Impact of demographic disparities in social distancing and vaccination on influenza epidemics in urban and rural regions of the United ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Meghendra Singh, Prasenjit Sarkhel, Gloria J. Kang, Achla Marathe, Kevin Boyle, Pamela Murray-Tuite, Kaja M. Abbas, Samarth Swarup

ABSTRACT

BACKGROUND: Self-protective behaviors of social distancing and vaccination uptake vary by demographics and affect the transmission dynamics of influenza in the United States. By incorporating the socio-behavioral differences in social distancing and vaccination uptake into mathematical models of influenza transmission dynamics, we can improve our estimates of epidemic outcomes. In this study we analyze the impact of demographic disparities in social distancing and vaccination on influenza epidemics in urban and rural regions of the United States. METHODS: We conducted a survey of a nationally representative sample of US adults to collect data on their self-protective behaviors, including social distancing and vaccination to protect themselves from influenza infection. We incorporated this data in an agent-based model to simulate the transmission dynamics of influenza in the urban region of Miami Dade county in Florida and the rural region of Montgomery county in Virginia. RESULTS: We compare epidemic scenarios wherein the social distancing and vaccination behaviors are uniform versus non-uniform across different demographic subpopulations. We infer that a uniform compliance of social distancing and vaccination uptake among different demographic subpopulations underestimates the severity of the epidemic in comparison to differentiated compliance among different demographic subpopulations. This result holds for both urban and rural regions. CONCLUSIONS: By taking into account the behavioral differences in social distancing and vaccination uptake among different demographic subpopulations in analysis of influenza epidemics, we provide improved estimates of epidemic outcomes that can assist in improved public health interventions for prevention and control of influenza. More... »

PAGES

221

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12879-019-3703-2

DOI

http://dx.doi.org/10.1186/s12879-019-3703-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112527580

