A new age-related cutoff of medial temporal atrophy scale on MRI improving the diagnostic accuracy of neurodegeneration due to Alzheimer’s ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Mingqing Wei, Jing Shi, Jingnian Ni, Xuekai Zhang, Ting Li, Zilong Chen, Mengling Zhou, Liping Zhang, Zhongjian Tan, Yongyan Wang, Jinzhou Tian

ABSTRACT

BACKGROUND: Visual rating scales are still the most popular tools in assessing atrophy degrees of whole brain and lobes. However, the false negative rate of the previous cutoff score of visual rating scales was relatively high for detecting dementia of Alzheimer's type (DAT). This study aimed to evaluate the diagnostic value of new cutoffs of visual rating scales on magnetic resonance imaging for discriminating DAT in a Chinese population. METHODS: Out of 585 enrolled subjects, 296 participants were included and diagnosed as normal cognition (NC)(n = 87), 138 diagnosed as amnestic mild cognitive impairment (aMCI), and 71 as dementia of Alzheimer's type (DAT). Receiver operating characteristic (ROC) curve analyses were used to calculate the diagnostic value of visual rating sales (including medial temporal atrophy (MTA), posterior atrophy rating scale (PA),global cortical atrophy scale (GCA) and medial temporal-lobe atrophy index (MTAi))for detecting NC from DAT . RESULTS: Scores of MTA correlated to age and Mini-mental state examination score. When used to detect DAT from NC, the MTA showed highest diagnostic value than other scales, and when the cutoff score of 1.5 of MTA scale, it obtained an optimal sensitivity (84.5%) and specificity (79.1%) respectively, with a 15.5% of false negative rate. Cutoff scores and diagnostic values were calculated stratified by age. For the age ranges 50-64, 65-74, 75-84 years, the following cut-offs of MTA should be used, ≥1.0(sensitivity and specificity were 92.3 and 68.4%), ≥1.5(sensitivity and specificity were 90.4 and 85.2%), ≥ 2.0(sensitivity and specificity were 70.8 and 82.3%) respectively. All of the scales showed relatively lower diagnostic values for discriminating aMCI from NC. CONCLUSIONS: The new age-based MTA cutoff showed better diagnostic accuracy for detecting DAT than previous standard, the list of practical cut-offs proposed here might be useful in clinical practice. More... »

PAGES

59

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12877-019-1072-8

DOI

http://dx.doi.org/10.1186/s12877-019-1072-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112462957

