Semi-automated computed tomography Volumetry can predict hemihepatectomy specimens’ volumes in patients with hepatic malignancy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Philipp Mayer, Martin Grözinger, Theresa Mokry, Peter Schemmer, Nina Waldburger, Hans-Ulrich Kauczor, Miriam Klauss, Christof-Matthias Sommer

ABSTRACT

BACKGROUND: One of the major causes of perioperative mortality of patients undergoing major hepatic resections is post-hepatectomy liver failure (PHLF). For preoperative appraisal of the risk of PHLF it is important to accurately predict resectate volume and future liver remnant volume (FLRV). The objective of our study is to prospectively evaluate the accuracy of hemihepatectomy resectate volumes that are determined by computed tomography volumetry (CTV) when compared with intraoperatively measured volumes and weights as gold standard in patients undergoing hemihepatectomy. METHODS: Twenty four patients (13 women, 11 men) scheduled for hemihepatectomy due to histologically proven primary or secondary hepatic malignancies were included in our study. CTV was performed using a semi-automated module (S, hereinafter) (syngo.CT Liver Analysis VA30, Siemens Healthcare, Germany). Conversion factors between CT volumes on the one side and intraoperative volumes and weights on the other side were calculated using the method of least squares. Absolute and relative disagreements between CT volumes and intraoperative volumes were determined. RESULTS: A conversion factor of c = 0.906 most precisely predicted intraoperative volumes of exsanguinated hemihepatectomy specimens from CT volumes in all patients with mean absolute and relative disagreements between CT volumes and intraoperative volumes of 57 ml and 6.3%. The use of operation-specific conversion factors yielded even better results. CONCLUSIONS: CTV performed with S accurately predicts intraoperative volumes of hemihepatectomy specimens when applying conversion factors which compensate for exsanguination. This allows to precisely estimate the FLRV and thus minimize the risk of PHLF in patients undergoing major hepatic resections. More... »

PAGES

20

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12880-019-0309-5

DOI

http://dx.doi.org/10.1186/s12880-019-0309-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112391818