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30832594


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Network Dynamics and Simulation Science Laboratory, Biocomplexity Institute of Virginia Tech, 24060, Blacksburg, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Meghendra", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kalyani", 
          "id": "https://www.grid.ac/institutes/grid.411993.7", 
          "name": [
            "Department of Economics, University of Kalyani, 741235, Nadia, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarkhel", 
        "givenName": "Prasenjit", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Network Dynamics and Simulation Science Laboratory, Biocomplexity Institute of Virginia Tech, 24060, Blacksburg, Virginia, USA", 
            "Department of Population Health Sciences, Virginia Tech, 24060, Blacksburg, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Gloria J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Biocomplexity Institute & Initiative, University of Virginia, 22908, Charlottesville, Virginia, USA", 
            "Department of Public Health Sciences, University of Virginia, 22908, Charlottesville, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marathe", 
        "givenName": "Achla", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Department of Agricultural and Applied Economics, Virginia Tech, 24060, Blacksburg, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boyle", 
        "givenName": "Kevin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clemson University", 
          "id": "https://www.grid.ac/institutes/grid.26090.3d", 
          "name": [
            "Department of Civil Engineering, Clemson University, 29634, Clemson, South Carolina, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murray-Tuite", 
        "givenName": "Pamela", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London School of Hygiene & Tropical Medicine", 
          "id": "https://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, WC1E7HT, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abbas", 
        "givenName": "Kaja M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Biocomplexity Institute & Initiative, University of Virginia, 22908, Charlottesville, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Swarup", 
        "givenName": "Samarth", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jval.2014.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003950089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epidem.2014.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006978173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwu209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008128596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwm375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009656496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0706849105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010186185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajic.2006.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011184389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epidem.2014.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012837163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epidem.2014.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012945743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0030361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018826764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0022461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020534345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2010.0142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023505324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epidem.2012.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027888680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0025149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028828186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1050(199902)8:1<9::aid-hec396>3.0.co;2-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031981523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1348/135910710x485826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033074644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1348/135910710x485826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033074644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033931940", 
          "https://doi.org/10.1038/nature02541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033931940", 
          "https://doi.org/10.1038/nature02541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034823586", 
          "https://doi.org/10.1038/nature06958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epidem.2014.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038854478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0965-8564(96)00004-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039341406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2009.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041774542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610941104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041941697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep09540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042912041", 
          "https://doi.org/10.1038/srep09540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/460687a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043457861", 
          "https://doi.org/10.1038/460687a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/mmnp/20127310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057046270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjopen-2016-011699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062809889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1910997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069639310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1913827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2582065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070007756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/003335490912400205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077878087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/003335490912400205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077878087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a112213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082673629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1005521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085739189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/bs.host.2017.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091974792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2196/publichealth.7344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092479831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wsc.2009.5429425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093512846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sc.2008.5214892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094152855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511805271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098708499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjopen-2017-017353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100553356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.5171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105568328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-30471-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106160314", 
          "https://doi.org/10.1038/s41598-018-30471-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106875674", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118548387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106875674"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Self-protective behaviors of social distancing and vaccination uptake vary by demographics and affect the transmission dynamics of influenza in the United States. By incorporating the socio-behavioral differences in social distancing and vaccination uptake into mathematical models of influenza transmission dynamics, we can improve our estimates of epidemic outcomes. In this study we analyze the impact of demographic disparities in social distancing and vaccination on influenza epidemics in urban and rural regions of the United States.\nMETHODS: We conducted a survey of a nationally representative sample of US adults to collect data on their self-protective behaviors, including social distancing and vaccination to protect themselves from influenza infection. We incorporated this data in an agent-based model to simulate the transmission dynamics of influenza in the urban region of Miami Dade county in Florida and the rural region of Montgomery county in Virginia.\nRESULTS: We compare epidemic scenarios wherein the social distancing and vaccination behaviors are uniform versus non-uniform across different demographic subpopulations. We infer that a uniform compliance of social distancing and vaccination uptake among different demographic subpopulations underestimates the severity of the epidemic in comparison to differentiated compliance among different demographic subpopulations. This result holds for both urban and rural regions.\nCONCLUSIONS: By taking into account the behavioral differences in social distancing and vaccination uptake among different demographic subpopulations in analysis of influenza epidemics, we provide improved estimates of epidemic outcomes that can assist in improved public health interventions for prevention and control of influenza.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12879-019-3703-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4311649", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3804493", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024946", 
        "issn": [
          "1471-2334"
        ], 
        "name": "BMC Infectious Diseases", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Impact of demographic disparities in social distancing and vaccination on influenza epidemics in urban and rural regions of the United States", 
    "pagination": "221", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "23515a37f4de6ea337e368ea35192de8a1f706545df4980deca4b2607090e529"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30832594"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968551"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12879-019-3703-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112527580"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12879-019-3703-2", 
      "https://app.dimensions.ai/details/publication/pub.1112527580"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78964_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12879-019-3703-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12879-019-3703-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12879-019-3703-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12879-019-3703-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12879-019-3703-2'


 

This table displays all metadata directly associated to this object as RDF triples.

