Seasonality and the effects of weather on Campylobacter infections View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Abdelmajid Djennad, Giovanni Lo Iacono, Christophe Sarran, Christopher Lane, Richard Elson, Christoph Höser, Iain R. Lake, Felipe J. Colón-González, Sari Kovats, Jan C. Semenza, Trevor C. Bailey, Anthony Kessel, Lora E. Fleming, Gordon L. Nichols

ABSTRACT

BACKGROUND: Campylobacteriosis is a major public health concern. The weather factors that influence spatial and seasonal distributions are not fully understood. METHODS: To investigate the impacts of temperature and rainfall on Campylobacter infections in England and Wales, cases of Campylobacter were linked to local temperature and rainfall at laboratory postcodes in the 30 days before the specimen date. Methods for investigation included a comparative conditional incidence, wavelet, clustering, and time series analyses. RESULTS: The increase of Campylobacter infections in the late spring was significantly linked to temperature two weeks before, with an increase in conditional incidence of 0.175 cases per 100,000 per week for weeks 17 to 24; the relationship to temperature was not linear. Generalized structural time series model revealed that changes in temperature accounted for 33.3% of the expected cases of Campylobacteriosis, with an indication of the direction and relevant temperature range. Wavelet analysis showed a strong annual cycle with additional harmonics at four and six months. Cluster analysis showed three clusters of seasonality with geographic similarities representing metropolitan, rural, and other areas. CONCLUSIONS: The association of Campylobacteriosis with temperature is likely to be indirect. High-resolution spatial temporal linkage of weather parameters and cases is important in improving weather associations with infectious diseases. The primary driver of Campylobacter incidence remains to be determined; other avenues, such as insect contamination of chicken flocks through poor biosecurity should be explored. More... »

PAGES

255

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12879-019-3840-7

DOI

http://dx.doi.org/10.1186/s12879-019-3840-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112739006

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30866826


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Health", 
          "id": "https://www.grid.ac/institutes/grid.57981.32", 
          "name": [
            "Statistics, Modelling and Economics Department, National Infection Service, Public Health England, 61, Colindale Avenue, NW9 5EQ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Djennad", 
        "givenName": "Abdelmajid", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Surrey", 
          "id": "https://www.grid.ac/institutes/grid.5475.3", 
          "name": [
            "School of Veterinary Medicine, University of Surrey, Guildford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lo Iacono", 
        "givenName": "Giovanni", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarran", 
        "givenName": "Christophe", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "World Health Organization", 
          "id": "https://www.grid.ac/institutes/grid.3575.4", 
          "name": [
            "World Health Organisation, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lane", 
        "givenName": "Christopher", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Health Research", 
          "id": "https://www.grid.ac/institutes/grid.451056.3", 
          "name": [
            "National Infection Service, Public Health England, London, UK", 
            "NIHR Health Protection Research Unit in Gastrointestinal Infections, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elson", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bonn", 
          "id": "https://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Institute for Hygiene and Public Health, GeoHealth Centre, University of Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6ser", 
        "givenName": "Christoph", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of East Anglia", 
          "id": "https://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "University of East Anglia, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lake", 
        "givenName": "Iain R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of East Anglia", 
          "id": "https://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "University of East Anglia, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Col\u00f3n-Gonz\u00e1lez", 
        "givenName": "Felipe J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London School of Hygiene & Tropical Medicine", 
          "id": "https://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "London School of Hygiene and Tropical Medicine, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kovats", 
        "givenName": "Sari", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Disease Prevention and Control", 
          "id": "https://www.grid.ac/institutes/grid.418914.1", 
          "name": [
            "European Centre for Disease Prevention and Control, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semenza", 
        "givenName": "Jan C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "University of Exeter, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bailey", 
        "givenName": "Trevor C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London School of Hygiene & Tropical Medicine", 
          "id": "https://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "Statistics, Modelling and Economics Department, National Infection Service, Public Health England, 61, Colindale Avenue, NW9 5EQ, London, UK", 
            "London School of Hygiene and Tropical Medicine, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kessel", 
        "givenName": "Anthony", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "University of Exeter, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fleming", 
        "givenName": "Lora E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Of Thessaly", 
          "id": "https://www.grid.ac/institutes/grid.410558.d", 
          "name": [
