormone Receptor Antagonists", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Double-Blind Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polycystic Kidney, Autosomal Dominant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tolvaptan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Health Economics and Outcomes Research Ltd, Cardiff, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Swansea Centre for Health Economics, Swansea University, Swansea, UK", 
            "Health Economics and Outcomes Research Ltd, Cardiff, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McEwan", 
        "givenName": "Phil", 
        "id": "sg:person.01346767345.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346767345.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Economics and Outcomes Research Ltd, Cardiff, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Health Economics and Outcomes Research Ltd, Cardiff, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilton", 
        "givenName": "Hayley Bennett", 
        "id": "sg:person.013512643663.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512643663.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK", 
            "Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ong", 
        "givenName": "Albert C. M.", 
        "id": "sg:person.014707263262.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014707263262.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Section of Nephrology, Zealand University Hospital, Roskilde, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.476266.7", 
          "name": [
            "Department of Internal Medicine, Section of Nephrology, Zealand University Hospital, Roskilde, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00d8rskov", 
        "givenName": "Bjarne", 
        "id": "sg:person.01124473345.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124473345.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academic Laboratory of Medical Genetics, Addenbrooke\u2019s Treatment Centre, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Academic Laboratory of Medical Genetics, Addenbrooke\u2019s Treatment Centre, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sandford", 
        "givenName": "Richard", 
        "id": "sg:person.01230667263.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230667263.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nephrology, University of Brescia, Brescia, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7637.5", 
          "name": [
            "Department of Nephrology, University of Brescia, Brescia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scolari", 
        "givenName": "Francesco", 
        "id": "sg:person.01260704212.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260704212.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital Universitario La Paz, Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.81821.32", 
          "name": [
            "Hospital Universitario La Paz, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cabrera", 
        "givenName": "Maria-Cristina V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nephrology, University Medical Centre Freiburg, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7708.8", 
          "name": [
            "Department of Nephrology, University Medical Centre Freiburg, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walz", 
        "givenName": "Gerd", 
        "id": "sg:person.0701454747.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701454747.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Otsuka Pharmaceutical Europe Ltd, Gallions Wexham Springs, Framewood Road, Wexham, SL3 6PJ UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Otsuka Pharmaceutical Europe Ltd, Gallions Wexham Springs, Framewood Road, Wexham, SL3 6PJ UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u2019Reilly", 
        "givenName": "Karl", 
        "id": "sg:person.01045541451.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045541451.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Otsuka Pharmaceutical Europe Ltd, Gallions Wexham Springs, Framewood Road, Wexham, SL3 6PJ UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Otsuka Pharmaceutical Europe Ltd, Gallions Wexham Springs, Framewood Road, Wexham, SL3 6PJ UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robinson", 
        "givenName": "Paul", 
        "id": "sg:person.01113654651.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113654651.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12882-015-0114-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029294065", 
          "https://doi.org/10.1186/s12882-015-0114-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21706-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035613449", 
          "https://doi.org/10.1007/978-0-387-21706-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3462-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034876164", 
          "https://doi.org/10.1007/978-1-4757-3462-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-13", 
    "datePublishedReg": "2018-02-13", 