255 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12879-019-3703-2 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N1cc560107c664e3e8019c7b3f9c03e77
4 schema:citation sg:pub.10.1038/460687a
5 sg:pub.10.1038/nature02541
6 sg:pub.10.1038/nature06958
7 sg:pub.10.1038/s41598-018-30471-0
8 sg:pub.10.1038/srep09540
9 https://app.dimensions.ai/details/publication/pub.1106875674
10 https://doi.org/10.1002/(sici)1099-1050(199902)8:1<9::aid-hec396>3.0.co;2-x
11 https://doi.org/10.1002/9781118548387
12 https://doi.org/10.1016/0965-8564(96)00004-3
13 https://doi.org/10.1016/bs.host.2017.08.011
14 https://doi.org/10.1016/j.ajic.2006.07.010
15 https://doi.org/10.1016/j.epidem.2012.06.001
16 https://doi.org/10.1016/j.epidem.2014.07.003
17 https://doi.org/10.1016/j.epidem.2014.09.004
18 https://doi.org/10.1016/j.epidem.2014.09.005
19 https://doi.org/10.1016/j.epidem.2014.12.002
20 https://doi.org/10.1016/j.jval.2014.11.009
21 https://doi.org/10.1016/j.vaccine.2009.04.029
22 https://doi.org/10.1017/cbo9780511805271
23 https://doi.org/10.1051/mmnp/20127310
24 https://doi.org/10.1073/pnas.0610941104
25 https://doi.org/10.1073/pnas.0706849105
26 https://doi.org/10.1093/aje/kwm375
27 https://doi.org/10.1093/aje/kwu209
28 https://doi.org/10.1093/oxfordjournals.aje.a112213
29 https://doi.org/10.1098/rsif.2010.0142
30 https://doi.org/10.1109/sc.2008.5214892
31 https://doi.org/10.1109/wsc.2009.5429425
32 https://doi.org/10.1136/bmjopen-2016-011699
33 https://doi.org/10.1136/bmjopen-2017-017353
34 https://doi.org/10.1177/003335490912400205
35 https://doi.org/10.1348/135910710x485826
36 https://doi.org/10.1371/journal.pcbi.1005521
37 https://doi.org/10.1371/journal.pmed.0030361
38 https://doi.org/10.1371/journal.pone.0022461
39 https://doi.org/10.1371/journal.pone.0025149
40 https://doi.org/10.2196/publichealth.7344
41 https://doi.org/10.2307/1910997
42 https://doi.org/10.2307/1913827
43 https://doi.org/10.2307/2582065
44 https://doi.org/10.7717/peerj.5171
45 schema:datePublished 2019-12
46 schema:datePublishedReg 2019-12-01
47 schema:description BACKGROUND: Self-protective behaviors of social distancing and vaccination uptake vary by demographics and affect the transmission dynamics of influenza in the United States. By incorporating the socio-behavioral differences in social distancing and vaccination uptake into mathematical models of influenza transmission dynamics, we can improve our estimates of epidemic outcomes. In this study we analyze the impact of demographic disparities in social distancing and vaccination on influenza epidemics in urban and rural regions of the United States. METHODS: We conducted a survey of a nationally representative sample of US adults to collect data on their self-protective behaviors, including social distancing and vaccination to protect themselves from influenza infection. We incorporated this data in an agent-based model to simulate the transmission dynamics of influenza in the urban region of Miami Dade county in Florida and the rural region of Montgomery county in Virginia. RESULTS: We compare epidemic scenarios wherein the social distancing and vaccination behaviors are uniform versus non-uniform across different demographic subpopulations. We infer that a uniform compliance of social distancing and vaccination uptake among different demographic subpopulations underestimates the severity of the epidemic in comparison to differentiated compliance among different demographic subpopulations. This result holds for both urban and rural regions. CONCLUSIONS: By taking into account the behavioral differences in social distancing and vaccination uptake among different demographic subpopulations in analysis of influenza epidemics, we provide improved estimates of epidemic outcomes that can assist in improved public health interventions for prevention and control of influenza.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N1d7f2672660d4ab1a9e05d82d02ddc4f
52 Ncff4a68430dc41279b9a7ef9fd34d831
53 sg:journal.1024946
54 schema:name Impact of demographic disparities in social distancing and vaccination on influenza epidemics in urban and rural regions of the United States
55 schema:pagination 221
56 schema:productId N4230b575ae4745c2be928da55f49071e
57 N9479f9179658414ab0bf003b836b1fbf
58 N9b18efb02dba45969ecb9d15ad006286
59 Na1e6393bb1df468fbfafb345f7969054
60 Nfb1a477bf0db4b9287ca35393f9b5a50
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112527580
62 https://doi.org/10.1186/s12879-019-3703-2
63 schema:sdDatePublished 2019-04-11T13:20
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N61434fc6bc894729961f78d5a7b2fff4
66 schema:url https://link.springer.com/10.1186%2Fs12879-019-3703-2
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N1cc560107c664e3e8019c7b3f9c03e77 rdf:first N27beae41ef97492388ec436ffabdf583
71 rdf:rest Ne8e80b114df64b0380a7aaa360f7960d
72 N1d7f2672660d4ab1a9e05d82d02ddc4f schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N1e5f241620af419db69be57148da9ebc schema:affiliation https://www.grid.ac/institutes/grid.27755.32
75 schema:familyName Swarup
76 schema:givenName Samarth
77 rdf:type schema:Person
78 N235526a4b6974310892e3d6c25d3ec7e schema:affiliation https://www.grid.ac/institutes/grid.8991.9
79 schema:familyName Abbas
