Sample size calculations for model validation in linear regression analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-12

AUTHORS

Show-Li Jan, Gwowen Shieh

ABSTRACT

BACKGROUND: Linear regression analysis is a widely used statistical technique in practical applications. For planning and appraising validation studies of simple linear regression, an approximate sample size formula has been proposed for the joint test of intercept and slope coefficients. METHODS: The purpose of this article is to reveal the potential drawback of the existing approximation and to provide an alternative and exact solution of power and sample size calculations for model validation in linear regression analysis. RESULTS: A fetal weight example is included to illustrate the underlying discrepancy between the exact and approximate methods. Moreover, extensive numerical assessments were conducted to examine the relative performance of the two distinct procedures. CONCLUSIONS: The results show that the exact approach has a distinct advantage over the current method with greater accuracy and high robustness. More... »

PAGES

54

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12874-019-0697-9

DOI

http://dx.doi.org/10.1186/s12874-019-0697-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112738999

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30866825


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomedical Research", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sample Size", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography, Prenatal", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, Chung Yuan Christian University, Taoyuan, Taiwan 32023 Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411649.f", 
          "name": [
            "Department of Applied Mathematics, Chung Yuan Christian University, Taoyuan, Taiwan 32023 Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jan", 
        "givenName": "Show-Li", 
        "id": "sg:person.01125631252.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125631252.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Management Science, National Chiao Tung University, Hsinchu, Taiwan 30010 Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Department of Management Science, National Chiao Tung University, Hsinchu, Taiwan 30010 Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shieh", 
        "givenName": "Gwowen", 
        "id": "sg:person.01344624771.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344624771.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11336-007-9012-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022305796", 
          "https://doi.org/10.1007/s11336-007-9012-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-04-1221-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035393851", 
          "https://doi.org/10.1007/s11336-04-1221-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-12", 
    "datePublishedReg": "2019-03-12", 
    "description": "BACKGROUND: Linear regression analysis is a widely used statistical technique in practical applications. For planning and appraising validation studies of simple linear regression, an approximate sample size formula has been proposed for the joint test of intercept and slope coefficients.\nMETHODS: The purpose of this article is to reveal the potential drawback of the existing approximation and to provide an alternative and exact solution of power and sample size calculations for model validation in linear regression analysis.\nRESULTS: A fetal weight example is included to illustrate the underlying discrepancy between the exact and approximate methods. Moreover, extensive numerical assessments were conducted to examine the relative performance of the two distinct procedures.\nCONCLUSIONS: The results show that the exact approach has a distinct advantage over the current method with greater accuracy and high robustness.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12874-019-0697-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024940", 
        "issn": [
          "1471-2288"
        ], 
        "name": "BMC Medical Research Methodology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "extensive numerical assessments", 
      "approximate sample size formulae", 
      "exact solution", 
      "model validation", 
      "approximate method", 
      "sample size calculation", 
      "sample size formula", 
      "exact approach", 
      "statistical techniques", 
      "size formula", 
      "size calculation", 
      "simple linear regression", 
      "practical applications", 
      "high robustness", 
      "distinct procedures", 
