A case-crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Emma G. Gardner, David Kelton, Zvonimir Poljak, Maria Van Kerkhove, Sophie von Dobschuetz, Amy L. Greer

ABSTRACT

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in dromedary camels in the Arabian Peninsula, and zoonotic transmission to people is a sporadic event. In the absence of epidemiological data on the reservoir species, patterns of zoonotic transmission have largely been approximated from primary human cases. This study aimed to identify meteorological factors that may increase the risk of primary MERS infections in humans. METHODS: A case-crossover design was used to identify associations between primary MERS cases and preceding weather conditions within the 2-week incubation period in Saudi Arabia using univariable conditional logistic regression. Cases with symptom onset between January 2015 - December 2017 were obtained from a publicly available line list of human MERS cases maintained by the World Health Organization. The complete case dataset (N = 1191) was reduced to approximate the cases most likely to represent spillover transmission from camels (N = 446). Data from meteorological stations closest to the largest city in each province were used to calculate the daily mean, minimum, and maximum temperature (οC), relative humidity (%), wind speed (m/s), and visibility (m). Weather variables were categorized according to strata; temperature and humidity into tertiles, and visibility and wind speed into halves. RESULTS: Lowest temperature (Odds Ratio = 1.27; 95% Confidence Interval = 1.04-1.56) and humidity (OR = 1.35; 95% CI = 1.10-1.65) were associated with increased cases 8-10 days later. High visibility was associated with an increased number of cases 7 days later (OR = 1.26; 95% CI = 1.01-1.57), while wind speed also showed statistically significant associations with cases 5-6 days later. CONCLUSIONS: Results suggest that primary MERS human cases in Saudi Arabia are more likely to occur when conditions are relatively cold and dry. This is similar to seasonal patterns that have been described for other respiratory diseases in temperate climates. It was hypothesized that low visibility would be positively associated with primary cases of MERS, however the opposite relationship was seen. This may reflect behavioural changes in different weather conditions. This analysis provides key initial evidence of an environmental component contributing to the development of primary MERS-CoV infections. More... »

PAGES

113

References to SciGraph publications

  • 2001-06. Estimation of particulate matter from visibility in Bangkok, Thailand in JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12879-019-3729-5

    DOI

    http://dx.doi.org/10.1186/s12879-019-3729-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111907962

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30717685


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Camelus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Case-Control Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Coronavirus Infections", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cross-Over Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Reservoirs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle East Respiratory Syndrome Coronavirus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Saudi Arabia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Weather", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Guelph", 
              "id": "https://www.grid.ac/institutes/grid.34429.38", 
              "name": [
                "Ontario Veterinary College, University of Guelph, 50 Stone Road E, N1G 2W1, Guelph, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gardner", 
            "givenName": "Emma G.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Guelph", 
              "id": "https://www.grid.ac/institutes/grid.34429.38", 
              "name": [
                "Ontario Veterinary College, University of Guelph, 50 Stone Road E, N1G 2W1, Guelph, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kelton", 
            "givenName": "David", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Guelph", 
              "id": "https://www.grid.ac/institutes/grid.34429.38", 
              "name": [
                "Ontario Veterinary College, University of Guelph, 50 Stone Road E, N1G 2W1, Guelph, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poljak", 
            "givenName": "Zvonimir", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "World Health Organization", 
              "id": "https://www.grid.ac/institutes/grid.3575.4", 
              "name": [
                "World Health Organization, Geneva, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Kerkhove", 
            "givenName": "Maria", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Food and Agriculture Organization of the United Nations", 
              "id": "https://www.grid.ac/institutes/grid.420153.1", 
              "name": [
                "Animal Health Service \u2013 FAO, Viale delle Terme di Caracalla, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "von Dobschuetz", 