    "description": "BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the leading inheritable cause of end-stage renal disease (ESRD); however, the natural course of disease progression is heterogeneous between patients. This study aimed to develop a natural history model of ADPKD that predicted progression rates and long-term outcomes in patients with differing baseline characteristics.\nMETHODS: The ADPKD Outcomes Model (ADPKD-OM) was developed using available patient-level data from the placebo arm of the Tolvaptan Efficacy and Safety in Management of ADPKD and its Outcomes Study (TEMPO 3:4; ClinicalTrials.gov identifier NCT00428948). Multivariable regression equations estimating annual rates of ADPKD progression, in terms of total kidney volume (TKV) and estimated glomerular filtration rate, formed the basis of the lifetime patient-level simulation model. Outputs of the ADPKD-OM were compared against external data sources to validate model accuracy and generalisability to other ADPKD patient populations, then used to predict long-term outcomes in a cohort matched to the overall TEMPO 3:4 study population.\nRESULTS: A cohort with baseline patient characteristics consistent with TEMPO 3:4 was predicted to reach ESRD at a mean age of 52 years. Most patients (85%) were predicted to reach ESRD by the age of 65\u00a0years, with many progressing to ESRD earlier in life (18, 36 and 56% by the age of 45, 50 and 55\u00a0years, respectively). Consistent with previous research and clinical opinion, analyses supported the selection of baseline TKV as a prognostic factor for ADPKD progression, and demonstrated its value as a strong predictor of future ESRD risk. Validation exercises and illustrative analyses confirmed the ability of the ADPKD-OM to accurately predict disease progression towards ESRD across a range of clinically-relevant patient profiles.\nCONCLUSIONS: The ADPKD-OM represents a robust tool to predict natural disease progression and long-term outcomes in ADPKD patients, based on readily available and/or measurable clinical characteristics. In conjunction with clinical judgement, it has the potential to support decision-making in research and clinical practice.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12882-017-0804-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024626", 
        "issn": [
          "1471-2369"
        ], 
        "name": "BMC Nephrology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "end-stage renal disease", 
      "autosomal dominant polycystic kidney disease", 
      "long-term outcomes", 
      "total kidney volume", 
      "dominant polycystic kidney disease", 
      "disease progression", 
      "polycystic kidney disease", 
      "kidney disease", 
      "ADPKD progression", 
      "management of ADPKD", 
      "baseline total kidney volume", 
      "patient-level simulation model", 
      "baseline patient characteristics", 
      "glomerular filtration rate", 
      "natural disease progression", 
      "patient-level data", 
      "natural history model", 
      "Tolvaptan Efficacy", 
      "baseline characteristics", 
      "placebo arm", 
      "patient characteristics", 
      "most patients", 
      "prognostic factors", 
      "ESRD risk", 
      "clinical characteristics", 
      "renal disease", 
      "mean age", 
      "patient population", 
      "natural course", 
      "filtration rate", 
      "ADPKD patients", 
      "kidney volume", 
      "progression rate", 
      "study population", 
      "patient profiles", 
      "outcome studies", 
      "inheritable cause", 
      "clinical opinion", 
      "patients", 
      "clinical practice", 
      "clinical judgment", 
      "outcome model", 
      "progression", 
      "disease", 
      "strongest predictor", 
      "outcomes", 
      "cohort", 
      "age", 
      "annual rate", 
      "population", 
      "years", 
      "efficacy", 
      "rate", 
      "risk", 
      "predictors", 
      "exercise", 
      "study", 
      "cause", 
      "safety", 
      "arm", 
      "course", 
      "overall tempo", 
      "management", 
      "generalisability", 
      "factors", 
      "life", 
      "characteristics", 
      "volume", 
      "previous research", 
      "analysis", 
      "regression equation", 
      "profile", 
      "data sources", 
      "practice", 
      "ability", 
      "data", 
      "model", 
      "research", 
      "robust tool", 
      "opinion", 
      "potential", 
      "conjunction", 
      "multivariable regression equations", 
      "history models", 
      "values", 
      "tool", 
      "tempo", 
      "basis", 
      "selection", 
      "validation exercise", 
      "judgments", 
      "output", 
      "external data sources", 
      "range", 
      "terms", 
      "illustrative analysis", 
      "source", 
      "accuracy", 
      "model accuracy", 
      "simulation model", 
      "equations", 
      "ADPKD Outcomes Model", 
      "available patient-level data", 
      "lifetime patient-level simulation model", 
      "ADPKD-OM", 
      "ADPKD patient populations", 
      "future ESRD risk", 
      "relevant patient profiles", 
      "measurable clinical characteristics"
    ], 
    "name": "A model to predict disease progression in patients with autosomal dominant polycystic kidney disease (ADPKD): the ADPKD Outcomes Model", 
    "pagination": "37", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100997097"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12882-017-0804-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29439650"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12882-017-0804-2", 
      "https://app.dimensions.ai/details/publication/pub.1100997097"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_766.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12882-017-0804-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12882-017-0804-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12882-017-0804-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12882-017-0804-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12882-017-0804-2'


 

This table displays all metadata directly associated to this object as RDF triples.