            "Statistics, Modelling and Economics Department, National Infection Service, Public Health England, 61, Colindale Avenue, NW9 5EQ, London, UK", 
            "University of Exeter, Exeter, UK", 
            "University of Thessaly, Larissa, Thessaly, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nichols", 
        "givenName": "Gordon L.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1128/aem.71.1.85-92.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001810018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-014-0788-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004810956", 
          "https://doi.org/10.1007/s00484-014-0788-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-014-0788-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004810956", 
          "https://doi.org/10.1007/s00484-014-0788-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1103.040460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005760560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3382/ps.2007-00301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006012563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-006-0028-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006585945", 
          "https://doi.org/10.1007/s00484-006-0028-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-006-0028-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006585945", 
          "https://doi.org/10.1007/s00484-006-0028-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-004-0241-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009304252", 
          "https://doi.org/10.1007/s00484-004-0241-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-010-0345-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011754912", 
          "https://doi.org/10.1007/s00484-010-0345-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijerph110201725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013649607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jinf.2008.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016367043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2672.1997.tb03576.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017452644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2016.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022645684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjopen-2012-001179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024666632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-5-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026419749", 
          "https://doi.org/10.1186/1471-2334-5-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1008.040129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027285983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.prevetmed.2009.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027435543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1863-2378.2008.01184.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027512244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1312.070488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029566445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-4-54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030521305", 
          "https://doi.org/10.1186/1471-2334-4-54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.prevetmed.2008.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031688612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268814002738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041624692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1512.090280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042577102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268811002159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053788163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268806006698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053789072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268806006698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053789072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268802006830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053916172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268802006830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053916172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s095026881000018x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053950250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268805004899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053958759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268814002854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054020996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2807/esm.09.09.00476-en", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076895240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.2577330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102427213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-018-3106-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103673477", 
          "https://doi.org/10.1186/s12879-018-3106-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-018-3106-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103673477", 
          "https://doi.org/10.1186/s12879-018-3106-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Campylobacteriosis is a major public health concern. The weather factors that influence spatial and seasonal distributions are not fully understood.\nMETHODS: To investigate the impacts of temperature and rainfall on Campylobacter infections in England and Wales, cases of Campylobacter were linked to local temperature and rainfall at laboratory postcodes in the 30\u2009days before the specimen date. Methods for investigation included a comparative conditional incidence, wavelet, clustering, and time series analyses.\nRESULTS: The increase of Campylobacter infections in the late spring was significantly linked to temperature two weeks before, with an increase in conditional incidence of 0.175 cases per 100,000 per week for weeks 17 to 24; the relationship to temperature was not linear. Generalized structural time series model revealed that changes in temperature accounted for 33.3% of the expected cases of Campylobacteriosis, with an indication of the direction and relevant temperature range. Wavelet analysis showed a strong annual cycle with additional harmonics at four and six months. Cluster analysis showed three clusters of seasonality with geographic similarities representing metropolitan, rural, and other areas.\nCONCLUSIONS: The association of Campylobacteriosis with temperature is likely to be indirect. High-resolution spatial temporal linkage of weather parameters and cases is important in improving weather associations with infectious diseases. The primary driver of Campylobacter incidence remains to be determined; other avenues, such as insect contamination of chicken flocks through poor biosecurity should be explored.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12879-019-3840-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024946", 
