Exome-wide survey of the Siberian Caucasian population. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

Andrey A Yurchenko, Nikolai S Yudin, Mikhail I Voevoda

ABSTRACT

BACKGROUND: Population structure is an important factor in the genetic association studies but often remains underexplored for many human populations. We identified exome variants in 39 Siberian Caucasian individuals from Novosibirsk, Russia and compared their genetic allele frequencies with European populations from 1000 Genomes Project. METHODS: The study participants were from Novosibirsk and represented people with monogenic diabetes, healthy individuals and a cohort from the tick-borne encephalitis study. Isolated DNA was enriched using Agilent SureSelect V5 kit and sequenced on Illumina HiSeq 4000 and genetic variants were identified using GATK pipeline. To estimate the patterns of the population structure we used PCA and ADMIXTURE analysis. Pharmocogenetically and medically important variants were annotated based on PharmGKB and ClinVar databases. RESULTS: The analysis identified low, but highly significant population differentiation attributed to numerous loci between the Siberian Caucasian population and other European population samples as well as a higher proportion of the Finnish genetic component in the studied sample. The medical and pharmacogenetic annotation of highly significantly differentiated variants between the Novosibirsk and the combined European populations revealed a number of important genetic polymorphisms located in such genes as FCGR3B, TYR, OCA2, FABP1, CHEK2 and SLC4A1. CONCLUSIONS: The study reports for the first time an exome-wide comparison of a population from Russia with European samples and emphasizes the importance of population studies with medical annotation of variants. More... »

PAGES

51

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12881-019-0772-4

DOI

http://dx.doi.org/10.1186/s12881-019-0772-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113327559