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30808320


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University Hospital Heidelberg", 
          "id": "https://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mayer", 
        "givenName": "Philipp", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Heidelberg", 
          "id": "https://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gr\u00f6zinger", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Heidelberg", 
          "id": "https://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mokry", 
        "givenName": "Theresa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Graz", 
          "id": "https://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany", 
            "Division of Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schemmer", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Heidelberg", 
          "id": "https://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waldburger", 
        "givenName": "Nina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Heidelberg", 
          "id": "https://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kauczor", 
        "givenName": "Hans-Ulrich", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Heidelberg", 
          "id": "https://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klauss", 
        "givenName": "Miriam", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Heidelberg", 
          "id": "https://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sommer", 
        "givenName": "Christof-Matthias", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejrad.2009.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001351289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2403050850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010548676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000364836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013696925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jso.23671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015960547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0041-1345(02)03603-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017592909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0041-1345(02)03603-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017592909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00007890-200105270-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022936352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00007890-200105270-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022936352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2013.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024679314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-6143.2006.01656.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026655949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1091-255x(02)00370-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027253131", 
          "https://doi.org/10.1016/s1091-255x(02)00370-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1091-255x(02)00370-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027253131", 
          "https://doi.org/10.1016/s1091-255x(02)00370-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lt.20429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029041897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lt.20429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029041897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-8278(86)80074-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032181440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181806c29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032336147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181806c29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032336147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181806c29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032336147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gut.2004.046524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038521983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0110201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041396480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surg.2003.08.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046109692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000335713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046999601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2047-783x-15-8-345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049429412", 
          "https://doi.org/10.1186/2047-783x-15-8-345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surg.2010.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051895563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lt.22419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052070930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2003-41938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057424213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4329/wjr.v6.i4.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072524783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-90-2-185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073736537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094872122"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: One of the major causes of perioperative mortality of patients undergoing major hepatic resections is post-hepatectomy liver failure (PHLF). For preoperative appraisal of the risk of PHLF it is important to accurately predict resectate volume and future liver remnant volume (FLRV). The objective of our study is to prospectively evaluate the accuracy of hemihepatectomy resectate volumes that are determined by computed tomography volumetry (CTV) when compared with intraoperatively measured volumes and weights as gold standard in patients undergoing hemihepatectomy.\nMETHODS: Twenty four patients (13 women, 11 men) scheduled for hemihepatectomy due to histologically proven primary or secondary hepatic malignancies were included in our study. CTV was performed using a semi-automated module (S, hereinafter) (syngo.CT Liver Analysis VA30, Siemens Healthcare, Germany). Conversion factors between CT volumes on the one side and intraoperative volumes and weights on the other side were calculated using the method of least squares. Absolute and relative disagreements between CT volumes and intraoperative volumes were determined.\nRESULTS: A conversion factor of c\u2009=\u20090.906 most precisely predicted intraoperative volumes of exsanguinated hemihepatectomy specimens from CT volumes in all patients with mean absolute and relative disagreements between CT volumes and intraoperative volumes of 57\u2009ml and 6.3%. The use of operation-specific conversion factors yielded even better results.\nCONCLUSIONS: CTV performed with S accurately predicts intraoperative volumes of hemihepatectomy specimens when applying conversion factors which compensate for exsanguination. This allows to precisely estimate the FLRV and thus minimize the risk of PHLF in patients undergoing major hepatic resections.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12880-019-0309-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024948", 