320 TRIPLES      22 PREDICATES      152 URIs      141 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12882-017-0804-2 schema:about N2ec55cc9c9dd40e8b18f6e41ab9279ef
2 N44c3912a9ccc40bebd66d13c3c6e06c2
3 N51729192b80e4ac2af722f9618ebf945
4 N52a9729e897f45fdb69961fdff287563
5 N61b17be72416431583d9e5de55d1b068
6 N63a58af5580e4422a4f81316e9754819
7 N8bf117c1088a4251babc5be1e579cd03
8 N9076a313e5524bb095a6550ac58c39b7
9 N977083ecaec64166b930011ecad53020
10 Nc2a51b8ecf9847a9bf1b32539823d754
11 Nc5387f88cba947e499638e319ff99374
12 Nec9aabcbf178421182fd8816189b5680
13 Nef6a6dd4faed45a9960c3d1c9ccad283
14 Nfdc56a04dfa6414f8496ef2ff110c6de
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author N34184205cef6482a8111ceb9900d266b
18 schema:citation sg:pub.10.1007/978-0-387-21706-2
19 sg:pub.10.1007/978-1-4757-3462-1
20 sg:pub.10.1186/s12882-015-0114-5
21 schema:datePublished 2018-02-13
22 schema:datePublishedReg 2018-02-13
23 schema:description BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the leading inheritable cause of end-stage renal disease (ESRD); however, the natural course of disease progression is heterogeneous between patients. This study aimed to develop a natural history model of ADPKD that predicted progression rates and long-term outcomes in patients with differing baseline characteristics. METHODS: The ADPKD Outcomes Model (ADPKD-OM) was developed using available patient-level data from the placebo arm of the Tolvaptan Efficacy and Safety in Management of ADPKD and its Outcomes Study (TEMPO 3:4; ClinicalTrials.gov identifier NCT00428948). Multivariable regression equations estimating annual rates of ADPKD progression, in terms of total kidney volume (TKV) and estimated glomerular filtration rate, formed the basis of the lifetime patient-level simulation model. Outputs of the ADPKD-OM were compared against external data sources to validate model accuracy and generalisability to other ADPKD patient populations, then used to predict long-term outcomes in a cohort matched to the overall TEMPO 3:4 study population. RESULTS: A cohort with baseline patient characteristics consistent with TEMPO 3:4 was predicted to reach ESRD at a mean age of 52 years. Most patients (85%) were predicted to reach ESRD by the age of 65 years, with many progressing to ESRD earlier in life (18, 36 and 56% by the age of 45, 50 and 55 years, respectively). Consistent with previous research and clinical opinion, analyses supported the selection of baseline TKV as a prognostic factor for ADPKD progression, and demonstrated its value as a strong predictor of future ESRD risk. Validation exercises and illustrative analyses confirmed the ability of the ADPKD-OM to accurately predict disease progression towards ESRD across a range of clinically-relevant patient profiles. CONCLUSIONS: The ADPKD-OM represents a robust tool to predict natural disease progression and long-term outcomes in ADPKD patients, based on readily available and/or measurable clinical characteristics. In conjunction with clinical judgement, it has the potential to support decision-making in research and clinical practice.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N5ac7c8c42bbb47808c5aa4d89e26c439