            "givenName": "Sophie", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Guelph", 
              "id": "https://www.grid.ac/institutes/grid.34429.38", 
              "name": [
                "Ontario Veterinary College, University of Guelph, 50 Stone Road E, N1G 2W1, Guelph, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Greer", 
            "givenName": "Amy L.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1371/journal.ppat.1003194", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001558188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1099-095x(200011/12)11:6<689::aid-env439>3.0.co;2-n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005694493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-200103000-00010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018647758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-200103000-00010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018647758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa1401505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025461012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1473-3099(04)01177-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027866732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0054445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028402082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1473-3099(15)70090-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030864342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.publhealth.21.1.193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031600657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3201/eid2012.141280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033612625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jea.7500148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033630118", 
              "https://doi.org/10.1038/sj.jea.7500148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jea.7500148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033630118", 
              "https://doi.org/10.1038/sj.jea.7500148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/oem.2006.031500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033713182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/oem.2006.031500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033713182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.ppat.0030151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037029477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atmosenv.2005.11.076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043803283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa1211721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043875870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.annepidem.2012.02.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046486557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jam2232.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047064842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/zph.12171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052075140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-199705000-00007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053206592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-199705000-00007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053206592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.13075/ijomeh.1896.00186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064979133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15585/mmwr.mm6506a5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067984165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.aje.a115853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077975231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmsr1408795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083734298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5055/ajdm.2017.0272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100451270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envres.2018.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100828210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1164/rccm.201709-1883oc", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103241435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1513/annalsats.201708-685mg", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103458599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1513/annalsats.201708-685mg", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103458599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1513/annalsats.201708-685mg", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103458599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/v10080425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106144757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/v10080425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106144757"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in dromedary camels in the Arabian Peninsula, and zoonotic transmission to people is a sporadic event. In the absence of epidemiological data on the reservoir species, patterns of zoonotic transmission have largely been approximated from primary human cases. This study aimed to identify meteorological factors that may increase the risk of primary MERS infections in humans.