        "issn": [
          "1471-2342"
        ], 
        "name": "BMC Medical Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Semi-automated computed tomography Volumetry can predict hemihepatectomy specimens\u2019 volumes in patients with hepatic malignancy", 
    "pagination": "20", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "602cd89386208d773fe1b45220aba078cf4e3d6325ffe41ba66d58651a540290"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30808320"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968553"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12880-019-0309-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112391818"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12880-019-0309-5", 
      "https://app.dimensions.ai/details/publication/pub.1112391818"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57864_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12880-019-0309-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12880-019-0309-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12880-019-0309-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12880-019-0309-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12880-019-0309-5'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12880-019-0309-5 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N7887ba1adb11445198cbca9266b7c6dd
4 schema:citation sg:pub.10.1016/s1091-255x(02)00370-0
5 sg:pub.10.1186/2047-783x-15-8-345
6 https://doi.org/10.1002/jso.23671
7 https://doi.org/10.1002/lt.20429
8 https://doi.org/10.1002/lt.22419
9 https://doi.org/10.1016/j.crad.2013.12.021
10 https://doi.org/10.1016/j.ejrad.2009.09.005
11 https://doi.org/10.1016/j.surg.2003.08.024
12 https://doi.org/10.1016/j.surg.2010.10.001
13 https://doi.org/10.1016/s0041-1345(02)03603-5
14 https://doi.org/10.1016/s0168-8278(86)80074-5
15 https://doi.org/10.1055/s-2003-41938
16 https://doi.org/10.1097/00007890-200105270-00009
17 https://doi.org/10.1097/rct.0b013e3181806c29
18 https://doi.org/10.1109/cvpr.2008.4587393
19 https://doi.org/10.1111/j.1600-6143.2006.01656.x
20 https://doi.org/10.1136/gut.2004.046524
21 https://doi.org/10.1148/radiol.2403050850
22 https://doi.org/10.1159/000335713
23 https://doi.org/10.1159/000364836
24 https://doi.org/10.1371/journal.pone.0110201
25 https://doi.org/10.4329/wjr.v6.i4.62
26 https://doi.org/10.7326/0003-4819-90-2-185
27 schema:datePublished 2019-12
28 schema:datePublishedReg 2019-12-01
29 schema:description BACKGROUND: One of the major causes of perioperative mortality of patients undergoing major hepatic resections is post-hepatectomy liver failure (PHLF). For preoperative appraisal of the risk of PHLF it is important to accurately predict resectate volume and future liver remnant volume (FLRV). The objective of our study is to prospectively evaluate the accuracy of hemihepatectomy resectate volumes that are determined by computed tomography volumetry (CTV) when compared with intraoperatively measured volumes and weights as gold standard in patients undergoing hemihepatectomy. METHODS: Twenty four patients (13 women, 11 men) scheduled for hemihepatectomy due to histologically proven primary or secondary hepatic malignancies were included in our study. CTV was performed using a semi-automated module (S, hereinafter) (syngo.CT Liver Analysis VA30, Siemens Healthcare, Germany). Conversion factors between CT volumes on the one side and intraoperative volumes and weights on the other side were calculated using the method of least squares. Absolute and relative disagreements between CT volumes and intraoperative volumes were determined. RESULTS: A conversion factor of c = 0.906 most precisely predicted intraoperative volumes of exsanguinated hemihepatectomy specimens from CT volumes in all patients with mean absolute and relative disagreements between CT volumes and intraoperative volumes of 57 ml and 6.3%. The use of operation-specific conversion factors yielded even better results. CONCLUSIONS: CTV performed with S accurately predicts intraoperative volumes of hemihepatectomy specimens when applying conversion factors which compensate for exsanguination. This allows to precisely estimate the FLRV and thus minimize the risk of PHLF in patients undergoing major hepatic resections.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N03647a3673704d79816aa430d48bf6ba
34 Nce1ce160aa004a0ca28acfa1feba5a56
35 sg:journal.1024948
36 schema:name Semi-automated computed tomography Volumetry can predict hemihepatectomy specimens’ volumes in patients with hepatic malignancy
37 schema:pagination 20
38 schema:productId N6514026592484d589235ab4d269564e0
39 N80454bd7d7cf4f0f8ff0d6d7c0b9606e
40 Nbd112aa1ced94db19116f54f739ff721
41 Ncc47fa3b8ba64698b3461c86e6f56958
42 Nfc1963e3b5d34da79ebf5d8036407b9e
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112391818
44 https://doi.org/10.1186/s12880-019-0309-5
45 schema:sdDatePublished 2019-04-11T11:25
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N98000433429241318fb84fe44dfda6e4
48 schema:url https://link.springer.com/10.1186%2Fs12880-019-0309-5
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N03647a3673704d79816aa430d48bf6ba schema:volumeNumber 19
53 rdf:type schema:PublicationVolume
54 N26b59e8c156d46a19311d0f98c842cc4 schema:affiliation https://www.grid.ac/institutes/grid.5253.1
55 schema:familyName Sommer
56 schema:givenName Christof-Matthias
57 rdf:type schema:Person
58 N2fad205fa85947548ce04133624d340f schema:affiliation https://www.grid.ac/institutes/grid.5253.1
59 schema:familyName Mokry
60 schema:givenName Theresa
61 rdf:type schema:Person
62 N494e9af850ac42c3a5e8fb5eb34f8f8b rdf:first Nd83022c25342495bb7131a335e81c754
63 rdf:rest Nba866685e7804c2ca88ea38cacd60a70
64 N57776e8498ca40b493f16813eb840832 schema:affiliation https://www.grid.ac/institutes/grid.5253.1