        "issn": [
          "1471-2334"
        ], 
        "name": "BMC Infectious Diseases", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Seasonality and the effects of weather on Campylobacter infections", 
    "pagination": "255", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dee244f36cd97eae96628b846b3b50ecc0e4bc66dd571af9d35946aa9c9134ea"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30866826"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968551"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12879-019-3840-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112739006"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12879-019-3840-7", 
      "https://app.dimensions.ai/details/publication/pub.1112739006"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78950_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12879-019-3840-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12879-019-3840-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12879-019-3840-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12879-019-3840-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12879-019-3840-7'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12879-019-3840-7 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Nfc2eaf670f1c47c3baf8e39b99bbf788
4 schema:citation sg:pub.10.1007/s00484-004-0241-3
5 sg:pub.10.1007/s00484-006-0028-9
6 sg:pub.10.1007/s00484-010-0345-x
7 sg:pub.10.1007/s00484-014-0788-6
8 sg:pub.10.1186/1471-2334-4-54
9 sg:pub.10.1186/1471-2334-5-11
10 sg:pub.10.1186/s12879-018-3106-9
11 https://doi.org/10.1016/j.jinf.2008.08.004
12 https://doi.org/10.1016/j.prevetmed.2008.02.015
13 https://doi.org/10.1016/j.prevetmed.2009.09.015
14 https://doi.org/10.1016/j.watres.2016.03.005
15 https://doi.org/10.1017/s0950268802006830
16 https://doi.org/10.1017/s0950268805004899
17 https://doi.org/10.1017/s0950268806006698
18 https://doi.org/10.1017/s095026881000018x
19 https://doi.org/10.1017/s0950268811002159
20 https://doi.org/10.1017/s0950268814002738
21 https://doi.org/10.1017/s0950268814002854
22 https://doi.org/10.1111/j.1365-2672.1997.tb03576.x
23 https://doi.org/10.1111/j.1863-2378.2008.01184.x
24 https://doi.org/10.1128/aem.71.1.85-92.2005
25 https://doi.org/10.1136/bmjopen-2012-001179
26 https://doi.org/10.2139/ssrn.2577330
27 https://doi.org/10.2807/esm.09.09.00476-en
28 https://doi.org/10.3201/eid1008.040129
29 https://doi.org/10.3201/eid1103.040460
30 https://doi.org/10.3201/eid1312.070488
31 https://doi.org/10.3201/eid1512.090280
32 https://doi.org/10.3382/ps.2007-00301
33 https://doi.org/10.3390/ijerph110201725
34 schema:datePublished 2019-12
35 schema:datePublishedReg 2019-12-01
36 schema:description BACKGROUND: Campylobacteriosis is a major public health concern. The weather factors that influence spatial and seasonal distributions are not fully understood. METHODS: To investigate the impacts of temperature and rainfall on Campylobacter infections in England and Wales, cases of Campylobacter were linked to local temperature and rainfall at laboratory postcodes in the 30 days before the specimen date. Methods for investigation included a comparative conditional incidence, wavelet, clustering, and time series analyses. RESULTS: The increase of Campylobacter infections in the late spring was significantly linked to temperature two weeks before, with an increase in conditional incidence of 0.175 cases per 100,000 per week for weeks 17 to 24; the relationship to temperature was not linear. Generalized structural time series model revealed that changes in temperature accounted for 33.3% of the expected cases of Campylobacteriosis, with an indication of the direction and relevant temperature range. Wavelet analysis showed a strong annual cycle with additional harmonics at four and six months. Cluster analysis showed three clusters of seasonality with geographic similarities representing metropolitan, rural, and other areas. CONCLUSIONS: The association of Campylobacteriosis with temperature is likely to be indirect. High-resolution spatial temporal linkage of weather parameters and cases is important in improving weather associations with infectious diseases. The primary driver of Campylobacter incidence remains to be determined; other avenues, such as insect contamination of chicken flocks through poor biosecurity should be explored.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf Nf5729379844e401c833b560faf8f9d3d
41 Nfdad1c40180d4a4ab6ffd0a3d2e77896
42 sg:journal.1024946
43 schema:name Seasonality and the effects of weather on Campylobacter infections
44 schema:pagination 255
45 schema:productId N1f33232d253d4f32b16961b7edc3b335
46 N29775b189471464180722a95189d1bfd
47 N4056016b0f494dc0898f9bb440c97576
48 N4b03946be7d24623bae58e2c63851a8f
49 N51e10f41a17e4fd393405a7ee8b296a1
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112739006
51 https://doi.org/10.1186/s12879-019-3840-7
52 schema:sdDatePublished 2019-04-11T13:19
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N69c6f7b9eee74833acf4e5dc6df674c8
55 schema:url https://link.springer.com/10.1186%2Fs12879-019-3840-7
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0d0c31fae40b4394a75f5a935b1d4407 schema:affiliation https://www.grid.ac/institutes/grid.57981.32
60 schema:familyName Djennad
61 schema:givenName Abdelmajid
62 rdf:type schema:Person
63 N0e48e15a70684cfead155ac481f0da75 schema:affiliation https://www.grid.ac/institutes/grid.8273.e
64 schema:familyName Lake
65 schema:givenName Iain R.