28 N7833be880eb14682a09fd59b0dc3b364
29 sg:journal.1024626
30 schema:keywords ADPKD Outcomes Model
31 ADPKD patient populations
32 ADPKD patients
33 ADPKD progression
34 ADPKD-OM
35 ESRD risk
36 Tolvaptan Efficacy
37 ability
38 accuracy
39 age
40 analysis
41 annual rate
42 arm
43 autosomal dominant polycystic kidney disease
44 available patient-level data
45 baseline characteristics
46 baseline patient characteristics
47 baseline total kidney volume
48 basis
49 cause
50 characteristics
51 clinical characteristics
52 clinical judgment
53 clinical opinion
54 clinical practice
55 cohort
56 conjunction
57 course
58 data
59 data sources
60 disease
61 disease progression
62 dominant polycystic kidney disease
63 efficacy
64 end-stage renal disease
65 equations
66 exercise
67 external data sources
68 factors
69 filtration rate
70 future ESRD risk
71 generalisability
72 glomerular filtration rate
73 history models
74 illustrative analysis
75 inheritable cause
76 judgments
77 kidney disease
78 kidney volume
79 life
80 lifetime patient-level simulation model
81 long-term outcomes
82 management
83 management of ADPKD
84 mean age
85 measurable clinical characteristics
86 model
87 model accuracy
88 most patients
89 multivariable regression equations
90 natural course
91 natural disease progression
92 natural history model
93 opinion
94 outcome model
95 outcome studies
96 outcomes
97 output
98 overall tempo
99 patient characteristics
100 patient population
101 patient profiles
102 patient-level data
103 patient-level simulation model
104 patients
105 placebo arm
106 polycystic kidney disease
107 population
108 potential
109 practice
110 predictors
111 previous research
112 profile
113 prognostic factors
114 progression
115 progression rate
116 range
117 rate
118 regression equation
119 relevant patient profiles
120 renal disease
121 research
122 risk
123 robust tool
124 safety
125 selection
126 simulation model
127 source
128 strongest predictor
129 study
130 study population
131 tempo
132 terms
133 tool
134 total kidney volume
135 validation exercise
136 values
137 volume
138 years
139 schema:name A model to predict disease progression in patients with autosomal dominant polycystic kidney disease (ADPKD): the ADPKD Outcomes Model
140 schema:pagination 37
141 schema:productId N1cb4451ab71a4e6eae679287755d80f1
142 Na09e80951a504fe0b249e5ed04a29058
143 Nf5e61001eded405182bcc1ed9b61047c
144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100997097
145 https://doi.org/10.1186/s12882-017-0804-2
146 schema:sdDatePublished 2021-12-01T19:42
147 schema:sdLicense https://scigraph.springernature.com/explorer/license/
148 schema:sdPublisher N71ee63f4e0424441ae654fac766e7a35
149 schema:url https://doi.org/10.1186/s12882-017-0804-2
150 sgo:license sg:explorer/license/
151 sgo:sdDataset articles
152 rdf:type schema:ScholarlyArticle
153 N04e4074f345b44c9ae325e0d78492940 schema:affiliation grid-institutes:grid.81821.32
154 schema:familyName Cabrera
155 schema:givenName Maria-Cristina V.