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30819102


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing University of Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.24695.3c", 
          "name": [
            "Neurology Centre, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, 100700, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Mingqing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.24695.3c", 
          "name": [
            "Neurology Centre, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, 100700, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Jing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.24695.3c", 
          "name": [
            "Neurology Centre, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, 100700, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ni", 
        "givenName": "Jingnian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.24695.3c", 
          "name": [
            "Neurology Centre, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, 100700, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xuekai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.24695.3c", 
          "name": [
            "Neurology Centre, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, 100700, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ting", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.24695.3c", 
          "name": [
            "Neurology Centre, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, 100700, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zilong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.24695.3c", 
          "name": [
            "Neurology Centre, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, 100700, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Mengling", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.24695.3c", 
          "name": [
            "Department of Radiology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, 100700, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Liping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.24695.3c", 
          "name": [
            "Department of Radiology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, 100700, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Zhongjian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Chinese Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410318.f", 
          "name": [
            "Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 100700, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yongyan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.24695.3c", 
          "name": [
            "Neurology Centre, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, 100700, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Jinzhou", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00308809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000355620", 
          "https://doi.org/10.1007/bf00308809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gps.2696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000627503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410040410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014138351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/joim.12358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014267590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2011.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015460770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa050151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017041609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13854049208401877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017310419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000117417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019863962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.71.4.441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022259382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.55.10.967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024417247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000117270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026162224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnagi.2014.00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028029853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnagi.2014.00305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031197957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2205-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036077136", 
          "https://doi.org/10.1007/s00330-011-2205-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhj105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039242292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneur.58.12.1985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046010372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-0833-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047311130", 
          "https://doi.org/10.1007/s00259-008-0833-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4726-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583243", 
          "https://doi.org/10.1007/s00330-016-4726-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4726-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583243", 
          "https://doi.org/10.1007/s00330-016-4726-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2005.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051318659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03337714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051751602", 