\nMETHODS: A case-crossover design was used to identify associations between primary MERS cases and preceding weather conditions within the 2-week incubation period in Saudi Arabia using univariable conditional logistic regression. Cases with symptom onset between January 2015 - December 2017 were obtained from a publicly available line list of human MERS cases maintained by the World Health Organization. The complete case dataset (N\u2009=\u20091191) was reduced to approximate the cases most likely to represent spillover transmission from camels (N\u2009=\u2009446). Data from meteorological stations closest to the largest city in each province were used to calculate the daily mean, minimum, and maximum temperature (\u03bfC), relative humidity (%), wind speed (m/s), and visibility (m). Weather variables were categorized according to strata; temperature and humidity into tertiles, and visibility and wind speed into halves.\nRESULTS: Lowest temperature (Odds Ratio\u2009=\u20091.27; 95% Confidence Interval\u2009=\u20091.04-1.56) and humidity (OR\u2009=\u20091.35; 95% CI\u2009=\u20091.10-1.65) were associated with increased cases 8-10\u2009days later. High visibility was associated with an increased number of cases 7\u2009days later (OR\u2009=\u20091.26; 95% CI\u2009=\u20091.01-1.57), while wind speed also showed statistically significant associations with cases 5-6\u2009days later.\nCONCLUSIONS: Results suggest that primary MERS human cases in Saudi Arabia are more likely to occur when conditions are relatively cold and dry. This is similar to seasonal patterns that have been described for other respiratory diseases in temperate climates. It was hypothesized that low visibility would be positively associated with primary cases of MERS, however the opposite relationship was seen. This may reflect behavioural changes in different weather conditions. This analysis provides key initial evidence of an environmental component contributing to the development of primary MERS-CoV infections.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12879-019-3729-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2914832", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1024946", 
            "issn": [
              "1471-2334"
            ], 
            "name": "BMC Infectious Diseases", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "A case-crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome", 
        "pagination": "113", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "203e01762124050d3428f07b30b78b6cc1e448068dcd7111d3ea321a8a4e3998"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30717685"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100968551"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12879-019-3729-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111907962"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12879-019-3729-5", 
          "https://app.dimensions.ai/details/publication/pub.1111907962"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127453_00000011.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12879-019-3729-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12879-019-3729-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12879-019-3729-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12879-019-3729-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12879-019-3729-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    263 TRIPLES      21 PREDICATES      75 URIs      40 LITERALS      28 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12879-019-3729-5 schema:about N122653aac610452aaeed14b450b21946
    2 N122f12ae99e945df8f90bfa85f9d7d50
    3 N164b385383d240e38366d80090704e63
    4 N2bb23f150ef343538fee839e7f56d3b4
    5 N3aeb8644faa7467c90210bc2bc66a6d2
    6 N4809bb987bd6484da1efba76ea3bae1b
    7 N55c373fd725147c7bc82e927d24ddd22
    8 N6ac860ec396e421997bd955b3534ff30
    9 N7627b56dba2f456f9a54252decf44182
    10 N7c39159b24d849aeb135e34a84032386
    11 N870842adbb424750941a8b62f8ff60ac
    12 N87d23d6ea0b7433bb1945e37dc1f0dd4
    13 Nbb6eddebb49f44a89f1a10f78f5d7e60
    14 Nc931d71f96b8473490602b22d2862f20
    15 Ncaf81f93cf4346a882a78d9dcab0644b
    16 Ncd30557869994f619826ad97210370ea
    17 Nd8628bbbbc604d8ebd90343ba934fb83
    18 Ne3299c24458e4e7fb9e3459e79eb5e6f
    19 Nfe9b69b6fe0d4a6093f478024bf020c7
    20 anzsrc-for:11
    21 anzsrc-for:1117
    22 schema:author N995c85afeaf947cf9d74bb6919faa809
    23 schema:citation sg:pub.10.1038/sj.jea.7500148
    24 https://doi.org/10.1002/1099-095x(200011/12)11:6<689::aid-env439>3.0.co;2-n
    25 https://doi.org/10.1016/j.annepidem.2012.02.008
    26 https://doi.org/10.1016/j.atmosenv.2005.11.076
    27 https://doi.org/10.1016/j.envres.2018.02.001
    28 https://doi.org/10.1016/s1473-3099(04)01177-6
    29 https://doi.org/10.1016/s1473-3099(15)70090-3
    30 https://doi.org/10.1056/nejmoa1211721
    31 https://doi.org/10.1056/nejmoa1401505
    32 https://doi.org/10.1056/nejmsr1408795