      "greater accuracy", 
      "numerical assessment", 
      "approximation", 
      "relative performance", 
      "slope coefficient", 
      "calculations", 
      "linear regression", 
      "current methods", 
      "formula", 
      "robustness", 
      "solution", 
      "accuracy", 
      "distinct advantages", 
      "joint tests", 
      "coefficient", 
      "applications", 
      "approach", 
      "validation", 
      "linear regression analysis", 
      "analysis", 
      "drawbacks", 
      "power", 
      "technique", 
      "performance", 
      "advantages", 
      "potential drawbacks", 
      "procedure", 
      "regression", 
      "discrepancy", 
      "results", 
      "planning", 
      "regression analysis", 
      "validation study", 
      "article", 
      "purpose", 
      "test", 
      "study", 
      "assessment", 
      "method", 
      "example", 
      "fetal weight example", 
      "weight example"
    ], 
    "name": "Sample size calculations for model validation in linear regression analysis", 
    "pagination": "54", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112738999"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12874-019-0697-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30866825"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12874-019-0697-9", 
      "https://app.dimensions.ai/details/publication/pub.1112738999"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_805.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12874-019-0697-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12874-019-0697-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12874-019-0697-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12874-019-0697-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12874-019-0697-9'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      22 PREDICATES      94 URIs      84 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12874-019-0697-9 schema:about N0771cef4688f4dc6ac39e577b2c012e9
2 N16f5825b047948de85a423b378571063
3 N1c15a15924ac494eb3879630d6d57506
4 N351f3d7928b34110aca30d47cabfd9cd
5 N355765e6693c4a02bb9b98db87406aec
6 N4e8d219f11764c38a12aefb12171edcf
7 Naa58605d4bdb47e0b7bff4384d2bfc66
8 Nadced295d674497193a2b00aa1cd97fd
9 Nca73e55e66da47ec9104fede70e26ef1
10 Nca7534f3d4414b1b9d4b63c11329956c
11 anzsrc-for:11
12 anzsrc-for:1117
13 schema:author N66d67b01d71040f48464f231fa393cf8
14 schema:citation sg:pub.10.1007/s11336-007-9012-5
15 sg:pub.10.1007/s11336-04-1221-6
16 schema:datePublished 2019-03-12
17 schema:datePublishedReg 2019-03-12
18 schema:description BACKGROUND: Linear regression analysis is a widely used statistical technique in practical applications. For planning and appraising validation studies of simple linear regression, an approximate sample size formula has been proposed for the joint test of intercept and slope coefficients. METHODS: The purpose of this article is to reveal the potential drawback of the existing approximation and to provide an alternative and exact solution of power and sample size calculations for model validation in linear regression analysis. RESULTS: A fetal weight example is included to illustrate the underlying discrepancy between the exact and approximate methods. Moreover, extensive numerical assessments were conducted to examine the relative performance of the two distinct procedures. CONCLUSIONS: The results show that the exact approach has a distinct advantage over the current method with greater accuracy and high robustness.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N2787b93e27b245269f2762aca1f87002
23 Nb66ff8e4f67f425088c14b73243c5d83
24 sg:journal.1024940
25 schema:keywords accuracy
26 advantages
27 analysis
28 applications
29 approach
30 approximate method
31 approximate sample size formulae
32 approximation
33 article
34 assessment
35 calculations
36 coefficient
37 current methods
38 discrepancy
39 distinct advantages
40 distinct procedures
41 drawbacks
42 exact approach
43 exact solution
44 example
45 extensive numerical assessments
46 fetal weight example
47 formula
48 greater accuracy
49 high robustness
50 joint tests
51 linear regression
52 linear regression analysis
53 method
54 model validation
55 numerical assessment
56 performance
57 planning
58 potential drawbacks
59 power
60 practical applications
61 procedure
62 purpose
63 regression
64 regression analysis
65 relative performance
66 results
67 robustness
68 sample size calculation
69 sample size formula
70 simple linear regression
71 size calculation
72 size formula
73 slope coefficient
74 solution
75 statistical techniques
76 study
77 technique
78 test
79 validation
80 validation study
81 weight example