66 rdf:type schema:Person
67 N10094401b31742c0ae144d9b6b6eb8ea schema:affiliation https://www.grid.ac/institutes/grid.3575.4
68 schema:familyName Lane
69 schema:givenName Christopher
70 rdf:type schema:Person
71 N185f338903434c4a9db78d191f5011cf rdf:first N10094401b31742c0ae144d9b6b6eb8ea
72 rdf:rest Na7158e9fc1d4483d8f330d645ea55a9a
73 N1f33232d253d4f32b16961b7edc3b335 schema:name pubmed_id
74 schema:value 30866826
75 rdf:type schema:PropertyValue
76 N29775b189471464180722a95189d1bfd schema:name doi
77 schema:value 10.1186/s12879-019-3840-7
78 rdf:type schema:PropertyValue
79 N358d9f1c49c443579293884e0eaa81cd schema:affiliation https://www.grid.ac/institutes/grid.8991.9
80 schema:familyName Kessel
81 schema:givenName Anthony
82 rdf:type schema:Person
83 N4056016b0f494dc0898f9bb440c97576 schema:name readcube_id
84 schema:value dee244f36cd97eae96628b846b3b50ecc0e4bc66dd571af9d35946aa9c9134ea
85 rdf:type schema:PropertyValue
86 N429a8176307743b5b7e9291c2a12c5f6 schema:affiliation https://www.grid.ac/institutes/grid.10388.32
87 schema:familyName Höser
88 schema:givenName Christoph
89 rdf:type schema:Person
90 N4b03946be7d24623bae58e2c63851a8f schema:name dimensions_id
91 schema:value pub.1112739006
92 rdf:type schema:PropertyValue
93 N51e10f41a17e4fd393405a7ee8b296a1 schema:name nlm_unique_id
94 schema:value 100968551
95 rdf:type schema:PropertyValue
96 N588ffbd9cc7b47438c22835a203eeb19 rdf:first Nb6eaa26134cd4070a882cc6ca580031f
97 rdf:rest rdf:nil
98 N6928d845a03646d8a9a0c776bc9cdef9 rdf:first N358d9f1c49c443579293884e0eaa81cd
99 rdf:rest Nace08bdbd65f485aa83c2409074b522e
100 N69773432eeb94573b0aaf4cd36af3028 schema:affiliation https://www.grid.ac/institutes/grid.8991.9
101 schema:familyName Kovats
102 schema:givenName Sari
103 rdf:type schema:Person
104 N69c6f7b9eee74833acf4e5dc6df674c8 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N7cb0dce6fc8641b4ba88ae8e98167d27 rdf:first Nc157a48c80eb4b9cb51e1d76f38373fd
107 rdf:rest N8edd84b222af40608fd4d19949444721
108 N8edd84b222af40608fd4d19949444721 rdf:first N69773432eeb94573b0aaf4cd36af3028
109 rdf:rest N900a313b5ce04c088ba98abdc525febc
110 N900a313b5ce04c088ba98abdc525febc rdf:first Nc809b21eb81f45258b3905e7853c7200
111 rdf:rest Nf7012565d93f497eaa70a0b32948fdf0
112 N921c8560bd7f4c91bb2e1418716ba16b rdf:first Ncd7fe8c6967546ad99153efeab8a4513
113 rdf:rest Nc318bba9eafb45f98bf85b924020ff0b
114 Na7158e9fc1d4483d8f330d645ea55a9a rdf:first Ndf5a0b2be7f548fb9d6798e5e1f365f8
115 rdf:rest Nee62e104e65441e290160bec4a0fa87e
116 Nace08bdbd65f485aa83c2409074b522e rdf:first Nc24276f1fbd8482dbcd6baf798769a80
117 rdf:rest N588ffbd9cc7b47438c22835a203eeb19
118 Nb6eaa26134cd4070a882cc6ca580031f schema:affiliation https://www.grid.ac/institutes/grid.410558.d
119 schema:familyName Nichols
120 schema:givenName Gordon L.
