Does imbalance in chest X-ray datasets produce biased deep learning approaches for COVID-19 screening? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-04-28

AUTHORS

Lorena Álvarez-Rodríguez, Joaquim de Moura, Jorge Novo, Marcos Ortega

ABSTRACT

BackgroundThe health crisis resulting from the global COVID-19 pandemic highlighted more than ever the need for rapid, reliable and safe methods of diagnosis and monitoring of respiratory diseases. To study pulmonary involvement in detail, one of the most common resources is the use of different lung imaging modalities (like chest radiography) to explore the possible affected areas.MethodsThe study of patient characteristics like sex and age in pathologies of this type is crucial for gaining knowledge of the disease and for avoiding biases due to the clear scarcity of data when developing representative systems. In this work, we performed an analysis of these factors in chest X-ray images to identify biases. Specifically, 11 imbalance scenarios were defined with female and male COVID-19 patients present in different proportions for the sex analysis, and 6 scenarios where only one specific age range was used for training for the age factor. In each study, 3 different approaches for automatic COVID-19 screening were used: Normal vs COVID-19, Pneumonia vs COVID-19 and Non-COVID-19 vs COVID-19. The study was validated using two public chest X-ray datasets, allowing a reliable analysis to support the clinical decision-making process.ResultsThe results for the sex-related analysis indicate this factor slightly affects the system in the Normal VS COVID-19 and Pneumonia VS COVID-19 approaches, although the identified differences are not relevant enough to worsen considerably the system. Regarding the age-related analysis, this factor was observed to be influencing the system in a more consistent way than the sex factor, as it was present in all considered scenarios. However, this worsening does not represent a major factor, as it is not of great magnitude.ConclusionsMultiple studies have been conducted in other fields in order to determine if certain patient characteristics such as sex or age influenced these deep learning systems. However, to the best of our knowledge, this study has not been done for COVID-19 despite the urgency and lack of COVID-19 chest x-ray images. The presented results evidenced that the proposed methodology and tested approaches allow a robust and reliable analysis to support the clinical decision-making process in this pandemic scenario. More... »

PAGES

125

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12874-022-01578-w

DOI

http://dx.doi.org/10.1186/s12874-022-01578-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147366899