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30967127


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siberian Branch of the Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Lavrentieva 10 St, Novosibirsk, Russia, 630090. andreyurch@gmail.com."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yurchenko", 
        "givenName": "Andrey A", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University", 
          "id": "https://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Lavrentieva 10 St, Novosibirsk, Russia, 630090.", 
            "Novosibirsk State University, Novosibirsk, 630090, Russia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yudin", 
        "givenName": "Nikolai S", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siberian Branch of the Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Lavrentieva 10 St, Novosibirsk, Russia, 630090.", 
            "Novosibirsk State University, Novosibirsk, 630090, Russia.", 
            "Institute of Internal and Preventive Medicine-branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 175/1, B. Bogatkov Street, 630089, Novosibirsk, Russia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voevoda", 
        "givenName": "Mikhail I", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature11632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000661742", 
          "https://doi.org/10.1038/nature11632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009629440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.094052.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010760027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10815-015-0626-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014322428", 
          "https://doi.org/10.1007/s10815-015-0626-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0058552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014941376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018404011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020792304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025005893", 
          "https://doi.org/10.1038/nature18964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028453204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdq585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038205008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10038-004-0171-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041126010", 
          "https://doi.org/10.1007/s10038-004-0171-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042720804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050846997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0135820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052592425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0135820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052592425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/dna.2013.1970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059252862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.202945.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060407440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076385473", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12687-017-0318-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090832846", 
          "https://doi.org/10.1007/s12687-017-0318-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12687-017-0318-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090832846", 
          "https://doi.org/10.1007/s12687-017-0318-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12863-017-0578-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100101791", 
          "https://doi.org/10.1186/s12863-017-0578-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "BACKGROUND: Population structure is an important factor in the genetic association studies but often remains underexplored for many human populations. We identified exome variants in 39 Siberian Caucasian individuals from Novosibirsk, Russia and compared their genetic allele frequencies with European populations from 1000 Genomes Project.\nMETHODS: The study participants were from Novosibirsk and represented people with monogenic diabetes, healthy individuals and a cohort from the tick-borne encephalitis study. Isolated DNA was enriched using Agilent SureSelect V5 kit and sequenced on Illumina HiSeq 4000 and genetic variants\u00a0were identified using GATK\u00a0pipeline. To estimate the patterns of the population structure we used\u00a0PCA and ADMIXTURE analysis.\u00a0Pharmocogenetically and medically important variants were annotated based on PharmGKB and ClinVar databases.\nRESULTS: The analysis identified low, but highly significant population differentiation attributed to numerous loci between the Siberian Caucasian population and other European population samples as well as a higher proportion of the Finnish genetic component in the studied sample. The medical and pharmacogenetic annotation of highly significantly differentiated variants between the Novosibirsk and the combined European populations revealed a number of important genetic polymorphisms located in such genes as FCGR3B, TYR, OCA2, FABP1, CHEK2 and SLC4A1.\nCONCLUSIONS: The study reports for the first time an exome-wide comparison of a population from Russia with European samples and emphasizes the importance of population studies with medical annotation of variants.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12881-019-0772-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024947", 
        "issn": [
          "1471-2350"
        ], 
        "name": "BMC Medical Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Exome-wide survey of the Siberian Caucasian population.", 
    "pagination": "51", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12881-019-0772-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113327559"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968552"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30967127"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12881-019-0772-4", 
      "https://app.dimensions.ai/details/publication/pub.1113327559"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91464_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://bmcmedgenet.biomedcentral.com/articles/10.1186/s12881-019-0772-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12881-019-0772-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12881-019-0772-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12881-019-0772-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12881-019-0772-4'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12881-019-0772-4 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nd270400199e1498589f27419481d7a64
4 schema:citation sg:pub.10.1007/s10038-004-0171-2
5 sg:pub.10.1007/s10815-015-0626-8
6 sg:pub.10.1007/s12687-017-0318-4
7 sg:pub.10.1038/nature11632
8 sg:pub.10.1038/nature18964
9 sg:pub.10.1038/ng1847
10 sg:pub.10.1186/s12863-017-0578-3
11 https://app.dimensions.ai/details/publication/pub.1076385473
12 https://doi.org/10.1086/519795
13 https://doi.org/10.1089/dna.2013.1970
14 https://doi.org/10.1093/annonc/mdq585
15 https://doi.org/10.1093/bioinformatics/btp324
16 https://doi.org/10.1093/bioinformatics/btp352
17 https://doi.org/10.1093/bioinformatics/btr330
18 https://doi.org/10.1093/bioinformatics/bts606
19 https://doi.org/10.1093/bioinformatics/btu170
20 https://doi.org/10.1093/nar/30.1.163
21 https://doi.org/10.1093/nar/gkq603
22 https://doi.org/10.1093/nar/gkt1113
23 https://doi.org/10.1101/gr.094052.109
24 https://doi.org/10.1101/gr.107524.110
25 https://doi.org/10.1101/gr.202945.115
26 https://doi.org/10.1371/journal.pone.0058552
27 https://doi.org/10.1371/journal.pone.0135820
28 schema:datePublished 2019-04
29 schema:datePublishedReg 2019-04-01