156 rdf:type schema:Person
157 N1cb4451ab71a4e6eae679287755d80f1 schema:name pubmed_id
158 schema:value 29439650
159 rdf:type schema:PropertyValue
160 N2ec55cc9c9dd40e8b18f6e41ab9279ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Double-Blind Method
162 rdf:type schema:DefinedTerm
163 N34184205cef6482a8111ceb9900d266b rdf:first sg:person.01346767345.38
164 rdf:rest N6ab8eda1ab194706a4b28c7726063ca4
165 N34a2070e1d894665b4023cfe02d36b66 rdf:first sg:person.01230667263.44
166 rdf:rest N4ae37e1d2b2c47559eb74a61903108ec
167 N44c3912a9ccc40bebd66d13c3c6e06c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Models, Theoretical
169 rdf:type schema:DefinedTerm
170 N498de69465c74b9495899576ca14be39 rdf:first sg:person.01045541451.38
171 rdf:rest N603af18d2a884b16aaa5a58b77d9aa01
172 N4ae37e1d2b2c47559eb74a61903108ec rdf:first sg:person.01260704212.30
173 rdf:rest Ne7dc52ce69364e378bb21185c807ce74
174 N50d6287c577e4d5f9d188e47417aefb6 rdf:first sg:person.01124473345.35
175 rdf:rest N34a2070e1d894665b4023cfe02d36b66
176 N51729192b80e4ac2af722f9618ebf945 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Adult
178 rdf:type schema:DefinedTerm
179 N52a9729e897f45fdb69961fdff287563 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Tolvaptan
181 rdf:type schema:DefinedTerm
182 N5ac7c8c42bbb47808c5aa4d89e26c439 schema:issueNumber 1
183 rdf:type schema:PublicationIssue
184 N603af18d2a884b16aaa5a58b77d9aa01 rdf:first sg:person.01113654651.66
185 rdf:rest rdf:nil
186 N61b17be72416431583d9e5de55d1b068 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Treatment Outcome
188 rdf:type schema:DefinedTerm
189 N63a58af5580e4422a4f81316e9754819 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Middle Aged
191 rdf:type schema:DefinedTerm
192 N6ab8eda1ab194706a4b28c7726063ca4 rdf:first sg:person.013512643663.11
193 rdf:rest Nf4b8633b1ea548db82ebbb0aba1b5f56
194 N718c207f5cda4fc9bdfe132478affe56 rdf:first sg:person.0701454747.67
195 rdf:rest N498de69465c74b9495899576ca14be39
196 N71ee63f4e0424441ae654fac766e7a35 schema:name Springer Nature - SN SciGraph project
197 rdf:type schema:Organization
198 N7833be880eb14682a09fd59b0dc3b364 schema:volumeNumber 19
199 rdf:type schema:PublicationVolume
200 N8bf117c1088a4251babc5be1e579cd03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Female
202 rdf:type schema:DefinedTerm
203 N9076a313e5524bb095a6550ac58c39b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Antidiuretic Hormone Receptor Antagonists
205 rdf:type schema:DefinedTerm
206 N977083ecaec64166b930011ecad53020 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Humans
208 rdf:type schema:DefinedTerm
209 Na09e80951a504fe0b249e5ed04a29058 schema:name doi
210 schema:value 10.1186/s12882-017-0804-2
211 rdf:type schema:PropertyValue
212 Nc2a51b8ecf9847a9bf1b32539823d754 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Male
214 rdf:type schema:DefinedTerm
215 Nc5387f88cba947e499638e319ff99374 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Polycystic Kidney, Autosomal Dominant
217 rdf:type schema:DefinedTerm
218 Ne7dc52ce69364e378bb21185c807ce74 rdf:first N04e4074f345b44c9ae325e0d78492940
219 rdf:rest N718c207f5cda4fc9bdfe132478affe56
220 Nec9aabcbf178421182fd8816189b5680 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Predictive Value of Tests
222 rdf:type schema:DefinedTerm
223 Nef6a6dd4faed45a9960c3d1c9ccad283 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
224 schema:name Aged
225 rdf:type schema:DefinedTerm
226 Nf4b8633b1ea548db82ebbb0aba1b5f56 rdf:first sg:person.014707263262.28
227 rdf:rest N50d6287c577e4d5f9d188e47417aefb6
228 Nf5e61001eded405182bcc1ed9b61047c schema:name dimensions_id
229 schema:value pub.1100997097
230 rdf:type schema:PropertyValue
231 Nfdc56a04dfa6414f8496ef2ff110c6de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
232 schema:name Disease Progression
233 rdf:type schema:DefinedTerm
234 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
235 schema:name Medical and Health Sciences
236 rdf:type schema:DefinedTerm
237 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
238 schema:name Clinical Sciences
239 rdf:type schema:DefinedTerm
240 sg:journal.1024626 schema:issn 1471-2369
241 schema:name BMC Nephrology
242 schema:publisher Springer Nature
243 rdf:type schema:Periodical
244 sg:person.01045541451.38 schema:affiliation grid-institutes:None