121 rdf:type schema:Person
122 Nc157a48c80eb4b9cb51e1d76f38373fd schema:affiliation https://www.grid.ac/institutes/grid.8273.e
123 schema:familyName Colón-González
124 schema:givenName Felipe J.
125 rdf:type schema:Person
126 Nc24276f1fbd8482dbcd6baf798769a80 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
127 schema:familyName Fleming
128 schema:givenName Lora E.
129 rdf:type schema:Person
130 Nc318bba9eafb45f98bf85b924020ff0b rdf:first Ne90b8ed3bfca4540bab646859d299020
131 rdf:rest N185f338903434c4a9db78d191f5011cf
132 Nc809b21eb81f45258b3905e7853c7200 schema:affiliation https://www.grid.ac/institutes/grid.418914.1
133 schema:familyName Semenza
134 schema:givenName Jan C.
135 rdf:type schema:Person
136 Ncd7fe8c6967546ad99153efeab8a4513 schema:affiliation https://www.grid.ac/institutes/grid.5475.3
137 schema:familyName Lo Iacono
138 schema:givenName Giovanni
139 rdf:type schema:Person
140 Nd9944af6e0b448e7ae6fba6ae1e12f1b rdf:first N0e48e15a70684cfead155ac481f0da75
141 rdf:rest N7cb0dce6fc8641b4ba88ae8e98167d27
142 Ndf5a0b2be7f548fb9d6798e5e1f365f8 schema:affiliation https://www.grid.ac/institutes/grid.451056.3
143 schema:familyName Elson
144 schema:givenName Richard
145 rdf:type schema:Person
146 Ne90b8ed3bfca4540bab646859d299020 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
147 schema:familyName Sarran
148 schema:givenName Christophe
149 rdf:type schema:Person
150 Nee04d7bd8da84fb08398d075d1c1b391 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
151 schema:familyName Bailey
152 schema:givenName Trevor C.
153 rdf:type schema:Person
154 Nee62e104e65441e290160bec4a0fa87e rdf:first N429a8176307743b5b7e9291c2a12c5f6
155 rdf:rest Nd9944af6e0b448e7ae6fba6ae1e12f1b
156 Nf5729379844e401c833b560faf8f9d3d schema:volumeNumber 19
157 rdf:type schema:PublicationVolume
158 Nf7012565d93f497eaa70a0b32948fdf0 rdf:first Nee04d7bd8da84fb08398d075d1c1b391
159 rdf:rest N6928d845a03646d8a9a0c776bc9cdef9
160 Nfc2eaf670f1c47c3baf8e39b99bbf788 rdf:first N0d0c31fae40b4394a75f5a935b1d4407
161 rdf:rest N921c8560bd7f4c91bb2e1418716ba16b
162 Nfdad1c40180d4a4ab6ffd0a3d2e77896 schema:issueNumber 1
163 rdf:type schema:PublicationIssue
164 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
165 schema:name Medical and Health Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
168 schema:name Public Health and Health Services
169 rdf:type schema:DefinedTerm
170 sg:journal.1024946 schema:issn 1471-2334
171 schema:name BMC Infectious Diseases
172 rdf:type schema:Periodical
173 sg:pub.10.1007/s00484-004-0241-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009304252
174 https://doi.org/10.1007/s00484-004-0241-3
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s00484-006-0028-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006585945
177 https://doi.org/10.1007/s00484-006-0028-9
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s00484-010-0345-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011754912
180 https://doi.org/10.1007/s00484-010-0345-x
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s00484-014-0788-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004810956
183 https://doi.org/10.1007/s00484-014-0788-6
184 rdf:type schema:CreativeWork
185 sg:pub.10.1186/1471-2334-4-54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030521305
186 https://doi.org/10.1186/1471-2334-4-54
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/1471-2334-5-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026419749
189 https://doi.org/10.1186/1471-2334-5-11
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/s12879-018-3106-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103673477
192 https://doi.org/10.1186/s12879-018-3106-9
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.jinf.2008.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016367043
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.prevetmed.2008.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031688612
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.prevetmed.2009.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027435543
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.watres.2016.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022645684
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1017/s0950268802006830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053916172
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1017/s0950268805004899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053958759
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1017/s0950268806006698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053789072
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1017/s095026881000018x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053950250