    33 https://doi.org/10.1093/oxfordjournals.aje.a115853
    34 https://doi.org/10.1097/00001648-199705000-00007
    35 https://doi.org/10.1097/00001648-200103000-00010
    36 https://doi.org/10.1111/zph.12171
    37 https://doi.org/10.1136/oem.2006.031500
    38 https://doi.org/10.1146/annurev.publhealth.21.1.193
    39 https://doi.org/10.1164/rccm.201709-1883oc
    40 https://doi.org/10.1175/jam2232.1
    41 https://doi.org/10.13075/ijomeh.1896.00186
    42 https://doi.org/10.1371/journal.pone.0054445
    43 https://doi.org/10.1371/journal.ppat.0030151
    44 https://doi.org/10.1371/journal.ppat.1003194
    45 https://doi.org/10.1513/annalsats.201708-685mg
    46 https://doi.org/10.15585/mmwr.mm6506a5
    47 https://doi.org/10.3201/eid2012.141280
    48 https://doi.org/10.3390/v10080425
    49 https://doi.org/10.5055/ajdm.2017.0272
    50 schema:datePublished 2019-12
    51 schema:datePublishedReg 2019-12-01
    52 schema:description BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in dromedary camels in the Arabian Peninsula, and zoonotic transmission to people is a sporadic event. In the absence of epidemiological data on the reservoir species, patterns of zoonotic transmission have largely been approximated from primary human cases. This study aimed to identify meteorological factors that may increase the risk of primary MERS infections in humans. METHODS: A case-crossover design was used to identify associations between primary MERS cases and preceding weather conditions within the 2-week incubation period in Saudi Arabia using univariable conditional logistic regression. Cases with symptom onset between January 2015 - December 2017 were obtained from a publicly available line list of human MERS cases maintained by the World Health Organization. The complete case dataset (N = 1191) was reduced to approximate the cases most likely to represent spillover transmission from camels (N = 446). Data from meteorological stations closest to the largest city in each province were used to calculate the daily mean, minimum, and maximum temperature (οC), relative humidity (%), wind speed (m/s), and visibility (m). Weather variables were categorized according to strata; temperature and humidity into tertiles, and visibility and wind speed into halves. RESULTS: Lowest temperature (Odds Ratio = 1.27; 95% Confidence Interval = 1.04-1.56) and humidity (OR = 1.35; 95% CI = 1.10-1.65) were associated with increased cases 8-10 days later. High visibility was associated with an increased number of cases 7 days later (OR = 1.26; 95% CI = 1.01-1.57), while wind speed also showed statistically significant associations with cases 5-6 days later. CONCLUSIONS: Results suggest that primary MERS human cases in Saudi Arabia are more likely to occur when conditions are relatively cold and dry. This is similar to seasonal patterns that have been described for other respiratory diseases in temperate climates. It was hypothesized that low visibility would be positively associated with primary cases of MERS, however the opposite relationship was seen. This may reflect behavioural changes in different weather conditions. This analysis provides key initial evidence of an environmental component contributing to the development of primary MERS-CoV infections.
    53 schema:genre research_article
    54 schema:inLanguage en
    55 schema:isAccessibleForFree true
    56 schema:isPartOf N18c49bc1fd1941088d025199776778aa
    57 Nac6d316826b441dd966e89b21c444b9a
    58 sg:journal.1024946
    59 schema:name A case-crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome
    60 schema:pagination 113
    61 schema:productId N2ba472cf444740dc844e537f911f3ece
    62 N30bd1011f8b2498b8cd644749cca3cb7
    63 N343a62a631224a908a1b7c5ec2c7138c
    64 Na2ded510fa1447798fe40afcc40631c8
    65 Nfc3931e5eab84504b76dae9f49c0f577
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111907962
    67 https://doi.org/10.1186/s12879-019-3729-5
    68 schema:sdDatePublished 2019-04-11T11:44
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Nfa75241ecf3846ed917df202f742cb2f
    71 schema:url https://link.springer.com/10.1186%2Fs12879-019-3729-5
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N06727d30eb8643fdaf7fe860e659e1a6 rdf:first N1405fd8eeb4044919da4579485b67d32
    76 rdf:rest rdf:nil
    77 N122653aac610452aaeed14b450b21946 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Humans
    79 rdf:type schema:DefinedTerm
    80 N122f12ae99e945df8f90bfa85f9d7d50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Cross-Over Studies
    82 rdf:type schema:DefinedTerm
    83 N1405fd8eeb4044919da4579485b67d32 schema:affiliation https://www.grid.ac/institutes/grid.34429.38
    84 schema:familyName Greer
    85 schema:givenName Amy L.
    86 rdf:type schema:Person
    87 N164b385383d240e38366d80090704e63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Environment
    89 rdf:type schema:DefinedTerm
    90 N18c49bc1fd1941088d025199776778aa schema:volumeNumber 19
    91 rdf:type schema:PublicationVolume
    92 N21761a1f5eb14fc5939da7b1ef8871ed schema:affiliation https://www.grid.ac/institutes/grid.34429.38
    93 schema:familyName Gardner
    94 schema:givenName Emma G.