82 schema:name Sample size calculations for model validation in linear regression analysis
83 schema:pagination 54
84 schema:productId N1f7744229e0e40868785a7bddfc3280f
85 N793bce82ceae4b4dbabb98a7f418a409
86 Nb6a51cba3ddc4df580c923501ba6dc5a
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112738999
88 https://doi.org/10.1186/s12874-019-0697-9
89 schema:sdDatePublished 2021-12-01T19:45
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N1c61a6b2211d437491a7d3dc05063954
92 schema:url https://doi.org/10.1186/s12874-019-0697-9
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N0771cef4688f4dc6ac39e577b2c012e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Biomedical Research
98 rdf:type schema:DefinedTerm
99 N16f5825b047948de85a423b378571063 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Humans
101 rdf:type schema:DefinedTerm
102 N1c15a15924ac494eb3879630d6d57506 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Research Design
104 rdf:type schema:DefinedTerm
105 N1c61a6b2211d437491a7d3dc05063954 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N1f7744229e0e40868785a7bddfc3280f schema:name dimensions_id
108 schema:value pub.1112738999
109 rdf:type schema:PropertyValue
110 N2787b93e27b245269f2762aca1f87002 schema:volumeNumber 19
111 rdf:type schema:PublicationVolume
112 N351f3d7928b34110aca30d47cabfd9cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Sample Size
114 rdf:type schema:DefinedTerm
115 N355765e6693c4a02bb9b98db87406aec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Body Weight
117 rdf:type schema:DefinedTerm
118 N4e8d219f11764c38a12aefb12171edcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Reproducibility of Results
120 rdf:type schema:DefinedTerm
121 N66d67b01d71040f48464f231fa393cf8 rdf:first sg:person.01125631252.03
122 rdf:rest Nf78e1f2e3c1248458483e2397203280a
123 N793bce82ceae4b4dbabb98a7f418a409 schema:name doi
124 schema:value 10.1186/s12874-019-0697-9
125 rdf:type schema:PropertyValue
126 Naa58605d4bdb47e0b7bff4384d2bfc66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Linear Models
128 rdf:type schema:DefinedTerm
129 Nadced295d674497193a2b00aa1cd97fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Algorithms
131 rdf:type schema:DefinedTerm
132 Nb66ff8e4f67f425088c14b73243c5d83 schema:issueNumber 1
133 rdf:type schema:PublicationIssue
134 Nb6a51cba3ddc4df580c923501ba6dc5a schema:name pubmed_id
135 schema:value 30866825
136 rdf:type schema:PropertyValue
137 Nca73e55e66da47ec9104fede70e26ef1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Models, Biological
139 rdf:type schema:DefinedTerm
140 Nca7534f3d4414b1b9d4b63c11329956c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Ultrasonography, Prenatal
142 rdf:type schema:DefinedTerm
143 Nf78e1f2e3c1248458483e2397203280a rdf:first sg:person.01344624771.21
144 rdf:rest rdf:nil
145 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
146 schema:name Medical and Health Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
149 schema:name Public Health and Health Services
150 rdf:type schema:DefinedTerm
151 sg:journal.1024940 schema:issn 1471-2288
152 schema:name BMC Medical Research Methodology
153 schema:publisher Springer Nature
154 rdf:type schema:Periodical
155 sg:person.01125631252.03 schema:affiliation grid-institutes:grid.411649.f
156 schema:familyName Jan
157 schema:givenName Show-Li
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125631252.03
159 rdf:type schema:Person
160 sg:person.01344624771.21 schema:affiliation grid-institutes:grid.260539.b
161 schema:familyName Shieh
162 schema:givenName Gwowen
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344624771.21
164 rdf:type schema:Person
165 sg:pub.10.1007/s11336-007-9012-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022305796
166 https://doi.org/10.1007/s11336-007-9012-5
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11336-04-1221-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035393851
169 https://doi.org/10.1007/s11336-04-1221-6
170 rdf:type schema:CreativeWork
171 grid-institutes:grid.260539.b schema:alternateName Department of Management Science, National Chiao Tung University, Hsinchu, Taiwan 30010 Republic of China
172 schema:name Department of Management Science, National Chiao Tung University, Hsinchu, Taiwan 30010 Republic of China
173 rdf:type schema:Organization
174 grid-institutes:grid.411649.f schema:alternateName Department of Applied Mathematics, Chung Yuan Christian University, Taoyuan, Taiwan 32023 Republic of China
175 schema:name Department of Applied Mathematics, Chung Yuan Christian University, Taoyuan, Taiwan 32023 Republic of China
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...