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35484483


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "COVID-19", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Deep Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pandemics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pneumonia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "X-Rays", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Grupo VARPA, Instituto de Investigaci\u00f3n Biom\u00e9dica de A Coru\u00f1a (INIBIC), Universidade da Coru\u00f1a, 15006, A Coru\u00f1a, Spain", 
          "id": "http://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Centro de Investigaci\u00f3n CITIC, Universidade da Coru\u00f1a, Campus de Elvi\u00f1a, 15071, A Coru\u00f1a, Spain", 
            "Grupo VARPA, Instituto de Investigaci\u00f3n Biom\u00e9dica de A Coru\u00f1a (INIBIC), Universidade da Coru\u00f1a, 15006, A Coru\u00f1a, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00c1lvarez-Rodr\u00edguez", 
        "givenName": "Lorena", 
        "id": "sg:person.012772514602.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012772514602.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Grupo VARPA, Instituto de Investigaci\u00f3n Biom\u00e9dica de A Coru\u00f1a (INIBIC), Universidade da Coru\u00f1a, 15006, A Coru\u00f1a, Spain", 
          "id": "http://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Centro de Investigaci\u00f3n CITIC, Universidade da Coru\u00f1a, Campus de Elvi\u00f1a, 15071, A Coru\u00f1a, Spain", 
            "Grupo VARPA, Instituto de Investigaci\u00f3n Biom\u00e9dica de A Coru\u00f1a (INIBIC), Universidade da Coru\u00f1a, 15006, A Coru\u00f1a, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moura", 
        "givenName": "Joaquim de", 
        "id": "sg:person.014736775640.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014736775640.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Grupo VARPA, Instituto de Investigaci\u00f3n Biom\u00e9dica de A Coru\u00f1a (INIBIC), Universidade da Coru\u00f1a, 15006, A Coru\u00f1a, Spain", 
          "id": "http://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Centro de Investigaci\u00f3n CITIC, Universidade da Coru\u00f1a, Campus de Elvi\u00f1a, 15071, A Coru\u00f1a, Spain", 
            "Grupo VARPA, Instituto de Investigaci\u00f3n Biom\u00e9dica de A Coru\u00f1a (INIBIC), Universidade da Coru\u00f1a, 15006, A Coru\u00f1a, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novo", 
        "givenName": "Jorge", 
        "id": "sg:person.01263222603.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263222603.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Grupo VARPA, Instituto de Investigaci\u00f3n Biom\u00e9dica de A Coru\u00f1a (INIBIC), Universidade da Coru\u00f1a, 15006, A Coru\u00f1a, Spain", 
          "id": "http://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Centro de Investigaci\u00f3n CITIC, Universidade da Coru\u00f1a, Campus de Elvi\u00f1a, 15071, A Coru\u00f1a, Spain", 
            "Grupo VARPA, Instituto de Investigaci\u00f3n Biom\u00e9dica de A Coru\u00f1a (INIBIC), Universidade da Coru\u00f1a, 15006, A Coru\u00f1a, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ortega", 
        "givenName": "Marcos", 
        "id": "sg:person.0665112667.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665112667.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41746-020-0288-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128093519", 
          "https://doi.org/10.1038/s41746-020-0288-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-020-76550-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132499687", 
          "https://doi.org/10.1038/s41598-020-76550-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-021-90766-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138514323", 
          "https://doi.org/10.1038/s41598-021-90766-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13755-020-00116-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1131248578", 
          "https://doi.org/10.1007/s13755-020-00116-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10916-021-01745-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138682364", 
          "https://doi.org/10.1007/s10916-021-01745-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s42600-020-00091-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130566023", 
          "https://doi.org/10.1007/s42600-020-00091-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s42979-021-00695-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138366413", 
          "https://doi.org/10.1007/s42979-021-00695-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4842-2766-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084932924", 
          "https://doi.org/10.1007/978-1-4842-2766-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-04-28", 
    "datePublishedReg": "2022-04-28", 