    95 rdf:type schema:Person
    96 N22e36fe6fce64e6a86e94b717cda7640 rdf:first N97ec4e4519c84e219c4e84cf686ee66a
    97 rdf:rest Nb994f759f11c479c89441d180f44423c
    98 N2ba472cf444740dc844e537f911f3ece schema:name doi
    99 schema:value 10.1186/s12879-019-3729-5
    100 rdf:type schema:PropertyValue
    101 N2bb23f150ef343538fee839e7f56d3b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Disease Reservoirs
    103 rdf:type schema:DefinedTerm
    104 N30bd1011f8b2498b8cd644749cca3cb7 schema:name readcube_id
    105 schema:value 203e01762124050d3428f07b30b78b6cc1e448068dcd7111d3ea321a8a4e3998
    106 rdf:type schema:PropertyValue
    107 N314735909ff140df97e0eb60b6e0abe4 rdf:first Nba7c6f485ca84d48af9501a9b3af210f
    108 rdf:rest Nd03b38bd41194365baf2717c7dff2651
    109 N343a62a631224a908a1b7c5ec2c7138c schema:name pubmed_id
    110 schema:value 30717685
    111 rdf:type schema:PropertyValue
    112 N3aeb8644faa7467c90210bc2bc66a6d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Adolescent
    114 rdf:type schema:DefinedTerm
    115 N4809bb987bd6484da1efba76ea3bae1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Middle Aged
    117 rdf:type schema:DefinedTerm
    118 N55c373fd725147c7bc82e927d24ddd22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Aged
    120 rdf:type schema:DefinedTerm
    121 N6ac860ec396e421997bd955b3534ff30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Middle East Respiratory Syndrome Coronavirus
    123 rdf:type schema:DefinedTerm
    124 N7627b56dba2f456f9a54252decf44182 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Coronavirus Infections
    126 rdf:type schema:DefinedTerm
    127 N7c39159b24d849aeb135e34a84032386 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Young Adult
    129 rdf:type schema:DefinedTerm
    130 N870842adbb424750941a8b62f8ff60ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Adult
    132 rdf:type schema:DefinedTerm
    133 N87d23d6ea0b7433bb1945e37dc1f0dd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Male
    135 rdf:type schema:DefinedTerm
    136 N97ec4e4519c84e219c4e84cf686ee66a schema:affiliation https://www.grid.ac/institutes/grid.34429.38
    137 schema:familyName Kelton
    138 schema:givenName David
    139 rdf:type schema:Person
    140 N995c85afeaf947cf9d74bb6919faa809 rdf:first N21761a1f5eb14fc5939da7b1ef8871ed
    141 rdf:rest N22e36fe6fce64e6a86e94b717cda7640
    142 Na2ded510fa1447798fe40afcc40631c8 schema:name nlm_unique_id
    143 schema:value 100968551
    144 rdf:type schema:PropertyValue
    145 Nac6d316826b441dd966e89b21c444b9a schema:issueNumber 1
    146 rdf:type schema:PublicationIssue
    147 Nb994f759f11c479c89441d180f44423c rdf:first Nf1cc024aeae94fc1966ab146b40a125a
    148 rdf:rest N314735909ff140df97e0eb60b6e0abe4
    149 Nba7c6f485ca84d48af9501a9b3af210f schema:affiliation https://www.grid.ac/institutes/grid.3575.4
    150 schema:familyName Van Kerkhove
    151 schema:givenName Maria
    152 rdf:type schema:Person
    153 Nbb6eddebb49f44a89f1a10f78f5d7e60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Female
    155 rdf:type schema:DefinedTerm
    156 Nc931d71f96b8473490602b22d2862f20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Weather
    158 rdf:type schema:DefinedTerm
    159 Ncaf81f93cf4346a882a78d9dcab0644b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Animals
    161 rdf:type schema:DefinedTerm
    162 Ncd30557869994f619826ad97210370ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Aged, 80 and over
    164 rdf:type schema:DefinedTerm
    165 Nd03b38bd41194365baf2717c7dff2651 rdf:first Ndfdb7f59654d4688bcaf662be219cfbd
    166 rdf:rest N06727d30eb8643fdaf7fe860e659e1a6
    167 Nd8628bbbbc604d8ebd90343ba934fb83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Saudi Arabia
    169 rdf:type schema:DefinedTerm
    170 Ndfdb7f59654d4688bcaf662be219cfbd schema:affiliation https://www.grid.ac/institutes/grid.420153.1
    171 schema:familyName von Dobschuetz
    172 schema:givenName Sophie
    173 rdf:type schema:Person
    174 Ne3299c24458e4e7fb9e3459e79eb5e6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Camelus
    176 rdf:type schema:DefinedTerm
    177 Nf1cc024aeae94fc1966ab146b40a125a schema:affiliation https://www.grid.ac/institutes/grid.34429.38
    178 schema:familyName Poljak
    179 schema:givenName Zvonimir
    180 rdf:type schema:Person
    181 Nfa75241ecf3846ed917df202f742cb2f schema:name Springer Nature - SN SciGraph project
    182 rdf:type schema:Organization
    183 Nfc3931e5eab84504b76dae9f49c0f577 schema:name dimensions_id
    184 schema:value pub.1111907962
    185 rdf:type schema:PropertyValue
    186 Nfe9b69b6fe0d4a6093f478024bf020c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Case-Control Studies
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Medical and Health Sciences
    191 rdf:type schema:DefinedTerm