          "https://doi.org/10.1007/bf03337714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neulet.2003.12.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053009573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000110315.26026.ef", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064345755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000110315.26026.ef", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064345755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000110315.26026.ef", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064345755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000133114.92694.93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064346190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000133114.92694.93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064346190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000133114.92694.93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064346190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.58.10.1476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064380389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.58.10.1476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064380389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.58.10.1476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064380389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2017.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084084793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jgs.15135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092685881"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Visual rating scales are still the most popular tools in assessing atrophy degrees of whole brain and lobes. However, the false negative rate of the previous cutoff score of visual rating scales was relatively high for detecting dementia of Alzheimer's type (DAT). This study aimed to evaluate the diagnostic value of new cutoffs of visual rating scales on magnetic resonance imaging for discriminating DAT in a Chinese population.\nMETHODS: Out of 585 enrolled subjects, 296 participants were included and diagnosed as normal cognition (NC)(n\u00a0=\u200987), 138 diagnosed as amnestic mild cognitive impairment (aMCI), and 71 as dementia of Alzheimer's type (DAT). Receiver operating characteristic (ROC) curve analyses were used to calculate the diagnostic value of visual rating sales (including medial temporal atrophy (MTA), posterior atrophy rating scale (PA),global cortical atrophy scale (GCA) and medial temporal-lobe atrophy index (MTAi))for detecting NC from DAT .\nRESULTS: Scores of MTA correlated to age and Mini-mental state examination score. When used to detect DAT from NC, the MTA showed highest diagnostic value than other scales, and when the cutoff score of 1.5 of MTA scale, it obtained an optimal sensitivity (84.5%) and specificity (79.1%) respectively, with a 15.5% of false negative rate. Cutoff scores and diagnostic values were calculated stratified by age. For the age ranges 50-64, 65-74, 75-84\u2009years, the following cut-offs of MTA should be used, \u22651.0(sensitivity and specificity were 92.3 and 68.4%), \u22651.5(sensitivity and specificity were 90.4 and 85.2%), \u2265 2.0(sensitivity and specificity were 70.8 and 82.3%) respectively. All of the scales showed relatively lower diagnostic values for discriminating aMCI from NC.\nCONCLUSIONS: The new age-based MTA cutoff showed better diagnostic accuracy for detecting DAT than previous standard, the list of practical cut-offs proposed here might be useful in clinical practice.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12877-019-1072-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024943", 
        "issn": [
          "1471-2318"
        ], 
        "name": "BMC Geriatrics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "A new age-related cutoff of medial temporal atrophy scale on MRI improving the diagnostic accuracy of neurodegeneration due to Alzheimer\u2019s disease in a Chinese population", 
    "pagination": "59", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ac1ced67cf262c82220caddbdfde003dd25582caf81b42d8a30d7efd8fce3788"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30819102"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968548"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12877-019-1072-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112462957"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12877-019-1072-8", 
      "https://app.dimensions.ai/details/publication/pub.1112462957"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57874_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12877-019-1072-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12877-019-1072-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12877-019-1072-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12877-019-1072-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12877-019-1072-8'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12877-019-1072-8 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N716ea865752a4d94822a96bea56e3ca9
4 schema:citation sg:pub.10.1007/bf00308809
5 sg:pub.10.1007/bf03337714
6 sg:pub.10.1007/s00259-008-0833-y
7 sg:pub.10.1007/s00330-011-2205-4
8 sg:pub.10.1007/s00330-016-4726-3
9 https://doi.org/10.1001/archneur.58.12.1985
10 https://doi.org/10.1002/ana.410040410
11 https://doi.org/10.1002/gps.2696
12 https://doi.org/10.1016/j.jalz.2011.03.005
13 https://doi.org/10.1016/j.jalz.2017.02.001
14 https://doi.org/10.1016/j.neulet.2003.12.072
15 https://doi.org/10.1016/j.neurobiolaging.2005.11.012
16 https://doi.org/10.1056/nejmoa050151
17 https://doi.org/10.1080/13854049208401877
18 https://doi.org/10.1093/cercor/bhj105
19 https://doi.org/10.1111/jgs.15135
20 https://doi.org/10.1111/joim.12358
21 https://doi.org/10.1136/jnnp.55.10.967
22 https://doi.org/10.1136/jnnp.71.4.441
23 https://doi.org/10.1159/000117270
24 https://doi.org/10.1159/000117417
25 https://doi.org/10.1212/01.wnl.0000110315.26026.ef
26 https://doi.org/10.1212/01.wnl.0000133114.92694.93
27 https://doi.org/10.1212/wnl.58.10.1476
28 https://doi.org/10.3389/fnagi.2014.00023