245 schema:familyName O’Reilly
246 schema:givenName Karl
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045541451.38
248 rdf:type schema:Person
249 sg:person.01113654651.66 schema:affiliation grid-institutes:None
250 schema:familyName Robinson
251 schema:givenName Paul
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113654651.66
253 rdf:type schema:Person
254 sg:person.01124473345.35 schema:affiliation grid-institutes:grid.476266.7
255 schema:familyName Ørskov
256 schema:givenName Bjarne
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124473345.35
258 rdf:type schema:Person
259 sg:person.01230667263.44 schema:affiliation grid-institutes:None
260 schema:familyName Sandford
261 schema:givenName Richard
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230667263.44
263 rdf:type schema:Person
264 sg:person.01260704212.30 schema:affiliation grid-institutes:grid.7637.5
265 schema:familyName Scolari
266 schema:givenName Francesco
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260704212.30
268 rdf:type schema:Person
269 sg:person.01346767345.38 schema:affiliation grid-institutes:None
270 schema:familyName McEwan
271 schema:givenName Phil
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346767345.38
273 rdf:type schema:Person
274 sg:person.013512643663.11 schema:affiliation grid-institutes:None
275 schema:familyName Wilton
276 schema:givenName Hayley Bennett
277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512643663.11
278 rdf:type schema:Person
279 sg:person.014707263262.28 schema:affiliation grid-institutes:None
280 schema:familyName Ong
281 schema:givenName Albert C. M.
282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014707263262.28
283 rdf:type schema:Person
284 sg:person.0701454747.67 schema:affiliation grid-institutes:grid.7708.8
285 schema:familyName Walz
286 schema:givenName Gerd
287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701454747.67
288 rdf:type schema:Person
289 sg:pub.10.1007/978-0-387-21706-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613449
290 https://doi.org/10.1007/978-0-387-21706-2
291 rdf:type schema:CreativeWork
292 sg:pub.10.1007/978-1-4757-3462-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034876164
293 https://doi.org/10.1007/978-1-4757-3462-1
294 rdf:type schema:CreativeWork
295 sg:pub.10.1186/s12882-015-0114-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029294065
296 https://doi.org/10.1186/s12882-015-0114-5
297 rdf:type schema:CreativeWork
298 grid-institutes:None schema:alternateName Academic Laboratory of Medical Genetics, Addenbrooke’s Treatment Centre, Cambridge, UK
299 Health Economics and Outcomes Research Ltd, Cardiff, UK
300 Otsuka Pharmaceutical Europe Ltd, Gallions Wexham Springs, Framewood Road, Wexham, SL3 6PJ UK
301 Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
302 schema:name Academic Laboratory of Medical Genetics, Addenbrooke’s Treatment Centre, Cambridge, UK
303 Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
304 Health Economics and Outcomes Research Ltd, Cardiff, UK
305 Otsuka Pharmaceutical Europe Ltd, Gallions Wexham Springs, Framewood Road, Wexham, SL3 6PJ UK
306 Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
307 Swansea Centre for Health Economics, Swansea University, Swansea, UK
308 rdf:type schema:Organization
309 grid-institutes:grid.476266.7 schema:alternateName Department of Internal Medicine, Section of Nephrology, Zealand University Hospital, Roskilde, Denmark
310 schema:name Department of Internal Medicine, Section of Nephrology, Zealand University Hospital, Roskilde, Denmark
311 rdf:type schema:Organization
312 grid-institutes:grid.7637.5 schema:alternateName Department of Nephrology, University of Brescia, Brescia, Italy
313 schema:name Department of Nephrology, University of Brescia, Brescia, Italy
314 rdf:type schema:Organization
315 grid-institutes:grid.7708.8 schema:alternateName Department of Nephrology, University Medical Centre Freiburg, Freiburg, Germany
316 schema:name Department of Nephrology, University Medical Centre Freiburg, Freiburg, Germany
317 rdf:type schema:Organization
318 grid-institutes:grid.81821.32 schema:alternateName Hospital Universitario La Paz, Madrid, Spain
319 schema:name Hospital Universitario La Paz, Madrid, Spain
320 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...