    192 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Public Health and Health Services
    194 rdf:type schema:DefinedTerm
    195 sg:grant.2914832 http://pending.schema.org/fundedItem sg:pub.10.1186/s12879-019-3729-5
    196 rdf:type schema:MonetaryGrant
    197 sg:journal.1024946 schema:issn 1471-2334
    198 schema:name BMC Infectious Diseases
    199 rdf:type schema:Periodical
    200 sg:pub.10.1038/sj.jea.7500148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033630118
    201 https://doi.org/10.1038/sj.jea.7500148
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1002/1099-095x(200011/12)11:6<689::aid-env439>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1005694493
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/j.annepidem.2012.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046486557
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/j.atmosenv.2005.11.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043803283
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/j.envres.2018.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100828210
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/s1473-3099(04)01177-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027866732
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/s1473-3099(15)70090-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030864342
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1056/nejmoa1211721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043875870
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1056/nejmoa1401505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025461012
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1056/nejmsr1408795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083734298
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1093/oxfordjournals.aje.a115853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077975231
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1097/00001648-199705000-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053206592
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1097/00001648-200103000-00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018647758
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1111/zph.12171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052075140
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1136/oem.2006.031500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033713182
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1146/annurev.publhealth.21.1.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031600657
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1164/rccm.201709-1883oc schema:sameAs https://app.dimensions.ai/details/publication/pub.1103241435
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1175/jam2232.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047064842
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.13075/ijomeh.1896.00186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064979133
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1371/journal.pone.0054445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028402082
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1371/journal.ppat.0030151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037029477
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1371/journal.ppat.1003194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001558188
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1513/annalsats.201708-685mg schema:sameAs https://app.dimensions.ai/details/publication/pub.1103458599
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.15585/mmwr.mm6506a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067984165
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.3201/eid2012.141280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033612625
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.3390/v10080425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106144757
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.5055/ajdm.2017.0272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100451270
    254 rdf:type schema:CreativeWork
    255 https://www.grid.ac/institutes/grid.34429.38 schema:alternateName University of Guelph
    256 schema:name Ontario Veterinary College, University of Guelph, 50 Stone Road E, N1G 2W1, Guelph, ON, Canada
    257 rdf:type schema:Organization
    258 https://www.grid.ac/institutes/grid.3575.4 schema:alternateName World Health Organization
    259 schema:name World Health Organization, Geneva, Switzerland
    260 rdf:type schema:Organization
    261 https://www.grid.ac/institutes/grid.420153.1 schema:alternateName Food and Agriculture Organization of the United Nations
    262 schema:name Animal Health Service – FAO, Viale delle Terme di Caracalla, Rome, Italy
    263 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...