29 https://doi.org/10.3389/fnagi.2014.00305
30 schema:datePublished 2019-12
31 schema:datePublishedReg 2019-12-01
32 schema:description BACKGROUND: Visual rating scales are still the most popular tools in assessing atrophy degrees of whole brain and lobes. However, the false negative rate of the previous cutoff score of visual rating scales was relatively high for detecting dementia of Alzheimer's type (DAT). This study aimed to evaluate the diagnostic value of new cutoffs of visual rating scales on magnetic resonance imaging for discriminating DAT in a Chinese population. METHODS: Out of 585 enrolled subjects, 296 participants were included and diagnosed as normal cognition (NC)(n = 87), 138 diagnosed as amnestic mild cognitive impairment (aMCI), and 71 as dementia of Alzheimer's type (DAT). Receiver operating characteristic (ROC) curve analyses were used to calculate the diagnostic value of visual rating sales (including medial temporal atrophy (MTA), posterior atrophy rating scale (PA),global cortical atrophy scale (GCA) and medial temporal-lobe atrophy index (MTAi))for detecting NC from DAT . RESULTS: Scores of MTA correlated to age and Mini-mental state examination score. When used to detect DAT from NC, the MTA showed highest diagnostic value than other scales, and when the cutoff score of 1.5 of MTA scale, it obtained an optimal sensitivity (84.5%) and specificity (79.1%) respectively, with a 15.5% of false negative rate. Cutoff scores and diagnostic values were calculated stratified by age. For the age ranges 50-64, 65-74, 75-84 years, the following cut-offs of MTA should be used, ≥1.0(sensitivity and specificity were 92.3 and 68.4%), ≥1.5(sensitivity and specificity were 90.4 and 85.2%), ≥ 2.0(sensitivity and specificity were 70.8 and 82.3%) respectively. All of the scales showed relatively lower diagnostic values for discriminating aMCI from NC. CONCLUSIONS: The new age-based MTA cutoff showed better diagnostic accuracy for detecting DAT than previous standard, the list of practical cut-offs proposed here might be useful in clinical practice.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N3b3265feda6f47b59317471e0794cdaa
37 Nc6b647232b034f4abb6721b78333b6ca
38 sg:journal.1024943
39 schema:name A new age-related cutoff of medial temporal atrophy scale on MRI improving the diagnostic accuracy of neurodegeneration due to Alzheimer’s disease in a Chinese population
40 schema:pagination 59
41 schema:productId N109a5f6fdf454919adc0c731f50616e8
42 N2966f7e0bb4742d3b5d18625f7b73fdf
43 N67c2572bccd9446e9a9b0af17406ce9e
44 Nf790eb90a2074d00840fd8fbd6c8110b
45 Nf8482dd6b5404f678187bb9c10bae5ff
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112462957
47 https://doi.org/10.1186/s12877-019-1072-8
48 schema:sdDatePublished 2019-04-11T11:25
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N2070c2674434498784789cc541d237a2
51 schema:url https://link.springer.com/10.1186%2Fs12877-019-1072-8
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N109a5f6fdf454919adc0c731f50616e8 schema:name doi
56 schema:value 10.1186/s12877-019-1072-8
57 rdf:type schema:PropertyValue
58 N141892a496cb437396086bf8f51cb082 schema:affiliation https://www.grid.ac/institutes/grid.24695.3c
59 schema:familyName Tan
60 schema:givenName Zhongjian
61 rdf:type schema:Person
62 N1f800d8fd2bd479a8d6e8311afddf1a1 rdf:first N8876bba88f9940c0ba2ebec51d2adadb
63 rdf:rest Nedca776fd81b4525bf4be485496d00c5
64 N2070c2674434498784789cc541d237a2 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N2966f7e0bb4742d3b5d18625f7b73fdf schema:name nlm_unique_id
67 schema:value 100968548
68 rdf:type schema:PropertyValue
69 N3b3265feda6f47b59317471e0794cdaa schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 N3daf5cb505774f7fb33796b781cf007a rdf:first N538f4a5764a2472cb661a09c51946cfd
72 rdf:rest Nf2afd61b31db4084b35933b003251ff4
73 N41522b294af84e6b878f22df4a930e9d schema:affiliation https://www.grid.ac/institutes/grid.24695.3c
74 schema:familyName Zhang
75 schema:givenName Liping
76 rdf:type schema:Person
77 N45e48bad80664e9680a1c3690a961023 rdf:first N141892a496cb437396086bf8f51cb082
78 rdf:rest N3daf5cb505774f7fb33796b781cf007a
79 N48d13ccce3694236bd6baaaf845a2c7c rdf:first N84651aa65843457ab6c2cacbb9ae918b
80 rdf:rest Nac1d5b89d6224fc187e7763e8cc1fe5a
81 N538f4a5764a2472cb661a09c51946cfd schema:affiliation https://www.grid.ac/institutes/grid.410318.f
82 schema:familyName Wang
83 schema:givenName Yongyan
84 rdf:type schema:Person
85 N67c2572bccd9446e9a9b0af17406ce9e schema:name readcube_id
86 schema:value ac1ced67cf262c82220caddbdfde003dd25582caf81b42d8a30d7efd8fce3788
87 rdf:type schema:PropertyValue
88 N716ea865752a4d94822a96bea56e3ca9 rdf:first N81cb438a9c4a479887f2388dd2f70af4
89 rdf:rest Na291706ff2e14e4eb9f00141670c7d42
90 N81cb438a9c4a479887f2388dd2f70af4 schema:affiliation https://www.grid.ac/institutes/grid.24695.3c
91 schema:familyName Wei
92 schema:givenName Mingqing
93 rdf:type schema:Person
94 N84651aa65843457ab6c2cacbb9ae918b schema:affiliation https://www.grid.ac/institutes/grid.24695.3c
95 schema:familyName Ni
96 schema:givenName Jingnian
97 rdf:type schema:Person
98 N8876bba88f9940c0ba2ebec51d2adadb schema:affiliation https://www.grid.ac/institutes/grid.24695.3c
99 schema:familyName Li
100 schema:givenName Ting
101 rdf:type schema:Person
102 N8f2a33c4fee14eb0945d1056c3d210f1 schema:affiliation https://www.grid.ac/institutes/grid.24695.3c
103 schema:familyName Tian
104 schema:givenName Jinzhou
105 rdf:type schema:Person
106 Na291706ff2e14e4eb9f00141670c7d42 rdf:first Nafc3d068e3084305a9e5951fa3ca58b5
107 rdf:rest N48d13ccce3694236bd6baaaf845a2c7c
108 Na32ba2f879a4464b858636988f4c6b7a rdf:first Nf5b3800877324b529364cd711dac7601
109 rdf:rest Nea828754793d4493af09ab37bbfbd1d5
110 Nac1d5b89d6224fc187e7763e8cc1fe5a rdf:first Nbec7688060d24821a54808223c2b3283
111 rdf:rest N1f800d8fd2bd479a8d6e8311afddf1a1
112 Nafc3d068e3084305a9e5951fa3ca58b5 schema:affiliation https://www.grid.ac/institutes/grid.24695.3c