80 schema:givenName Kaja M.
81 rdf:type schema:Person
82 N27beae41ef97492388ec436ffabdf583 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
83 schema:familyName Singh
84 schema:givenName Meghendra
85 rdf:type schema:Person
86 N4230b575ae4745c2be928da55f49071e schema:name dimensions_id
87 schema:value pub.1112527580
88 rdf:type schema:PropertyValue
89 N5d4c4629f8d34995a2cfaf4ae62868e6 rdf:first Nf51dcb02b79b40b8832fbf327e7ae8cc
90 rdf:rest Nb2ccf0cec8a941aeb707c7a7e57ab5ee
91 N5f3de134b3eb44d5a4099a731cc7a4da rdf:first Nc0eb138837d54b4481c7010c1cef8b00
92 rdf:rest N5d4c4629f8d34995a2cfaf4ae62868e6
93 N61434fc6bc894729961f78d5a7b2fff4 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N744826b798334587aee5098afb24410d rdf:first N1e5f241620af419db69be57148da9ebc
96 rdf:rest rdf:nil
97 N7d0d91dd234f47deb3676931a30064bc schema:affiliation https://www.grid.ac/institutes/grid.411993.7
98 schema:familyName Sarkhel
99 schema:givenName Prasenjit
100 rdf:type schema:Person
101 N7d37dfac4c184a738135b201bb79e462 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
102 schema:familyName Kang
103 schema:givenName Gloria J.
104 rdf:type schema:Person
105 N7f7542725d3b457db25ba09c1241ad9d schema:affiliation https://www.grid.ac/institutes/grid.27755.32
106 schema:familyName Marathe
107 schema:givenName Achla
108 rdf:type schema:Person
109 N86c26664a2f342cb8e84362c9b2a7ea6 rdf:first N7f7542725d3b457db25ba09c1241ad9d
110 rdf:rest N5f3de134b3eb44d5a4099a731cc7a4da
111 N9479f9179658414ab0bf003b836b1fbf schema:name doi
112 schema:value 10.1186/s12879-019-3703-2
113 rdf:type schema:PropertyValue
114 N9b18efb02dba45969ecb9d15ad006286 schema:name pubmed_id
115 schema:value 30832594
116 rdf:type schema:PropertyValue
117 Na1e6393bb1df468fbfafb345f7969054 schema:name nlm_unique_id
118 schema:value 100968551
119 rdf:type schema:PropertyValue
120 Nb2ccf0cec8a941aeb707c7a7e57ab5ee rdf:first N235526a4b6974310892e3d6c25d3ec7e
121 rdf:rest N744826b798334587aee5098afb24410d
122 Nc0eb138837d54b4481c7010c1cef8b00 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
123 schema:familyName Boyle
124 schema:givenName Kevin
125 rdf:type schema:Person
126 Nc41e5ad84bff4c9092ed2c68359a750a rdf:first N7d37dfac4c184a738135b201bb79e462
127 rdf:rest N86c26664a2f342cb8e84362c9b2a7ea6
128 Ncff4a68430dc41279b9a7ef9fd34d831 schema:volumeNumber 19
129 rdf:type schema:PublicationVolume
130 Ne8e80b114df64b0380a7aaa360f7960d rdf:first N7d0d91dd234f47deb3676931a30064bc
131 rdf:rest Nc41e5ad84bff4c9092ed2c68359a750a
132 Nf51dcb02b79b40b8832fbf327e7ae8cc schema:affiliation https://www.grid.ac/institutes/grid.26090.3d
133 schema:familyName Murray-Tuite
134 schema:givenName Pamela
135 rdf:type schema:Person
136 Nfb1a477bf0db4b9287ca35393f9b5a50 schema:name readcube_id
137 schema:value 23515a37f4de6ea337e368ea35192de8a1f706545df4980deca4b2607090e529
138 rdf:type schema:PropertyValue
139 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
140 schema:name Medical and Health Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
143 schema:name Public Health and Health Services
144 rdf:type schema:DefinedTerm
145 sg:grant.3804493 http://pending.schema.org/fundedItem sg:pub.10.1186/s12879-019-3703-2
146 rdf:type schema:MonetaryGrant
147 sg:grant.4311649 http://pending.schema.org/fundedItem sg:pub.10.1186/s12879-019-3703-2
148 rdf:type schema:MonetaryGrant
149 sg:journal.1024946 schema:issn 1471-2334
150 schema:name BMC Infectious Diseases
151 rdf:type schema:Periodical
152 sg:pub.10.1038/460687a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043457861
153 https://doi.org/10.1038/460687a
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nature02541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033931940
156 https://doi.org/10.1038/nature02541
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nature06958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034823586
159 https://doi.org/10.1038/nature06958
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/s41598-018-30471-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106160314
162 https://doi.org/10.1038/s41598-018-30471-0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/srep09540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042912041
165 https://doi.org/10.1038/srep09540
166 rdf:type schema:CreativeWork
167 https://app.dimensions.ai/details/publication/pub.1106875674 schema:CreativeWork
168 https://doi.org/10.1002/(sici)1099-1050(199902)8:1<9::aid-hec396>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031981523
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/9781118548387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106875674
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/0965-8564(96)00004-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039341406
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/bs.host.2017.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091974792
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.ajic.2006.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011184389
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.epidem.2012.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027888680
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.epidem.2014.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012837163