    "description": "BackgroundThe health crisis resulting from the global COVID-19 pandemic highlighted more than ever the need for rapid, reliable and safe methods of diagnosis and monitoring of respiratory diseases. To study pulmonary involvement in detail, one of the most common resources is the use of different lung imaging modalities (like chest radiography) to explore the possible affected areas.MethodsThe study of patient characteristics like sex and age in pathologies of this type is crucial for gaining knowledge of the disease and for avoiding biases due to the clear scarcity of data when developing representative systems. In this work, we performed an analysis of these factors in chest X-ray images to identify biases. Specifically, 11 imbalance scenarios were defined with female and male COVID-19 patients present in different proportions for the sex analysis, and 6 scenarios where only one specific age range was used for training for the age factor. In each study, 3 different approaches for automatic COVID-19 screening were used: Normal vs COVID-19, Pneumonia vs COVID-19 and Non-COVID-19 vs COVID-19. The study was validated using two public chest X-ray datasets, allowing a reliable analysis to support the clinical decision-making process.ResultsThe results for the sex-related analysis indicate this factor slightly affects the system in the Normal VS COVID-19 and Pneumonia VS COVID-19 approaches, although the identified differences are not relevant enough to worsen considerably the system. Regarding the age-related analysis, this factor was observed to be influencing the system in a more consistent way than the sex factor, as it was present in all considered scenarios. However, this worsening does not represent a major factor, as it is not of great magnitude.ConclusionsMultiple studies have been conducted in other fields in order to determine if certain patient characteristics such as sex or age influenced these deep learning systems. However, to the best of our knowledge, this study has not been done for COVID-19 despite the urgency and lack of COVID-19 chest x-ray images. The presented results evidenced that the proposed methodology and tested approaches allow a robust and reliable analysis to support the clinical decision-making process in this pandemic scenario.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12874-022-01578-w", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9666469", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024940", 
        "issn": [
          "1471-2288"
        ], 
        "name": "BMC Medical Research Methodology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "clinical decision-making process", 
      "COVID-19 screening", 
      "patient characteristics", 
      "COVID-19", 
      "male COVID-19 patients", 
      "COVID-19 patients", 
      "certain patient characteristics", 
      "sex-related analysis", 
      "age-related analysis", 
      "pulmonary involvement", 
      "respiratory disease", 
      "MethodsThe study", 
      "specific age ranges", 
      "safe method", 
      "different lung", 
      "age range", 
      "COVID-19 pandemic", 
      "health crisis", 
      "disease", 
      "sex analysis", 
      "chest X-ray images", 
      "age factor", 
      "greater magnitude", 
      "age", 
      "sex", 
      "global COVID-19 pandemic", 
      "pandemic scenario", 
      "screening", 
      "sex factor", 
      "factors", 
      "pneumonia", 
      "patients", 
      "lung", 
      "worsening", 
      "study", 
      "diagnosis", 
      "pathology", 
      "ResultsThe", 
      "decision-making process", 
      "modalities", 
      "involvement", 
      "X-ray images", 
      "pandemic", 
      "major factor", 
      "chest X-ray dataset", 
      "proportion", 
      "imbalance", 
      "analysis", 
      "differences", 
      "urgency", 
      "knowledge", 
      "training", 
      "lack", 
      "X-ray dataset", 
      "deep learning system", 
      "monitoring", 
      "characteristics", 
      "need", 
      "use", 
      "reliable analysis", 
      "data", 
      "types", 
      "approach", 
      "area", 
      "results", 
      "system", 
      "different proportions", 
      "COVID-19 chest X-ray images", 
      "images", 
      "method", 
      "different approaches", 
      "magnitude", 
      "biases", 
      "process", 
      "range", 
      "scarcity", 
      "crisis", 
      "order", 
      "detail", 
      "public chest X-ray datasets", 
      "dataset", 
      "resources", 
      "deep learning approach", 
      "way", 
      "scenarios", 
      "presented results", 
      "work", 
      "methodology", 
      "consistent way", 
      "field", 
      "learning approach", 
      "learning system", 
      "common resources", 
      "representative system", 
      "imbalance scenarios", 
      "clear scarcity"
    ], 
    "name": "Does imbalance in chest X-ray datasets produce biased deep learning approaches for COVID-19 screening?", 
    "pagination": "125", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147366899"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12874-022-01578-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35484483"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12874-022-01578-w", 
      "https://app.dimensions.ai/details/publication/pub.1147366899"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_931.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12874-022-01578-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12874-022-01578-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12874-022-01578-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12874-022-01578-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12874-022-01578-w'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      22 PREDICATES      139 URIs      123 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12874-022-01578-w schema:about N59ec08e12bed42a2ba70324d6241901c
2 N7668884a191c4e7e8a9f932b40930d41
3 N79b201875edf41059cd1aec40533db88
4 N8a57a69e539f4e50bdf7a0c58f9f757f