113 schema:familyName Shi
114 schema:givenName Jing
115 rdf:type schema:Person
116 Nbec7688060d24821a54808223c2b3283 schema:affiliation https://www.grid.ac/institutes/grid.24695.3c
117 schema:familyName Zhang
118 schema:givenName Xuekai
119 rdf:type schema:Person
120 Nc6b647232b034f4abb6721b78333b6ca schema:volumeNumber 19
121 rdf:type schema:PublicationVolume
122 Nd9005beeb8604c1f93a73e007e72f538 schema:affiliation https://www.grid.ac/institutes/grid.24695.3c
123 schema:familyName Chen
124 schema:givenName Zilong
125 rdf:type schema:Person
126 Nea828754793d4493af09ab37bbfbd1d5 rdf:first N41522b294af84e6b878f22df4a930e9d
127 rdf:rest N45e48bad80664e9680a1c3690a961023
128 Nedca776fd81b4525bf4be485496d00c5 rdf:first Nd9005beeb8604c1f93a73e007e72f538
129 rdf:rest Na32ba2f879a4464b858636988f4c6b7a
130 Nf2afd61b31db4084b35933b003251ff4 rdf:first N8f2a33c4fee14eb0945d1056c3d210f1
131 rdf:rest rdf:nil
132 Nf5b3800877324b529364cd711dac7601 schema:affiliation https://www.grid.ac/institutes/grid.24695.3c
133 schema:familyName Zhou
134 schema:givenName Mengling
135 rdf:type schema:Person
136 Nf790eb90a2074d00840fd8fbd6c8110b schema:name pubmed_id
137 schema:value 30819102
138 rdf:type schema:PropertyValue
139 Nf8482dd6b5404f678187bb9c10bae5ff schema:name dimensions_id
140 schema:value pub.1112462957
141 rdf:type schema:PropertyValue
142 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
143 schema:name Medical and Health Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
146 schema:name Clinical Sciences
147 rdf:type schema:DefinedTerm
148 sg:journal.1024943 schema:issn 1471-2318
149 schema:name BMC Geriatrics
150 rdf:type schema:Periodical
151 sg:pub.10.1007/bf00308809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000355620
152 https://doi.org/10.1007/bf00308809
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bf03337714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051751602
155 https://doi.org/10.1007/bf03337714
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s00259-008-0833-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1047311130
158 https://doi.org/10.1007/s00259-008-0833-y
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s00330-011-2205-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036077136
161 https://doi.org/10.1007/s00330-011-2205-4
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s00330-016-4726-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583243
164 https://doi.org/10.1007/s00330-016-4726-3
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1001/archneur.58.12.1985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046010372
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/ana.410040410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014138351
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/gps.2696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000627503
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jalz.2011.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015460770
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.jalz.2017.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084084793
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.neulet.2003.12.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053009573
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.neurobiolaging.2005.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051318659
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1056/nejmoa050151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017041609
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/13854049208401877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017310419
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/cercor/bhj105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039242292
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1111/jgs.15135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092685881
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1111/joim.12358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014267590
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1136/jnnp.55.10.967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024417247
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1136/jnnp.71.4.441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022259382
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1159/000117270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026162224
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1159/000117417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019863962
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1212/01.wnl.0000110315.26026.ef schema:sameAs https://app.dimensions.ai/details/publication/pub.1064345755
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1212/01.wnl.0000133114.92694.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064346190
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1212/wnl.58.10.1476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064380389
203 rdf:type schema:CreativeWork
204 https://doi.org/10.3389/fnagi.2014.00023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028029853
205 rdf:type schema:CreativeWork
206 https://doi.org/10.3389/fnagi.2014.00305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031197957
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.24695.3c schema:alternateName Beijing University of Chinese Medicine
209 schema:name Department of Radiology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, 100700, Beijing, China
210 Neurology Centre, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, 100700, Beijing, China
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.410318.f schema:alternateName China Academy of Chinese Medical Sciences
213 schema:name Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 100700, Beijing, China
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...