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1017/s0950268811002159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053788163
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1017/s0950268814002738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041624692
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1017/s0950268814002854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054020996
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1111/j.1365-2672.1997.tb03576.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017452644
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1111/j.1863-2378.2008.01184.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027512244
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1128/aem.71.1.85-92.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001810018
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1136/bmjopen-2012-001179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024666632
223 rdf:type schema:CreativeWork
224 https://doi.org/10.2139/ssrn.2577330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102427213
225 rdf:type schema:CreativeWork
226 https://doi.org/10.2807/esm.09.09.00476-en schema:sameAs https://app.dimensions.ai/details/publication/pub.1076895240
227 rdf:type schema:CreativeWork
228 https://doi.org/10.3201/eid1008.040129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027285983
229 rdf:type schema:CreativeWork
230 https://doi.org/10.3201/eid1103.040460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005760560
231 rdf:type schema:CreativeWork
232 https://doi.org/10.3201/eid1312.070488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029566445
233 rdf:type schema:CreativeWork
234 https://doi.org/10.3201/eid1512.090280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042577102
235 rdf:type schema:CreativeWork
236 https://doi.org/10.3382/ps.2007-00301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006012563
237 rdf:type schema:CreativeWork
238 https://doi.org/10.3390/ijerph110201725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013649607
239 rdf:type schema:CreativeWork
240 https://www.grid.ac/institutes/grid.10388.32 schema:alternateName University of Bonn
241 schema:name Institute for Hygiene and Public Health, GeoHealth Centre, University of Bonn, Bonn, Germany
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.17100.37 schema:alternateName Met Office
244 schema:name Met Office, Exeter, UK
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.3575.4 schema:alternateName World Health Organization
247 schema:name World Health Organisation, Geneva, Switzerland
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.410558.d schema:alternateName University Of Thessaly
250 schema:name Statistics, Modelling and Economics Department, National Infection Service, Public Health England, 61, Colindale Avenue, NW9 5EQ, London, UK
251 University of Exeter, Exeter, UK
252 University of Thessaly, Larissa, Thessaly, Greece
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.418914.1 schema:alternateName European Centre for Disease Prevention and Control
255 schema:name European Centre for Disease Prevention and Control, Stockholm, Sweden
256 rdf:type schema:Organization
257 https://www.grid.ac/institutes/grid.451056.3 schema:alternateName National Institute for Health Research
258 schema:name NIHR Health Protection Research Unit in Gastrointestinal Infections, London, UK
259 National Infection Service, Public Health England, London, UK
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.5475.3 schema:alternateName University of Surrey
262 schema:name School of Veterinary Medicine, University of Surrey, Guildford, UK
263 rdf:type schema:Organization
264 https://www.grid.ac/institutes/grid.57981.32 schema:alternateName Department of Health
265 schema:name Statistics, Modelling and Economics Department, National Infection Service, Public Health England, 61, Colindale Avenue, NW9 5EQ, London, UK
266 rdf:type schema:Organization
267 https://www.grid.ac/institutes/grid.8273.e schema:alternateName University of East Anglia
268 schema:name University of East Anglia, Norwich, UK
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.8391.3 schema:alternateName University of Exeter
271 schema:name University of Exeter, Exeter, UK
272 rdf:type schema:Organization
273 https://www.grid.ac/institutes/grid.8991.9 schema:alternateName London School of Hygiene & Tropical Medicine
274 schema:name London School of Hygiene and Tropical Medicine, London, UK
275 Statistics, Modelling and Economics Department, National Infection Service, Public Health England, 61, Colindale Avenue, NW9 5EQ, London, UK
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...