5 Na708af0e7b6e44b8b7947bf86f6873fd
6 Nb63868ce19c8474d82f4cc5b6a16d78f
7 Nbd074f5fecc743e0a8e7f97682627501
8 Nbddee520dbfe42558b63996aca1dc7eb
9 Ne06b6e30e4bf49f0a207170972cbbfec
10 anzsrc-for:11
11 anzsrc-for:1103
12 schema:author N26711e2a2890433da25420b4ef54f7a4
13 schema:citation sg:pub.10.1007/978-1-4842-2766-4
14 sg:pub.10.1007/s10916-021-01745-4
15 sg:pub.10.1007/s13755-020-00116-6
16 sg:pub.10.1007/s42600-020-00091-7
17 sg:pub.10.1007/s42979-021-00695-5
18 sg:pub.10.1038/s41598-020-76550-z
19 sg:pub.10.1038/s41598-021-90766-7
20 sg:pub.10.1038/s41746-020-0288-5
21 schema:datePublished 2022-04-28
22 schema:datePublishedReg 2022-04-28
23 schema:description BackgroundThe health crisis resulting from the global COVID-19 pandemic highlighted more than ever the need for rapid, reliable and safe methods of diagnosis and monitoring of respiratory diseases. To study pulmonary involvement in detail, one of the most common resources is the use of different lung imaging modalities (like chest radiography) to explore the possible affected areas.MethodsThe study of patient characteristics like sex and age in pathologies of this type is crucial for gaining knowledge of the disease and for avoiding biases due to the clear scarcity of data when developing representative systems. In this work, we performed an analysis of these factors in chest X-ray images to identify biases. Specifically, 11 imbalance scenarios were defined with female and male COVID-19 patients present in different proportions for the sex analysis, and 6 scenarios where only one specific age range was used for training for the age factor. In each study, 3 different approaches for automatic COVID-19 screening were used: Normal vs COVID-19, Pneumonia vs COVID-19 and Non-COVID-19 vs COVID-19. The study was validated using two public chest X-ray datasets, allowing a reliable analysis to support the clinical decision-making process.ResultsThe results for the sex-related analysis indicate this factor slightly affects the system in the Normal VS COVID-19 and Pneumonia VS COVID-19 approaches, although the identified differences are not relevant enough to worsen considerably the system. Regarding the age-related analysis, this factor was observed to be influencing the system in a more consistent way than the sex factor, as it was present in all considered scenarios. However, this worsening does not represent a major factor, as it is not of great magnitude.ConclusionsMultiple studies have been conducted in other fields in order to determine if certain patient characteristics such as sex or age influenced these deep learning systems. However, to the best of our knowledge, this study has not been done for COVID-19 despite the urgency and lack of COVID-19 chest x-ray images. The presented results evidenced that the proposed methodology and tested approaches allow a robust and reliable analysis to support the clinical decision-making process in this pandemic scenario.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N380c34b877c64964abf46fdeb2f74d12
28 N9bc06731043d42eb8514a2917907dd64
29 sg:journal.1024940
30 schema:keywords COVID-19
31 COVID-19 chest X-ray images
32 COVID-19 pandemic
33 COVID-19 patients
34 COVID-19 screening
35 MethodsThe study
36 ResultsThe
37 X-ray dataset
38 X-ray images
39 age
40 age factor
41 age range
42 age-related analysis
43 analysis
44 approach
45 area
46 biases
47 certain patient characteristics
48 characteristics
49 chest X-ray dataset
50 chest X-ray images
51 clear scarcity
52 clinical decision-making process
53 common resources
54 consistent way
55 crisis
56 data
57 dataset
58 decision-making process
59 deep learning approach
60 deep learning system
61 detail
62 diagnosis
63 differences
64 different approaches
65 different lung
66 different proportions
67 disease
68 factors
69 field
70 global COVID-19 pandemic
71 greater magnitude
72 health crisis
73 images
74 imbalance
75 imbalance scenarios
76 involvement
77 knowledge
78 lack
79 learning approach
80 learning system
81 lung
82 magnitude
83 major factor
84 male COVID-19 patients
85 method
86 methodology
87 modalities
88 monitoring
89 need
90 order
91 pandemic
92 pandemic scenario
93 pathology
94 patient characteristics
95 patients
96 pneumonia
97 presented results
98 process
99 proportion
100 public chest X-ray datasets
101 pulmonary involvement
102 range
103 reliable analysis
104 representative system
105 resources
106 respiratory disease
107 results
108 safe method
109 scarcity
110 scenarios
111 screening
112 sex
113 sex analysis
114 sex factor
115 sex-related analysis
116 specific age ranges
117 study
118 system
119 training
120 types
121 urgency
122 use
123 way
124 work
125 worsening
126 schema:name Does imbalance in chest X-ray datasets produce biased deep learning approaches for COVID-19 screening?
127 schema:pagination 125
128 schema:productId N006f4b8ca9354c0daac8de3887cdb9b5
129 N08a54fa85896411a81887197bb141cd9
130 Ne78a91b8f693419b8cc57e4878a510b2
131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147366899
132 https://doi.org/10.1186/s12874-022-01578-w
133 schema:sdDatePublished 2022-06-01T22:23
134 schema:sdLicense https://scigraph.springernature.com/explorer/license/
135 schema:sdPublisher Nf4d46d9810294994a42b1a330f587abc
136 schema:url https://doi.org/10.1186/s12874-022-01578-w
137 sgo:license sg:explorer/license/
138 sgo:sdDataset articles
139 rdf:type schema:ScholarlyArticle
140 N006f4b8ca9354c0daac8de3887cdb9b5 schema:name dimensions_id
141 schema:value pub.1147366899
142 rdf:type schema:PropertyValue