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.epidem.2014.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012945743
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.epidem.2014.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038854478
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.epidem.2014.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006978173
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.jval.2014.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003950089
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.vaccine.2009.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041774542
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1017/cbo9780511805271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708499
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1051/mmnp/20127310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057046270
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.0610941104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041941697
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1073/pnas.0706849105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010186185
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/aje/kwm375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009656496
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/aje/kwu209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008128596
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/oxfordjournals.aje.a112213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082673629
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1098/rsif.2010.0142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023505324
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/sc.2008.5214892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094152855
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/wsc.2009.5429425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093512846
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1136/bmjopen-2016-011699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062809889
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1136/bmjopen-2017-017353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100553356
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1177/003335490912400205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077878087
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1348/135910710x485826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033074644
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1371/journal.pcbi.1005521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085739189
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1371/journal.pmed.0030361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018826764
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pone.0022461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020534345
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1371/journal.pone.0025149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028828186
227 rdf:type schema:CreativeWork
228 https://doi.org/10.2196/publichealth.7344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092479831
229 rdf:type schema:CreativeWork
230 https://doi.org/10.2307/1910997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069639310
231 rdf:type schema:CreativeWork
232 https://doi.org/10.2307/1913827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640990
233 rdf:type schema:CreativeWork
234 https://doi.org/10.2307/2582065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070007756
235 rdf:type schema:CreativeWork
236 https://doi.org/10.7717/peerj.5171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105568328
237 rdf:type schema:CreativeWork
238 https://www.grid.ac/institutes/grid.26090.3d schema:alternateName Clemson University
239 schema:name Department of Civil Engineering, Clemson University, 29634, Clemson, South Carolina, USA
240 rdf:type schema:Organization
241 https://www.grid.ac/institutes/grid.27755.32 schema:alternateName University of Virginia
242 schema:name Biocomplexity Institute & Initiative, University of Virginia, 22908, Charlottesville, Virginia, USA
243 Department of Public Health Sciences, University of Virginia, 22908, Charlottesville, Virginia, USA
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.411993.7 schema:alternateName University of Kalyani
246 schema:name Department of Economics, University of Kalyani, 741235, Nadia, West Bengal, India
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.438526.e schema:alternateName Virginia Tech
249 schema:name Department of Agricultural and Applied Economics, Virginia Tech, 24060, Blacksburg, Virginia, USA
250 Department of Population Health Sciences, Virginia Tech, 24060, Blacksburg, Virginia, USA
251 Network Dynamics and Simulation Science Laboratory, Biocomplexity Institute of Virginia Tech, 24060, Blacksburg, Virginia, USA
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.8991.9 schema:alternateName London School of Hygiene & Tropical Medicine
254 schema:name Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, WC1E7HT, London, UK
255 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...