65 schema:familyName Waldburger
66 schema:givenName Nina
67 rdf:type schema:Person
68 N6514026592484d589235ab4d269564e0 schema:name dimensions_id
69 schema:value pub.1112391818
70 rdf:type schema:PropertyValue
71 N6c207a4035464875bac633b20d28ac66 rdf:first N57776e8498ca40b493f16813eb840832
72 rdf:rest Na3e39c497a0e41bb8ee8dcf2fcd731c8
73 N7495c376a85b495d9ce4d44702853704 rdf:first Ndc3d9fa849fb4ffa8f49e81be6899990
74 rdf:rest N6c207a4035464875bac633b20d28ac66
75 N7887ba1adb11445198cbca9266b7c6dd rdf:first Nda249ed11ff74dca94e689839d9ed4ef
76 rdf:rest N494e9af850ac42c3a5e8fb5eb34f8f8b
77 N80454bd7d7cf4f0f8ff0d6d7c0b9606e schema:name doi
78 schema:value 10.1186/s12880-019-0309-5
79 rdf:type schema:PropertyValue
80 N86593c4b7e4e403da0864beed1c0e067 rdf:first Nf711d952fd434588bd9bec47e6e0ff0d
81 rdf:rest Nc02ac62b59604880ac815a798c6f3354
82 N98000433429241318fb84fe44dfda6e4 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Na3e39c497a0e41bb8ee8dcf2fcd731c8 rdf:first Nb6bb35ac67374a5a99f0321c44dcddfd
85 rdf:rest N86593c4b7e4e403da0864beed1c0e067
86 Nb6bb35ac67374a5a99f0321c44dcddfd schema:affiliation https://www.grid.ac/institutes/grid.5253.1
87 schema:familyName Kauczor
88 schema:givenName Hans-Ulrich
89 rdf:type schema:Person
90 Nba866685e7804c2ca88ea38cacd60a70 rdf:first N2fad205fa85947548ce04133624d340f
91 rdf:rest N7495c376a85b495d9ce4d44702853704
92 Nbd112aa1ced94db19116f54f739ff721 schema:name pubmed_id
93 schema:value 30808320
94 rdf:type schema:PropertyValue
95 Nc02ac62b59604880ac815a798c6f3354 rdf:first N26b59e8c156d46a19311d0f98c842cc4
96 rdf:rest rdf:nil
97 Ncc47fa3b8ba64698b3461c86e6f56958 schema:name readcube_id
98 schema:value 602cd89386208d773fe1b45220aba078cf4e3d6325ffe41ba66d58651a540290
99 rdf:type schema:PropertyValue
100 Nce1ce160aa004a0ca28acfa1feba5a56 schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 Nd83022c25342495bb7131a335e81c754 schema:affiliation https://www.grid.ac/institutes/grid.5253.1
103 schema:familyName Grözinger
104 schema:givenName Martin
105 rdf:type schema:Person
106 Nda249ed11ff74dca94e689839d9ed4ef schema:affiliation https://www.grid.ac/institutes/grid.5253.1
107 schema:familyName Mayer
108 schema:givenName Philipp
109 rdf:type schema:Person
110 Ndc3d9fa849fb4ffa8f49e81be6899990 schema:affiliation https://www.grid.ac/institutes/grid.11598.34
111 schema:familyName Schemmer
112 schema:givenName Peter
113 rdf:type schema:Person
114 Nf711d952fd434588bd9bec47e6e0ff0d schema:affiliation https://www.grid.ac/institutes/grid.5253.1
115 schema:familyName Klauss
116 schema:givenName Miriam
117 rdf:type schema:Person
118 Nfc1963e3b5d34da79ebf5d8036407b9e schema:name nlm_unique_id
119 schema:value 100968553
120 rdf:type schema:PropertyValue
121 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
122 schema:name Medical and Health Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
125 schema:name Clinical Sciences
126 rdf:type schema:DefinedTerm
127 sg:journal.1024948 schema:issn 1471-2342
128 schema:name BMC Medical Imaging
129 rdf:type schema:Periodical
130 sg:pub.10.1016/s1091-255x(02)00370-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027253131
131 https://doi.org/10.1016/s1091-255x(02)00370-0
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/2047-783x-15-8-345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049429412
134 https://doi.org/10.1186/2047-783x-15-8-345
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/jso.23671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015960547
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/lt.20429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029041897
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/lt.22419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052070930
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.crad.2013.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024679314
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ejrad.2009.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001351289
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.surg.2003.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046109692
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.surg.2010.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051895563
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0041-1345(02)03603-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017592909
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0168-8278(86)80074-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032181440
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1055/s-2003-41938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057424213
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1097/00007890-200105270-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022936352
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1097/rct.0b013e3181806c29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032336147
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/cvpr.2008.4587393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094872122
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1111/j.1600-6143.2006.01656.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026655949
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1136/gut.2004.046524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038521983
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1148/radiol.2403050850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010548676
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1159/000335713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046999601
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1159/000364836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013696925
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1371/journal.pone.0110201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041396480
173 rdf:type schema:CreativeWork
174 https://doi.org/10.4329/wjr.v6.i4.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072524783
175 rdf:type schema:CreativeWork
176 https://doi.org/10.7326/0003-4819-90-2-185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073736537
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.11598.34 schema:alternateName Medical University of Graz
179 schema:name Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
180 Division of Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.5253.1 schema:alternateName University Hospital Heidelberg
183 schema:name Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
184 Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...