143 N03e07fc018e54043be0d263e1a7b776d rdf:first sg:person.0665112667.10
144 rdf:rest rdf:nil
145 N08a54fa85896411a81887197bb141cd9 schema:name doi
146 schema:value 10.1186/s12874-022-01578-w
147 rdf:type schema:PropertyValue
148 N26711e2a2890433da25420b4ef54f7a4 rdf:first sg:person.012772514602.86
149 rdf:rest Nd0dbff088fe6479395e9b3b24efabb1b
150 N380c34b877c64964abf46fdeb2f74d12 schema:issueNumber 1
151 rdf:type schema:PublicationIssue
152 N59ec08e12bed42a2ba70324d6241901c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name COVID-19
154 rdf:type schema:DefinedTerm
155 N68dbc6f619914dcdb03d275d4b20afc6 rdf:first sg:person.01263222603.88
156 rdf:rest N03e07fc018e54043be0d263e1a7b776d
157 N7668884a191c4e7e8a9f932b40930d41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name X-Rays
159 rdf:type schema:DefinedTerm
160 N79b201875edf41059cd1aec40533db88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Pandemics
162 rdf:type schema:DefinedTerm
163 N8a57a69e539f4e50bdf7a0c58f9f757f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Deep Learning
165 rdf:type schema:DefinedTerm
166 N9bc06731043d42eb8514a2917907dd64 schema:volumeNumber 22
167 rdf:type schema:PublicationVolume
168 Na708af0e7b6e44b8b7947bf86f6873fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Humans
170 rdf:type schema:DefinedTerm
171 Nb63868ce19c8474d82f4cc5b6a16d78f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Female
173 rdf:type schema:DefinedTerm
174 Nbd074f5fecc743e0a8e7f97682627501 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Radiography
176 rdf:type schema:DefinedTerm
177 Nbddee520dbfe42558b63996aca1dc7eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Male
179 rdf:type schema:DefinedTerm
180 Nd0dbff088fe6479395e9b3b24efabb1b rdf:first sg:person.014736775640.63
181 rdf:rest N68dbc6f619914dcdb03d275d4b20afc6
182 Ne06b6e30e4bf49f0a207170972cbbfec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Pneumonia
184 rdf:type schema:DefinedTerm
185 Ne78a91b8f693419b8cc57e4878a510b2 schema:name pubmed_id
186 schema:value 35484483
187 rdf:type schema:PropertyValue
188 Nf4d46d9810294994a42b1a330f587abc schema:name Springer Nature - SN SciGraph project
189 rdf:type schema:Organization
190 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
191 schema:name Medical and Health Sciences
192 rdf:type schema:DefinedTerm
193 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
194 schema:name Clinical Sciences
195 rdf:type schema:DefinedTerm
196 sg:grant.9666469 http://pending.schema.org/fundedItem sg:pub.10.1186/s12874-022-01578-w
197 rdf:type schema:MonetaryGrant
198 sg:journal.1024940 schema:issn 1471-2288
199 schema:name BMC Medical Research Methodology
200 schema:publisher Springer Nature
201 rdf:type schema:Periodical
202 sg:person.01263222603.88 schema:affiliation grid-institutes:grid.8073.c
203 schema:familyName Novo
204 schema:givenName Jorge
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263222603.88
206 rdf:type schema:Person
207 sg:person.012772514602.86 schema:affiliation grid-institutes:grid.8073.c
208 schema:familyName Álvarez-Rodríguez
209 schema:givenName Lorena
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012772514602.86
211 rdf:type schema:Person
212 sg:person.014736775640.63 schema:affiliation grid-institutes:grid.8073.c
213 schema:familyName Moura
214 schema:givenName Joaquim de
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014736775640.63
216 rdf:type schema:Person
217 sg:person.0665112667.10 schema:affiliation grid-institutes:grid.8073.c
218 schema:familyName Ortega
219 schema:givenName Marcos
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665112667.10
221 rdf:type schema:Person
222 sg:pub.10.1007/978-1-4842-2766-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084932924
223 https://doi.org/10.1007/978-1-4842-2766-4
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s10916-021-01745-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138682364
226 https://doi.org/10.1007/s10916-021-01745-4
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s13755-020-00116-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131248578
229 https://doi.org/10.1007/s13755-020-00116-6
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s42600-020-00091-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130566023
232 https://doi.org/10.1007/s42600-020-00091-7
233 rdf:type schema:CreativeWork
234 sg:pub.10.1007/s42979-021-00695-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138366413
235 https://doi.org/10.1007/s42979-021-00695-5
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/s41598-020-76550-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1132499687
238 https://doi.org/10.1038/s41598-020-76550-z
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/s41598-021-90766-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138514323
241 https://doi.org/10.1038/s41598-021-90766-7
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/s41746-020-0288-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128093519
244 https://doi.org/10.1038/s41746-020-0288-5
245 rdf:type schema:CreativeWork
246 grid-institutes:grid.8073.c schema:alternateName Grupo VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, 15006, A Coruña, Spain
247 schema:name Centro de Investigación CITIC, Universidade da Coruña, Campus de Elviña, 15071, A Coruña, Spain
248 Grupo VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, 15006, A Coruña, Spain
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...