30 schema:description BACKGROUND: Population structure is an important factor in the genetic association studies but often remains underexplored for many human populations. We identified exome variants in 39 Siberian Caucasian individuals from Novosibirsk, Russia and compared their genetic allele frequencies with European populations from 1000 Genomes Project. METHODS: The study participants were from Novosibirsk and represented people with monogenic diabetes, healthy individuals and a cohort from the tick-borne encephalitis study. Isolated DNA was enriched using Agilent SureSelect V5 kit and sequenced on Illumina HiSeq 4000 and genetic variants were identified using GATK pipeline. To estimate the patterns of the population structure we used PCA and ADMIXTURE analysis. Pharmocogenetically and medically important variants were annotated based on PharmGKB and ClinVar databases. RESULTS: The analysis identified low, but highly significant population differentiation attributed to numerous loci between the Siberian Caucasian population and other European population samples as well as a higher proportion of the Finnish genetic component in the studied sample. The medical and pharmacogenetic annotation of highly significantly differentiated variants between the Novosibirsk and the combined European populations revealed a number of important genetic polymorphisms located in such genes as FCGR3B, TYR, OCA2, FABP1, CHEK2 and SLC4A1. CONCLUSIONS: The study reports for the first time an exome-wide comparison of a population from Russia with European samples and emphasizes the importance of population studies with medical annotation of variants.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N4841a7ecae254e1a866f7b4b3626f9fe
35 Nce6eed0ceefb4532bdbc5c65449f80d7
36 sg:journal.1024947
37 schema:name Exome-wide survey of the Siberian Caucasian population.
38 schema:pagination 51
39 schema:productId N1f380b5744234a3599cb53f66e0be993
40 N2fc1e412192c4d3c9e9a14d3b3e11064
41 N73d420223da04908bf9972215ddf59c6
42 Naaf6c9ae8867488aa1e5ebbe3b5293ff
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113327559
44 https://doi.org/10.1186/s12881-019-0772-4
45 schema:sdDatePublished 2019-04-15T09:03
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N1e196c166c9d4655815f154f802a9822
48 schema:url https://bmcmedgenet.biomedcentral.com/articles/10.1186/s12881-019-0772-4
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N1e196c166c9d4655815f154f802a9822 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N1f380b5744234a3599cb53f66e0be993 schema:name doi
55 schema:value 10.1186/s12881-019-0772-4
56 rdf:type schema:PropertyValue
57 N2523a2f8e98c4f639926ae5b6dc03f54 rdf:first N9aee1a4050c54eb4af47bc0243fb3cf9
58 rdf:rest rdf:nil
59 N2fc1e412192c4d3c9e9a14d3b3e11064 schema:name nlm_unique_id
60 schema:value 100968552
61 rdf:type schema:PropertyValue
62 N39981950880a4687a16d1049f6ac736c schema:affiliation https://www.grid.ac/institutes/grid.415877.8
63 schema:familyName Yurchenko
64 schema:givenName Andrey A
65 rdf:type schema:Person
66 N4841a7ecae254e1a866f7b4b3626f9fe schema:volumeNumber 20
67 rdf:type schema:PublicationVolume
68 N73d420223da04908bf9972215ddf59c6 schema:name pubmed_id
69 schema:value 30967127
70 rdf:type schema:PropertyValue
71 N975e88d91d8b424d8755023851a09a0f rdf:first Nb776f10a63174d59acbf254b9604b31b
72 rdf:rest N2523a2f8e98c4f639926ae5b6dc03f54
73 N9aee1a4050c54eb4af47bc0243fb3cf9 schema:affiliation https://www.grid.ac/institutes/grid.415877.8
74 schema:familyName Voevoda
75 schema:givenName Mikhail I
76 rdf:type schema:Person
77 Naaf6c9ae8867488aa1e5ebbe3b5293ff schema:name dimensions_id
78 schema:value pub.1113327559
79 rdf:type schema:PropertyValue
80 Nb776f10a63174d59acbf254b9604b31b schema:affiliation https://www.grid.ac/institutes/grid.4605.7
81 schema:familyName Yudin
82 schema:givenName Nikolai S
83 rdf:type schema:Person
84 Nce6eed0ceefb4532bdbc5c65449f80d7 schema:issueNumber Suppl 1
85 rdf:type schema:PublicationIssue
86 Nd270400199e1498589f27419481d7a64 rdf:first N39981950880a4687a16d1049f6ac736c
87 rdf:rest N975e88d91d8b424d8755023851a09a0f
88 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
89 schema:name Biological Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
92 schema:name Genetics
93 rdf:type schema:DefinedTerm
94 sg:journal.1024947 schema:issn 1471-2350
95 schema:name BMC Medical Genetics
96 rdf:type schema:Periodical
97 sg:pub.10.1007/s10038-004-0171-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041126010
98 https://doi.org/10.1007/s10038-004-0171-2
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s10815-015-0626-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014322428
101 https://doi.org/10.1007/s10815-015-0626-8
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s12687-017-0318-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090832846
104 https://doi.org/10.1007/s12687-017-0318-4
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/nature11632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000661742
107 https://doi.org/10.1038/nature11632
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/nature18964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025005893
110 https://doi.org/10.1038/nature18964
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
113 https://doi.org/10.1038/ng1847
114 rdf:type schema:CreativeWork
115 sg:pub.10.1186/s12863-017-0578-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100101791
116 https://doi.org/10.1186/s12863-017-0578-3
117 rdf:type schema:CreativeWork
118 https://app.dimensions.ai/details/publication/pub.1076385473 schema:CreativeWork
119 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1089/dna.2013.1970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059252862
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1093/annonc/mdq585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038205008
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1093/bioinformatics/btr330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018404011
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1093/bioinformatics/bts606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050846997
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/bioinformatics/btu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720804
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/nar/30.1.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028453204
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1093/nar/gkq603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020792304
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/nar/gkt1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009629440
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1101/gr.094052.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010760027
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1101/gr.202945.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060407440
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1371/journal.pone.0058552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014941376
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1371/journal.pone.0135820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052592425
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.415877.8 schema:alternateName Siberian Branch of the Russian Academy of Sciences
152 schema:name Institute of Internal and Preventive Medicine-branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 175/1, B. Bogatkov Street, 630089, Novosibirsk, Russia.
153 Novosibirsk State University, Novosibirsk, 630090, Russia.
154 The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Lavrentieva 10 St, Novosibirsk, Russia, 630090.
155 The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Lavrentieva 10 St, Novosibirsk, Russia, 630090. andreyurch@gmail.com.
156 rdf:type schema:Organization
157 https://www.grid.ac/institutes/grid.4605.7 schema:alternateName Novosibirsk State University
158 schema:name Novosibirsk State University, Novosibirsk, 630090, Russia.
159 The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Lavrentieva 10 St, Novosibirsk, Russia, 630090.
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...